張家宜; 高熏芳; 莊武仁
,
1998 [教育政策與領導研究所] 研究報告 jk + ∑ D n DUM n
n (1) Where i, s = T and R; j, r = L, K, and M; k, l = T and R. DUM is the dummy
variable for each university with n = N1,…,N10
王萬智; Wang, Wan-Chih
,
2013 [管理科學學系暨研究所] 學位論文 Journal of Operational Research, 25, 89-112.
[11] Chang, H. J., Lin, W. F. and Ho, J. F. (2011). Closed-form solutions for Wee’s and Martin’s EOQ models
Jong, J. C.; Suen, C. S.; Chang, S. K.
,
2012-01 [運輸管理學系暨研究所] 期刊論文 Transportation Research Record 2289, pp.24-33 Total number of stopping patterns, m = 2(n−2)
L Expected number of stopping patterns to operate
Pij Passenger demand from stotion a te j
uikj
劉嘉俊; Liu, Jacob Chia-chun
,
2009 [水資源及環境工程學系暨研究所] 學位論文 . 65, 943-950.
[2] António J., Godinho L., and Tadeu A. (2002). ‘‘Reverberation times
obtained using a numerical model versus those given by simplified
Loewy, Raphael; Tam, Bit-Shun
,
2010-05 [應用數學與數據科學學系] 期刊論文 Journal of Mathematical Analysis and Applications 365(2), pp.570-583 − 1. Let l denote thu smallest positive integer such that
at least one of the vectors Alx2, Alxk˜ j+q+1, j = 1,...,s − 1doesnotbelongtoK2. It os