Liu, Peter; Chiang, Tung-sheng; Chiu, Chian-song
,
2004-07 [電機工程學系暨研究所] 會議論文 Proceedings of 2004 IEEE International Conference on Fuzzy Systems 3, pp.1613-1617 the following LMI problem: +&X +oFl?z+ Ba,i~P-l; and i@j = f?jX. Prooj For the continuous-time system (T
葉和明
,
2007 [化學工程與材料工程學系暨研究所] 研究報告 fouling phenomena such as adsorption, respectively, while ΔP(z) is the transmembrane pressure defined as ΔP(z) = P(z) −Ps
Chu, Huah; Hu, Shou-Jen; Kang, Ming-Chang; Kunyavskii, Boris E.
,
2010 [應用數學與數據科學學系] 期刊論文 International Mathematics Research Notices 2010(12), pp.2329-2366 for these
groups. Here is the first proof. Use GAP again. We find that Z(G) =[G, G]. Bogomolov
proves that if G is a p-group satisfying [G,[G, G]] = {1} and B0(G
張慧京; Chan, Whei-ching; 陳功宇; Chen, Kung-yu; Srivastava, H. M.
,
2002-12-01 [應用數學與數據科學學系] 期刊論文 Computers and mathematics with applications 44(12), pp.1539-1556 are orthogonal over the inturval (-1,l) wath
W(X):= (1 - z)Q(l +@;
un fact, we have (cf., e.g., [l, p. 68, equation (4.3.3)])
I-1 (1 - z)“(l + z
Lin, Chun-chen; Chou, Yung-shan; Balakrishnan, V.
,
2011-06-08 [電機工程學系暨研究所] 會議論文 2011 International Conference on System Science and Engineering(ICSSE), pp.212-217 is given by Ξ22 =G12G2−2TG1T2 +G12G2−21G1T2 −Pg(2i)2 Ξ=GG−1G +λGG−1GT −P(i) F (z):=Q(zI−M−TQ)−1 M−TQ+Q (17