莊忠柱; Chen, M. S
,
2000-12-01 [管理科學學系暨研究所] 期刊論文 International Journal of Production Economics67, pp.269-277 . (8( „ T(q~k)@p(T~t)
Let (q!k( „(q!k( z" " . (9
Shuoh-Jung Liu; Shy-Der Lin; Chen, Kung-yu; H. M. Srivastava
,
2013-02 [應用數學與數據科學學系] 期刊論文 Integral Transforms and Special Functions 24(2), pp.84-97 = (1 − xz)−α(1 − yz)−β (|z| < min{|x|−1, |y|−1}) (1) n
n=0
are known as the Lagrange polynomials which occur in certain problems in statistics
Kuryshova, Yulia V.; Shieh, Chung-Tsun
,
2010 [應用數學與數據科學學系] 期刊論文 Journal of Inverse and Ill-posed Problems 18(4), pp.357-369 ; h; H/, which is
the integro-differential eqaataon Z x `y WD y00 C q.x/y C M.x;t/y.t/dty; x 2 Œ0; (1.1) 0
劉寅春; Chiang, T.S.; Chiu, C.S.
,
2010-03-01 [電機工程學系暨研究所] 期刊論文 Proc. of the FUZZ-IEEE'2004, 3, pp.1269-1273 = [z:l(t)z~(t.).. zg(t)lT,ind p, =
with &(z) = n:=, Fjz(zs(t))N.ote thit E:='=p,(z) = 3
for all t,where p,(z) 9 0, for o = 1,2,...,r, are rogarded
Ho, Choon-Lin; Sasaki, Ryu
,
2014-10-20 [物理學系暨研究所] 期刊論文 Journal of Mathematical Physics 55( 11), 113301(10 Pages) to x(t) = πtα/2. The basic data needed in the formula are10 η(z) = cos 2z, ⎧ ⎨ P(g+− 32 ,−h−− 12 )(η), g > h > 0:J1
錢傳仁
,
2002 [應用數學與數據科學學系] 研究報告 ; for t 2[;(!)]g:
It is clear that P P is a normal cone in B. Since (u(t);v(t)) is a solution of (1), (2), for a given
, if and only if ZZ
張根豪; Chang, Ken-Hao
,
2016 [化學學系暨研究所] 學位論文 2013, 99, 127-135.
[34] Wu, H. N.; Zhang, T.; Wu, C. X.; Guan, W.; Yan, L. K.; Su, Z. M.; Dyes and Pigments 2016, 130, 168-175.
[35] Liu, D. S.; Ding
Lee, Yun-ju; Tung, Hsien-chin; Wu, Wen-wei; Yeh, Ping-hung
,
2011-06-22 [物理學系暨研究所] 會議論文 2011 IEEE 4th International Nanoelectronics Conference(INEC), Tao-Yuan, Taiwan, 1, pp.29-32 , Z. Pan, Z. L. Wang, Appl.
Phys. Lett. 2002, 81, 1869.
[8] Y. Cheng, P. Xiong, C. S. Yun, G. F. Strouse, J. P. Zheng, R. S.
Yang, Z. L. Wang, Nano Lett