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GPU Acceleration of Predictive Partitioned Vector
Quantization for Ultraspectral Sounder Data
Compression

Shih-Chieh Wei and Bormin Huang

Abstract—For the large-volume ultraspectral sounder data,
compression is desirable to save storage space and transmission
time. To retrieve the geophysical paramters without losing preci-
sion the ultraspectral sounder data compression has to be lossless.
Recently there is a boom on the use of graphic processor units
(GPU) for speedup of scientific computations. By identifying the
time dominant portions of the code that can be executed in par-
allel, significant speedup can be achieved by using GPU. Predictive
partitioned vector quantization (PPVQ) has been proven to be an
effective lossless compression scheme for ultraspectral sounder
data. It consists of linear prediction, bit depth partitioning, vector
quantization, and entropy coding. Two most time consuming
stages of linear prediction and vector quantization are chosen
for GPU-based implementation. By exploiting the data parallel
characteristics of these two stages, a spatial division design shows
a speedup of 72x in our four-GPU-based implementation of the
PPVQ compression scheme.

Index Terms—Graphic processor unit, lossless data compres-
sion, predictive partitioned vector quantization, ultraspectral
sounder data.

I. INTRODUCTION

ONTEMPORARY ultraspectral sounders such as the At-

mospheric Infrared Sounder (AIRS) [1], the Infrared At-
mospheric Sounding Interferometer (IASI) [2], the Cross-Track
Infrared Sounder (CrIS) [3], and the Geosynchronous Imaging
Fourier Transform Spectrometer (GIFTS) [4] are designed in an
aim to improve the weather and climate prediction. These ultra-
spectral sounders feature a spectral resolution of over a thousand
infrared channels in each spatial location. Thus the large volume
of the 3D data observed each day will need some form of com-
pression to reduce its size for data transfer and archive. On the
other hand, the physical retrieval of the geophysical parameters
from the observation data involves the inverse solution of the
radiative transfer equation, which is a mathematically ill-posed
problem and the solution is sensitive to the error or noise in the
data [5]. Therefore, there is a need for the compression to be
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lossless to avoid potential retrieval degradation of geophysical
parameters due to lossy compression.

Recently general purpose graphic processor units (GPGPU)
have become more affordable for scientific computation. In gen-
eral, a GPU board may contain many multiprocessors which
are composed of several execution cores, registers and shared
memory [6], [7]. Each multiprocessor can execute the same code
on its cores independently. By exploiting the fast registers and
shared memory in the multiprocessor, parallel codes can usu-
ally have high speedup in computation. GPUs have already seen
many applications in traditional visual rendering [8]. There are
also trends of using GPU in other compute intensive applica-
tions like image compression [9], [10]. In remote sensing, GPUs
have been used to accelerate the hyperspectral image processing
[11] which includes compression [12], spectral mixture analysis
[13], and target and anomaly detection [14].

The predictive partitioned vector quantization (PPVQ) [15] is
known for its high performance on lossless compression of ul-
traspectral sounder data. It mainly consists of the four stages of
linear prediction, bit depth partitioning, vector quantization and
entropy coding. Based on a C code implementation of PPVQ,
we analyze the CPU profile of the four stages on running the
GIFTS data [16] and find out that the two stages of linear predic-
tion and vector quantization take up over 90 percent of the CPU
execution time. In this paper, we will seek to exploit the paral-
lelism available in these two stages for speedup of PPVQ. In par-
ticular we will use the CUDA platform on the Nvidia graphics
hardware for implementation.

The rest of this paper will be arranged as follows. Section II
describes the GIFTS test data set used in this study. Section III
introduces the PPVQ compression scheme and our GPU-based
implementation of it. Section I'V shows the experimental results
and Section V gives conclusions.

II. DATA

GIFTS represents a revolutionary step in satellite remote
sensing of geophysical parameters, and poses a challenge to
process the large amount of data it will collect. Most of a raw
GIFTS data “cube” is made up of a 128 x 128 array of inter-
ferograms. Metadata and a visible light image also included in
each cube take up a negligible portion of its volume. Each of the
16384 detector pixels contributes two separate complex-valued
interferograms, each from one of the instrument’s two infrared
detector arrays: The long wave (LW) interferogram records
1031 data values per pixel, while the short-medium wave
(SMW) interferogram records 2062 values. The interferograms
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TABLE I
FIVE OBSERVATION DATA CUBES USED IN THE STUDY
Data Cube Name Time (MST)
1 Ave00004 12:10
2 Ave00015 14:00
3 Ave00027 16:00
4 Ave00039 18:00
5 Ave00051 20:00
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Fig. 1. Sample interferograms of representative pixels (located near center of
LW array).

are complex valued as the result of a filtering algorithm imple-
mented in an onboard DSP that downsamples raw counts from
the interferometer to a format usable by downstream product
generation algorithms. The real and imaginary parts of each
value are stored separately as 16-bit (short) integers, resulting
in 32 bits (4 bytes) per raw value, or 12 kilobytes per pixel.
This raw format results in 192 MB of infrared interferometric
data per observation, or “cube”. In its normal operating mode,
GIFTS is expected to generate one such cube every 11 seconds,
and this data generation rate, on the order of 1.5 TB a day, de-
mands the kind of sophisticated compression for transmission
and storage that is presented in this paper.

The test dataset prepared for this compression study was gath-
ered in 2006 in a ground testing facility, and consists of up-
looking instrument views taken at various times over the course
of a clear sky day. While spatial uniformity of the samples is
fairly high due to the small angle of view of the instrument, the
spectral dimension in each pixel records the same kind of com-
plex radiative signature as seen from outer space. But due to the
nature of radiative transfer, this spectrum is the inverse of its
downlooking equivalent. All samples were taken on September
13, 2006 in the Space Dynamics Lab testing facility in Logan,
Utah [17]. Table I lists the five observation data cubes used in
the study. Fig. 1 shows the sample interferograms of represen-
tative pixels (located near center of LW array). Fig. 2 shows the
spatial variability of raw interferogram sampled in off-peak re-
gion.

III. A GPU-BASED IMPLEMENTATION OF PPVQ
FOR GIFTS DATA
A. PPVQ Profile

The predictive partitioned vector quantization (PPVQ) is
known for its effective compression of ultraspectral sounder
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Fig. 2. Spatial variability of raw interferogram sampled in off-peak region.

data [15], [16]. PPVQ consists of the following four major
stages in performing the compression.

1) Linear prediction (LP). This stage can reduce the dynamic
range of a pixel by knowledge of its previous channels [18].

2) Bit depth partitioning (BP). This stage groups the channel
residual by bit depth. Channels with the same bit depth are
assigned to the same partition and VQ is applied to each
partition separately. Fig. 3 shows the bit depth of interfer-
ograms before and after the bit depth partitioning stage.

3) Vector quantization (VQ). This stage divides high-dimen-
sional data (vectors) into groups having approximately the
same number of points closest to them. Each group is rep-
resented by its centroid point [19], [20].

4) Entroy coding (AC). This stage assigns codes to symbols
so as to match code lengths with the probabilities of the
symbols [21], [22]. AC is applied on the VQ output of each
bit depth partition which includes the codebook, residual,
and the index.

For PPVQ, the profile of CPU time on GIFTS data is shown in
Fig. 4. It can be seen that among the four stages, the two stages
of linear prediction (LP) and vector quantization (VQ) take up
most of the CPU execution time. I/O refers to the disk time spent
on reading input and writing output which is almost negligible.
Therefore in the following sections we will focus on the GPU
implementation of the two stages.

B. Linear Prediction

_ The spatial frame X of channel ¢ can be linearly predicted by
X; in (1) as follows:

Xi=> aXip o X;=X,C )]
k=1

where X is the vector of channel i representing the predicted
2D spatial frame, X, is the matrix consisting of n,, neighboring
channels, and C is the vector of the prediction coefficients for
channel 7. The prediction coefficients C' can be obtained from

(2) as follows: [23]
C=(xIx,) " (XPTXZ-). )

The prediction error is the difference between the original
channel vector and its predicted counterpart.
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Fig. 3. The bit depth of interferograms before (a) and after (b) bit depth parti-
tioning.
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Fig. 4. The average CPU profile of running PPVQ on GIFTS data cubes.

For GPU implementation, three kernels are used for per-
forming the linear prediction in the above formulation. The
first kernel prepares the matrix A = Xg X, and the vector
B = XpT X; where X,, consists of the previous neighboring
n, channel frames of channel :. The second kernel solves the
linear equation AC' = B for the n,, prediction coefficients in
solution vector C. The third kernel then computes the linear
prediction residual F; = X; — Xi where )A(i = X,C is the
linearly predicted frame of channel :.

Among the 3 kernels, computation of A and B is most time
consuming. For speedup, multiple GPUs can be used to share
the computation workload. Also, for n, = 1031 and n, = 32,
frames of channels 0 ~ 31 can be processed on CPU. A simple
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Fig. 5. The schematic of a thread block sharing the workload in codeword as-
signment. There are n. training vectors and each needs to find the smallest one
of n, codewords in distortion. A thread block shares the workload of k training
vectors using k by p threads. All vectors have a dimension of n, channels.

difference operation is performed on the first channel, and the
linear prediction by available previous channels is performed on
the remaining channels.

C. Vector Quantization (VQ)

The vector quantization consists of codebook training
and codeword encoding. The codebook training uses the
well-known Linde-Buzo-Gray (LBG) algorithm [19] but for
fast learning, just takes the first training vector in each group
as the initial codeword of the codebook. LBG is an iterative
process of codeword assignment and codeword computation.
In particular, codeword assignment is most time-consuming
for GIFTS. Given a codebook of n, codeword vectors, the task
of codebook assignment is to assign the smallest codeword in
distortion to each of the n, training vectors. All vectors have a
dimension of n, channels. For GIFTS data, typical values are
ng = 16384; n, = 256,512, 1024, or 2048; and ng = 1 ~ 500.

Each multiprocessor of the GPU executes a thread block in-
dependently. Thus the workload of codeword assignment can
be shared by thread blocks as shown in Fig. 5. A block of k
by p threads computes the distortions between k& training vec-
tors and all n, codeword vectors. The computation involves the
sweeping of a tile of & x p threads throughout a & x k x p
cube, or the yellow region in Fig. 5. At each iteration, the tile
first loads the partial p-channel components of k training vectors
and k codeword vectors into the shared memory. Then it loops
along the k training vectors to compute the difference squared
and distortion between each training vector and the k£ codeword
vectors. The tile then moves to the next p-channel components
until all n4-channel distortion are computed. At this point each
of the k training vectors can mark the smallest codeword in dis-
tortion of the k codeword vectors seen previously. The tile then
moves to the next k codewords for a similar comparison opera-
tion until all n, codewords are seen and the smallest codeword
in distortion is assigned.

In this way, the tile first moves along the ns dimension in
1-training-vector units, then the n; dimension in p-channel
units, and finally the n, dimension in k-codeword units. Shared
variables in use include the k& x p partial codewords, the k X p
partial training vectors, the k x p partial difference vectors,
and the k£ x k partial distortions. The size of the thread block
is limited by the size of the shared memory and the maximum
number of threads allowed by the GPU hardware.

As the vector quantization of each bit depth partition is in-
dependent, multiple GPUs can be exploited for speedup. Each
GPU is assigned to an independent thread. An idle thread can re-
trieve a bit depth partition from a thread-safe bit depth partition
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Fig. 7. The data flow diagram for the PPVQ compression scheme.

queue to do vector quantization on its own GPU. The VQ output
of codebook, residual, and index is appended to a thread-safe
AC queue for later compression on CPU.

D. Pipleline Design

In one observation, a GIFTS data cube of 192 MB is obtained
which is divided into 6 subcubes of equal size 32 MB, each con-
taining 1031 channels. The 6 subcubes are the LW real part, the
LW imaginary part, the SMW real part of channels 1 ~ 1031,
the SMW real part of channels 1032 ~ 2062, the SMW imagi-
nary part of channels 1 ~ 1031, and the SMW imaginary part of
channels 1032 ~ 2062. As shown in Fig. 6, each subcube goes
through the LP, BP, VQ and AC steps sequentially for compres-
sion. The LP and VQ steps are mainly done on GPU, while the
BP and AC steps are done on CPU. The length of each step is
not drawn to scale. The pipeline is synchronized (denoted by
the 6 vertical dotted lines) such that when one subcube is doing
AC, the next subcube is doing LP, BP, and VQ. Overlap of the
LP, BP, VQ steps with the AC step in time can reduce the total
processing time of a data cube.

E. Spectral vs. Spatial Division Design for Multiple GPUs

When there are more than one GPU available, more speedup
can be achieved by using multiple GPUs simultaneously. For
division of the compression workload among several GPUs, the
two approaches of spectral division and the spectral division
are proposed. Given n, GPUs available, spectral division as-
signs each GPU to do the linear prediction for (n. — n,)/n,
contiguous channels. In VQ stage, each GPU is responsible for

Codeword
Indices

vQ

Residuals

quantization of a bit depth partition whose number of grouped
channels might vary in size.

For spatial division design, each data cube is spatially divided
into n4 subcubes. Then each subcube is assigned an independent
GPU to do the subsequent compression work.

IV. RESULTS

In the experiment, we test the GPU-based PPVQ lossless
compression scheme on the five GIFTS data cubes which we
introduced earlier in the data section. Fig. 7 shows the dataflow
diagram for the PPVQ compression scheme.

For prediction of channel values, we use a linear prediction of
32 predictors. Compression of the first few channels of a cube
which have less than 32 previous channels is performed on CPU.
Compression of the remaining channels which have full 32 pre-
vious channels is performed on GPU. Both CPU and GPU can
do the compression in parallel. As result of the prediction, the
residual which is the difference between the actual value and
the predicted value is fed into the partitioned vector quantiza-
tion module.

As BP involves a time consuming matrix transpose prepro-
cessing, the transpose operation is now combined into LP on
GPU as a post-processing step. The remaining BP operation is
still left on CPU. Current BP time is about 1/6 the original BP
time and so is not further moved to run on GPU.

The bit depth partitioning is performed on CPU which
is based on the bit depths of the channel residual. Channel
residuals of equal bit depths are grouped together and applied a
vector quantization with a codebook size of the same bit depth.
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Fig. 8. The speedup profile of PPVQ using 1 GPU on 5 data cubes of the GIFTS
test data.

For each partition a different codebook is trained on GPU by
the fast VQ introduced earlier. The size of a thread block is
chosen to be £k x p = 51 x 10 = 510 threads. The choice
of £ x p = 51 x 10 instead of a better warp size conforming
64 x 8 is mainly due to the limited size of shared memory. A
larger k will have a faster coverage of the required difference
operations. But it also takes a larger buffer of &% numbers to
store the distortion result. Therefore a 51 x 10 kernel is chosen
under the constraint of 512 threads per block.

The secondary residual from the vector quantization is then
compressed on CPU by the arithmetic coder. The experiment is
carried out on a machine with a quad-core 2.4 GHz AMD CPU,
and 4 Nvidia Tesla 1.3 GHz GPUs. Earlier we have developed a
source code in C for PPVQ. For comparison, the single threaded
C code was used as the CPU reference version. It was compiler-
optimized by the gcc O3 optimization option. All GPU speedup
was compared against this optimized CPU version. Using only
one CPU core, the average compression time of the reference
PPVQ version on a GIFTS data cube takes about 990 seconds.

Fig. 8 shows the speedup profile of PPVQ using 1 GPU on
the 5 GIFTS data cubes. Using 1 GPU we have an LP speedup
of 6x,a VQ speedup of 36 X, and a total speedup of 24 x. When
there are more than one GPU available, two approaches of spec-
tral division and spatial division design can be adopted.

Fig. 9 and Fig. 10 show the speedup profiles of PPVQ using
4 GPUs on the 5 GIFTS data cubes for the spectral division and
the spatial division designs respectively. Using the pipeline de-
sign of LP and VQ on 4 GPUs and AC on CPU, the average
compression time of the GPU-based PPVQ takes about 13 sec-
onds for the spatial division design. Note that under the spatial
division design, each subcube is smaller in size and thus the VQ
and AC stages all involve less workload. Fig. 11 and Fig. 12
show the average speedup profiles over 5 data cubes from using
1 through 4 GPUs for the spectral division and the spatial divi-
sion designs respectively.

A general trend can be seen that using more GPUs does give
higher speedup for LP and VQ though each with different satu-
ration curves. The fact that using 4 GPUs does not have a total
speedup near 4 can be attributed to the reason that each GPU is
not assigned a job of equal workload. For the spectral division
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Fig. 9. For the spectral division design, the speedup profile of PPVQ using 4
GPUs on 5 data cubes of the GIFTS test data.
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Fig. 10. For the spatial division design, the speedup profile of PPVQ using 4
GPUs on 5 data cubes of the GIFTS test data.
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Fig. 11. The average speedup profile of PPVQ using spectral division by 1
through 4 GPU(s).

design, the VQ stage assigns one GPU to learning the codebook
of a variable-sized bit-depth partition. As the size of the bit depth
partition varies from one channel to 500 channels, the work load
of each GPU will not be equal. For the spatial division design,
one GPU is responsible for all VQ workload of a spatially di-
vided subcube. As all subcubes are approximately equal in size
and have about the same number of bit-depth partitions, each
GPU tends to have more equal workload as shown in Fig. 12.
Also in the pipeline design when LP and VQ on GPU already
takes less time than AC on CPU, using more GPU will not solve
the bottleneck on CPU. The latter case is reflected in the nearly
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Fig. 12. The average speedup profile of PPVQ using spatial division by 1
through 4 GPU(s).

same total speedup using more than 2 GPUs in Fig. 11 and using
more than 3 GPUs in Fig. 12.

V. CONCLUSIONS

The predictive partitioned vector quantization (PPVQ)
compression scheme is known for its effectiveness in lossless
compression of ultraspectral sounder data. Two most time
consuming stages of PPVQ are identified based on an earlier
developed C code. They are the linear prediction and vector
quantization stages. In this paper, both stages are implemented
on GPU. Furthermore an original GIFTS data cube is divided
into 6 equal-sized parts to facilitate CPU and GPU processing
in pipeline. When more than one GPU is available, two ap-
proaches of spectral division design and spatial division design
are proposed. As result, we demonstrated that for the spatial
division design, compression of an observation GIFTS data
cube can be finished on 4 GPUs in about 13 seconds or a
speedup of 72x. Therefore the GPU-based implementation of
PPVQ provides a low-cost, effective and efficient compression
solution for GIFTS compression for rebroadcast use. The future
work will consider the implementation of AC on GPU for
further speedup.
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