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Abstract. We propose a scheme for classifying the entanglement of a tripartite pure qubit
state. This classification scheme consists of an ordered list of seven elements. These elements
are the Cayley hyper-determinant, and its six associated 2 × 2 subdeterminants. In particular
we show that this classification provides a necessary and sufficient condition for separability.

1. Introduction

It is well known that for bipartite pure qubit states a single determinental condition is enough to
discriminate between separability and entanglement. It is a straightforward matter to determine
whether a vector v ∈ V = V1 ⊗ V2 is entangled or not. Here V1 and V2 are two-dimensional
(qubit) vector spaces with basis {e1 ≡ |0〉, e2 ≡ |1〉}.

In general we may write v ∈ V as

v ∈ V1 ⊗ V2 =
2∑

i,j=1

cij ei ⊗ ej (1)

If v is non-entangled, i.e. separable, then

v = (x1e1 + x2e2)⊗ (y1e1 + y2e2) (2)

so
cij = xiyj {i, j = 1, 2} (3)

from which we deduce that the matrix c of coefficients cij has determinant zero, det c = 0. And
this condition is clearly necessary and sufficient.

In fact, by suitably normalizing, we may use this determinant to provide a measure of
entanglement for pure states called the concurrence C, with

C = 2|det c|. (4)
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This measure of entanglement varies between 0 (separable) and 1 (maximally entangled) and
may be conveniently extended to mixed states [1].

For tripartite states the situation is somewhat more complicated. One three-dimensional
analogue of the two-dimensional determinant is the Cayley hyperdeterminant [2, 3] (denoted as
Det and defined in section (2.2)). In [4] the Cayley hyperdeterminant (which was termed 3 −
tangle there) is employed as a type of hyper-concurrence to distinguish two tripartite states: the
GHZ-state |GHZ〉 = 1/

√
2(|000〉+ |111〉) [5] and the W-state |W 〉 = 1/

√
3(|001〉+ |100〉+ |010〉)

[6]. However the Cayley hyperdeterminant Det does not truly reflect the nature of entanglement
of these states.

For instance, the Cayley hyperdeterminant for the GHZ-state and the W-state are one and
zero, respectively. However, the W-state is entangled; so Det = 0 does not provide a criterion
for separability as the simple 2 × 2 determinant C does in the bipartite case. Further, one
knows that the W-state is in fact more robust under measurement-collapse than the GHZ-state.
For example, if Alice measures the (first) qubit of the GHZ-state to be 0, then this leaves
the separable state |00〉. And similarly for any measurement of any qubit in any of the three
subspaces for the tripartite GHZ-state. On the other hand, the determination of the value “0”
of any qubit in any space for the W-state still leaves the state (maximally) entangled, and only
if the value “1” is measured will the collapsed state be separable. Again this difference is not
reflected in the values of Det for these two states. So one needs additional indicators to reflect
this difference in entanglement properties.

In this note we supply these indicators which distinguish these and other tripartite states,
and - more significantly - provide a necessary and sufficient criterion for the separability of a
tripartite pure state.

2. Local Unitary Transformations

We initially reconsider the bipartite case. Since every (normed) vector v ∈ V can be transformed
to the (non-entangled) state |00〉 by a unitary transformation, it is clear that entanglement is
not invariant under unitary transformations. However, under a local unitary transformation U,
defined by U = U1 ⊗ U1, one can see that the bipartite concurrence C as defined in Eq.(4), for
example, is invariant:

Theorem 1 The concurrence C is invariant under local unitary transformations.
Let v =

∑
i,j=1...2 aijei⊗ej ∈ V = V1⊗V2, and the unitary matrix U = U1⊗U2 be a local unitary

matrix; then

Uv =
∑

cijU1ei ⊗ U2ej

=
∑

cij(U1)ikek ⊗ (U2)jrer

=
∑

c′krek ⊗ er

where c′kr =
∑

ij cij(U1)ik(U2)jr so that c′ = Ũ1cU2 whence

| det c′| = |det(Ũ1cU2)|
= |det Ũ1| |det c| |det U2|
= |det c| since | detUi| = 1.

For a bipartite general state ρ (mixed state, density matrix) the definition of separability is:

Definition 1 (Separable bipartite state) The state ρ acting on V1 ⊗ V2 is said to be
separable if it is given by a convex sum

∑
i λiρ

1
i ⊗ ρ2

i (λi ≥ 0,
∑

i λi = 1) where ρα
i acts

on Vα.
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When ρ = ρ1⊗ ρ2 it is said to be simply separable. The above Definition 1 extends immediately
to multipartite states.

Definition 2 (Separable multipartite state) The state ρ acting on V1⊗V2⊗ . . .⊗Vn is said
to be separable if it is given by a convex sum ρ = Σkλkρ

k
1 ⊗ ρk

2 ⊗ . . .⊗ ρk
n (λi ≥ 0,

∑
i λi = 1)

where ρα
i acts on Vα .

We may see rather immediately from Definition 1 that the property of being separable
is invariant under local unitary transformations; and from Definition 2 this extends to the
multipartite case. However, an extension of the implication from Theorem 1 that the measure
of entanglement is preserved by local unitary transformations does not necessarily apply to
multipartite systems, since such an extension would depend on possessing a definition of
entanglement measure for such systems, which is currently unavailable. Indeed, for general
multipartite states, local unitary equivalence does not preserve all the relevant (state and
substate) entanglement properties [7, 8], as we shall now exemplify.

2.1. Entanglement properties of two tripartite qubit states

We consider two specific examples of entangled states: the GHZ state [5]

|GHZ〉 =
1√
2
(|000〉+ |111〉) (5)

and
|ψ〉 =

1
2
(|100〉+ |010〉+ |001〉+ |111〉). (6)

In [9] it was shown that these states are equivalent under the local unitary transformation
U ⊗ U ⊗ U where

U =
1√
2

(
1 1
−1 1

)
. (7)

That is,
|ψ〉 = U ⊗ U ⊗ U |GHZ〉. (8)

However, the physical properties of these states are not equivalent. In particular, as noted in
the introduction, after qubit measurement in any subspace, the GHZ-state becomes separable;
while under a similar action the state |ψ〉 gives a maximally entangled state. Therefore any
tripartite description should distinguish between these two states.

2.2. Cayley Hyperdeterminant

For the tripartite qubit case we write

v ∈ V1 ⊗ V2 ⊗ V3 =
2∑

i,j,k=1

aijk ei ⊗ ej ⊗ ek (9)

or, as a state Ψ,

|Ψ〉 =
1∑

i,j,k=0

aijk|ijk〉 (i, j, k = 0, 1). (10)

For |Ψ〉 the Cayley Hyperdeterminant Det of the coefficient hypermatrix A = (aijk) is defined
by
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Definition 3 Cayley Hyperdeterminant Det

DetA = a2
000a

2
111 + a2

001a
2
110 + a2

100a
2
011

− 2 [a000a001a110a111 + a000a010a101a111 + a000a011a100a111

+ a001a010a101a110 + a001a011a101a100 + a010a011a101a100] (11)
+ 4 [a000a011a101a110 + a001a010a100a111] .

In Table 1 we give some examples of tripartite qubit states.
Using Definition 3 one may confirm by direct calculation that Det = 0 for a general separable

tripartite state as given in Table 1. However, Det = 0 for the W-state also, which is an entangled
state. Therefore the numerical value of Det alone does not discriminate between separable and
non-separable states.

Further the state |ψ〉 of Eq. (6) has Det = 1, as does the GHZ-state. But, as previously noted,
the properties of retaining entanglement after qubit measurement are completely different in the
two cases.

It is clear that at the very least we need supplementary indicators beyond the
hyperdeterminant Det to specify the entanglement properties of tripartite states, even completely
separable states.

In the following Section we propose a classification scheme.

3. Classification

From the foregoing argument it would appear that one needs to consider the subconcurrences
of a tripartite state in order to distinguish their entanglement properties, and ultimately define
a measure.

This amounts to listing the six submatrices of the hypermatrix A of Eq.(11). We define

Ax0 = (a0ij) , Ax1 = (a1ij)
Ay0 = (ai0j) , Ay1 = (ai1j)
Az0 = (aij0) , Az1 = (aij1) .

The corresponding sub-concurrences are given by the moduli of the subdeterminants1:

[Cx0 , Cx1 , Cy0 , Cy1 , Cz0 , Cz1 ] (12)

where we have written
Cα i ≡ |detAαi | (α = x, y, z; i = 0, 1) (13)

which may be regarded as an ordered list that distinguishes the bipartite substate entanglements
of the given tripartite state.

This list is by itself not capable of discriminating between tripartite states. For example, it
has the value [0, 0, 0, 0, 0, 0] for both a separable state and the GHZ state. We thus supplement
this list by the Cayley hyperdeterminant Det, giving a classification defined by the ordered list
of 7 elements

[|DetA|;Cx0, Cx1, Cy0, Cy1, Cz0, Cz1]. (14)

As we prove in the Appendix, the vanishing of this ordered list provides a necessary and
sufficient condition for separability, and thus possibly paves the way to providing a useful measure
for tripartite pure qubit entanglement.

In Table 1 we describe their classification under the scheme herein proposed.
1 The normalization factor used here is 1. The values in the Table are obtained by applying a normalization
factor 1/|DetA| for non-vanishing DetA to all the terms. For the examples given this factor is 4. For the W-state,
where DetA = 0, we use the factor 3.
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Table 1. Classification of some tripartite qubit states.

State Classification

General Separable State Σaiei ⊗ Σbjej ⊗ Σckek [0;0,0,0,0,0,0]
W-state |W 〉 1/

√
3(|001〉+ |100〉+ |010〉) [0;1,1,1,0,0,0]

GHZ-state |GHZ〉 (1/
√

2)(|000〉+ |111〉) [1;0,0,0,0,0,0]
Cluster state (1/

√
8)(|000〉+ |001〉+ |100〉+ |101〉 [1;1,0,1,1,0,1]

+|010〉 − |011〉 − |110〉+ |111〉)
ψ-state (1/2)(|100〉+ |001〉+ |010〉+ |111〉) [1;1,1,1,1,1,1]
φ-State [7, 8] (1/2)(|000〉+ |011〉+ |101〉+ |110〉 [1;1,1,1,1,1,1]

4. Discussion

In this note we discussed the robustness of tripartite pure qubit states under projective
measurement, and devised a classification scheme, which consists of an ordered list of seven
elements displaying this aspect. These elements are the Cayley hyper-determinant, and the six
2× 2 subdeterminants. In particular we showed that this classification provides a necessary and
sufficient condition for separability. In so far as we may extend the definition of rank to the
Cayley hyper-matrix, as being the order of the largest non-vanishing minor, the necessary and
sufficient condition for separability may be simply stated as that the Cayley hyper-matrix be of
Rank 1. Further work in progress is the extension of this definition to multipartite systems.
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Appendix A. Necessary and Sufficient Condition for Tripartite Qubit Separability

As we argued above, to get a better picture of the nature of entanglement of a tripartite state
it is also necessary to look at the entanglement properties of the 2-qubits obtained when one of
the three qubits is measured.

We map the tripartite state |ψ〉 =
∑1

i,j,k=0 aijk|ijk〉 (i, j, k = 0, 1) into the multilinear form

F (x, y, z; A) =
1∑

i,j,k=0

aijk xiyjzk, A = (aijk). (A.1)

Thus the problem of factorization of |ψ〉 is reduced to that of F (x, y, z;A). Analyzing the
entanglement of the 2-qubit state after one qubit is measured is equivalent to determining the
factorizability of the derivatives of F (x, y, z; A), namely,

∂F

∂z0
= a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1, (A.2)

∂F

∂z1
= a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1, (A.3)

∂F

∂y0
= a000x0z0 + a001x0z1 + a100x1z0 + a101x1z1, (A.4)

7th International Conference on Quantum Theory and Symmetries (QTS7) IOP Publishing
Journal of Physics: Conference Series 343 (2012) 012114 doi:10.1088/1742-6596/343/1/012114

5



∂F

∂y1
= a010x0z0 + a011x0z1 + a110x1z0 + a111x1z1, (A.5)

∂F

∂x0
= a000y0z0 + a001y0z1 + a010y1z0 + a011y1z1, (A.6)

∂F

∂x1
= a100y0z0 + a101y0z1 + a110y1z0 + a111y1z1. (A.7)

For the 2 × 2 × 2 hypermatrix A in F (x, y, z;A) with components aijk (i, j, k = 0, 1), the
Cayley hyperdeterminant DetA is given as in Definition 3. Corresponding to the six equations
(A.2)-(A.7), one defines the six determinants as in Eq. (13):

Cz0 = |det (aij0) |, Cz1 = |det (aij1) |, (A.8)
Cy0 = |det (ai0j) |, Cy1 = |det (ai1j) |, (A.9)
Cx0 = |det (a0ij) |, Cx1 = |det (a1ij) |. (A.10)

We now assert that the multilinear form F (x, y, z; A), and thus the tripartite state |ψ〉, is
completely factorized, i.e.

F (x, y, z; A) = (a0x0 + a1x1)(b0y0 + b1y1)(c0z0 + c1z1) (A.11)

for some constants ai, bi and ci, if and only if the hyperdeterminant and all six sub-determinants
are identically zero, i.e.,

DetA = 0, Cx0 = Cx1 = Cy0 = Cy1 = Cz0 = Cz1 = 0. (A.12)

The necessary condition is easy to prove by direct substitution. Below we prove the sufficient
condition.

Suppose all the six sub-determinants are zero. Let us start with Cz0 = Cz1 = 0. These
conditions imply that the l.h.s. of eqs.(A.2) and (A.3) are factorized, i.e.,

a000x0y0 + a010x0y1 + a100x1y0 + a110x1y1

= (A0x0 + A1x1)(B0y0 + B1y1), (A.13)
a001x0y0 + a011x0y1 + a101x1y0 + a111x1y1

= (A′0x0 + A′1x1)(B′
0y0 + B′

1y1) (A.14)

for some non-zero constants A,B, A′ and B′. Then from eqs.(A.2)-(A.7) we have

F (x, y, z; A) = (A0x0 + A1x1)(B0y0 + B1y1)z0

+ (A′0x0 + A′1x1)(B′
0y0 + B′

1y1)z1 (A.15)

and

a000 = A0B0, a001 = A′0B
′
0, a010 = A0B1, a011 = A′0B

′
1, (A.16)

a100 = A1B0, a101 = A′1B
′
0, a110 = A1B1, a111 = A′1B

′
1, (A.17)

For Cy0 = Cy1 = Cx0 = Cx0 = 0, we have, respectively,
∣∣∣∣

A0B0 A′0B′
0

A1B0 A′1B′
0

∣∣∣∣ = 0,

∣∣∣∣
A0B1 A′0B′

1

A1B1 A′1B′
1

∣∣∣∣ = 0, (A.18)
∣∣∣∣

A0B0 A′0B′
0

A0B1 A′0B′
1

∣∣∣∣ = 0,

∣∣∣∣
A1B0 A′1B′

0

A1B1 A′1B′
1

∣∣∣∣ = 0. (A.19)

For tripartite states, we have the following situations for the solutions of eqs.(A.18) and
(A.19):
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1. All Ai, A
′, Bi and B′

i 6= 0 (i = 0, 1):

In this case one can factor out the common factors in each of the four determinants in
(A.18) and (A.19), giving

∣∣∣∣
A0 A′0
A1 A′1

∣∣∣∣ = 0,

∣∣∣∣
B0 B′

0

B1 B′
1

∣∣∣∣ = 0.

Then we have
A′0
A0

=
A′1
A1

= p,
B′

0

B0
=

B′
1

B1
= q

for some constants p, q, say. This implies F (x, y, z; A) is completely factorized

F (x, y, z; A) = (A0x0 + A1x1)(B0y0 + B1y1)(z0 + pqz1),

and hence DetA = 0.

2. Xi, X ′
i 6= 0, Xī = X ′̄

i
= 0 (X = A or B, ī = i + 1(mod 2)):

In this case , F (x, y, z; A) is also factorized. To show this, let us take A0, A′0 6= 0, and
A1 = A′1 = 0. Then Cy0 = Cy1 = Cx1 = 0, and Cx0 = 0 implies B′

0/B0 = B′
1/B1 = p for

some constant p. This implies F (x, y, z; A) is factorized as

F (x, y, z; A) = x0(B0y0 + B1y1)(A0z0 + pA1z1),

and DetA = 0,.

3. Xi + X ′
i = 1, X0 + X1 = X ′

0 + X ′
1 = 1 (X = A or B):

There are only four cases for X and X ′, namely, (i) A1 = B1 = 0, (ii) A1 = B0 = 0, (iii)
A0 = B0 = 0 and (iv) A0 = B1 = 0. For these choices of X and X ′, the six sub-determinants
are zero. This is because one of the rows or columns of the sub-determinant is zero.
Interesting cases include: x0y0z0+x1y1z1 (GHZ-state), x0y1z0+x1y0z1, x1y1z0+x0y0z1, and
x1y0z0 + x0y1z1. They correspond to {A0, A1, B0, B1} = {1, 0, 1, 0}, {1, 0, 0, 1}, {0, 1, 0, 1}
and {0, 1, 1, 0}, respectively. The corresponding A′i and B′

i are obtained by making the
transformations 0 → 1, 1 → 0.
As is obvious, these states are not separable. Thus the vanishing of the six sub-determinants
alone do not distinguish separability of the state. Therefore the Cayley hyperdeterminant
is required. It is easy to show that in this case, DetA is given by

DetA = (A0B0A
′
1B

′
1)

2 + (A′0B
′
0A1B1)2 + (A0B1A

′
1B

′
0)

2 + (A′0B
′
1A1B0)2 6= 0. (A.20)

Other factors in (11) are zero, as they all involve Xi X
′
i = 0. The conditions X0 + X1 6= 0

and X ′
0 + X ′

1 6= 0 guarantee that one of the four factors in DetA is non-vanishing.

Putting all these together, we see that a tripartite state is separable iff

[|DetA|;Cx0, Cx1, Cy0, Cy1, Cz0, Cz1] = [0; 0, 0, 0, 0, 0, 0]
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