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ABSTRACT 

This study applies the numerical inversion of Laplace transform methods to study the piezoelectric 
dynamic fracture problem, recalculating Chen and Karihaloo’s [1] analysis on the transient response of a 
impermeable crack subjected to anti-plane mechanical and in-plane electric impacts.  Three numerical 
methods were adopted for calculating the dynamic stress intensity factor: Durbin method, Zhao method 1, 
and Zhao method 2.  The results obtained were more accurate than the results in Chen and Karihaloo’s 
[1] study.  Through the calculation, this study presents a better range of parameters for the above three 
methods, and compares the advantages and disadvantages of each method in detail. 
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1.  INTRODUCTION 

Recently, with the development of materials and ad-
vances in manufacturing technology, piezoelectric ma-
terials are becoming increasingly common.  However, 
most piezoelectric materials currently known are con-
structed from brittle substances, and are prone to brittle 
fracture when applied in areas of vibration.  Therefore, 
research concerning piezoelectric structural damage is 
extremely vital.  Numerous researchers have used La-
place transform and the inversion of Laplace transform 
as the primary tools for analyzing the dynamic fractures 
in piezoelectric materials.  However, using the analyt-
ical inversion of Laplace transform during analysis 
makes the mathematical composition exceedingly com-
plicated and difficult, and therefore only applicable to 
relatively simple geometric structures.  Using the nu-
merical inversion of Laplace transform for calculation 
in complex problems is more practical. 

Over twenty different numerical methods for dealing 
with the inverse Laplace transform are proposed in the 
literature, and their application principles differ.  For 
example, Gaussian quadrature has been used as the 
foundation for the numerical inversion of Laplace 
transform [2]; as have the methods from orthogonal 
functions [3-5].  Numerous studies are related to the 
numerical inversion of the Laplace transform obtained 
using the Fourier series [6-10].  There have also been 
numerous crucial studies and reviews related to the 
numerical inversion of Laplace transform [11-21]. 

Though numerous methods exist for the numerical 

inversion of Laplace transform, Narayanan and Beskos 
[22] already applied eight numerical inversions of La-
place transform to linear dynamic problems, and sys-
tematically discussed and calculated their efficiency.  
Their results demonstrated that Durbin [7] was the best 
method.  The Durbin method [7] can obtain dependa-
ble results for both long and short time for most cases, 
but requires a relatively longer period of time for cal-
culation.  Zhao [20] proposed a new method for the 
numerical inversion of Laplace transform.  He con-
tended that the Durbin method [7] was unable to accu-
rately calculate long-term transient responses when 
applied to dynamic issues in elastic-piezoelectric lami-
nates, and that this new method resolved the disad-
vantages of Durbin [7] by being able to also provide 
reliable results for long-term responses.  Because the 
ability to precisely calculate the numerical inversion of 
Laplace transform is a crucial part of studying the tran-
sient response of piezoelectric materials, this study used 
both Durbin [7] and Zhao methods [20] to the transient 
response of a piezoelectric crack, reanalyzing and re-
calculating the problem examined by Chen and Kari-
haloo [1].  This study also provided a detailed com-
parison of the properties, strengths, and weaknesses of 
each of the three methods, ultimately comparing the 
results of this study with analysis in prior studies to 
verify the accuracy of this study’s calculations.  Fur-
thermore, this study also suggested preferable parame-
ters for applying Durbin [7] and Zhao [20] methods to 
calculate the transient response of wave propagation in 
piezoelectric materials. 
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2.  THE NUMERICAL INVERSION OF LA-
PLACE TRANSFORMS 

2.1  Durbin Method 

Let f (t) be a function of time t, with f (t)  0 for t  0.  
The Laplace transform pair is defined by 
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where s is the complex transform parameter, c is a posi-
tive constant, and i is the imaginary unit.  Durbin [7] 
derived the approximation formula 
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for 0 t  T.  Generally, T is taken as the time length 
of inversion, and T  5 to 10. 

2.2  Zhao Method 1 

Zhao [20] developed a new approach for the numer-
ical inversion of Laplace transforms.  Two formulas 
were derived based on the approximations of linear 
functions and Subbotin-splines.  The author also be-
lieved that the new method can achieve a more reliable 
inversion than Durbin method for long time inversions.  
The proposed linear approximation to f (t), named 
“Zhao method 1”, can be written as 
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where Re ( )  ,k kF f i       Im ( )  ,k kG f i       
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2.3  Zhao Method 2 

If the functions Re ( )f i      and Im ( )f i      

are approximated with Subbotin quadratic splines [23], 

the approximation to f (t), named “Zhao method 2”, can 

be expressed as 
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3.  DYNAMIC INTENSITIES OF AN IMPER-
MEABLE PIEZOELECTRIC CRACK 

3.1  Statement of the Problem 

The specific geometry to be considered here is an in-
finite piezoelectric medium containing a finite crack of 
length of 2a, as shown in Fig. 1.  For t < 0, the medium 
is stress free and at rest.  At time t = 0, arbitrary me-
chanical and electrical impacts act at the impermeable 
crack faces.  Assume that the z-axis is the poling 
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Fig. 1 Configuration and coordinate systems of a 
piezoelectric crack subjected to mechanical 
and electric impacts 

direction, and only the out-of-plane displacement and 
the in-plane electric fields are considered.  The dy-
namic anti-plane governing equations for a hexagonal 
piezoelectric material can be described by 
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where w w(x, y) is the anti-plane displacement in the 
z-direction (which is assumed to aligned with the hex-
agonal symmetry axis),  (x, y) is the electric poten-
tial, c44 is the elastic modulus measured in a constant 
electric field, 11 is the dielectric permittivity measured 
at a constant strain, e15 is the piezoelectric constant, and 
 is the material density.  2 2/x2 2/y2 is the 
in-plane Laplacian, and a dot denotes material time 
derivative. 

The constitutive equations for the piezoelectric ma-
terial can be expressed as 
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The boundary conditions of the present problem can 
be written as 
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3.2 Dynamic Intensities in the Laplace Transform 
Domain 

Using the method proposed by Loeber and Sih [24], 
the above problem can be solved in the Laplace trans-
form domain.  In this paper, the authors obtained the 
same analytical solution as that of Chen and Karihaloo 
[1].  Finally, the dynamic stress intensity factor and 
the dynamic electric displacement intensity factor in the 
Laplace transform domain can be expressed as 
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The functions ( )f s  and ( )g s  are Laplace trans-
forms of excitations f (t) and g(t), respectively.  
Moreover, the function (1, s) is determined by the 
following Fredholm integral equation of the second 
kind 
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3.3 Acceleration of Convergence for Kernel 
Function 

The direct calculation of the kernel function as ex-
pressed in Eq. (21) is difficult to converge.  The sug-
gestion given by Loeber and Sih [24] can be used to 
accelerate the convergence of this integral.  Rewriting 
the kernel function K(, , s) in the following form: 
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where m is set to 0.5 ~ 1 and 
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The first integral in Eq. (22) is explicit integrable, 
and that the convergence of the second integral acceler-
ates from O(2) to O(4).  The final form of the ker-
nel is 
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where I0( ) and K0( ) are the zero-order modified Bessel 
functions of the first and the second kinds, respectively. 

4.  NUMERICAL RESULTS AND DISCUSSION 

4.1 Numerical Solutions to the Fredholm Integral 
Equation 

This study used Gaussian quadrature to resolve the 
Fredholm integral equation in Eq. (20).  From Gauss-
ian quadrature, Eq. (20) can be expressed as 
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where wi are the weighting factors, i are the integra-
tion points, and n is the number of Gaussian quadrature 
points.  Here, the 24-point Gaussian quadrature was 
adopted.  After each of the Gaussian quadrature points 
1 to 24 replaced  in Eq. (25), 24 simultaneous equa-
tions could be obtained 
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After the simultaneous equations in Eq. (26) resolved 
(i, s), (1, s) in Eq. (18) can use Eq. (25) to calcu-
late 
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Once (1, s) is determined, the dynamic stress in-
tensity factor 3 ( )k t  can be obtained by inverting the 
Laplace transform of Eq. (18). 

4.2  Numerical Results 

During numerical calculation, the load function is 
assumed to be f (t) = g(t) = H(t), where H(t) is the 
Heaviside function.  To verify the accuracy of the nu-
merical inversion of Laplace transform, a special case 

from the literature was first calculated: The piezoelec-
tric constant e15 = 0.  The results of this study could be 
compared to the analysis by Ing and Ma [25] regarding 
purely elastic materials.  The parameters during cal-
culation were set to T = 75 and T = 5, and the k in 
Zhao methods was assumed to be a constant step.  
Durbin method added 300 terms, while Zhao methods 1 
and 2 added 600.  The results are displayed in Fig. 2.  
The results for Zhao methods 1 and 2 in Fig. 2 overlap, 
and the transient values of the stress intensity factor for 
all three methods are extremely close to the analytical 
solution in Ing and Ma’s study [25].  The maximum 
value of the non-dimensional stress intensity factor for 
purely elastic materials is 4/.  Figure 2 shows that the 
maximum dynamic overshoot occurs at cst / a 2 for 
the three methods, and that as the calculation time 
lengthens, the dynamic stress intensity factor quickly 
becomes a static value.  These results differ signifi-
cantly from the Fig. 2 results in Chen and Karihaloo’s 
study [1] (e15 D0 / (0 11) 0).  This case demonstrates 
the exceptional accuracy of the results in this study. 

Displaying the calculation results for the Durbin 
method using various total number of summations, Fig. 
3 shows that when excluding the relatively inaccurate  
N = 50, the lines for N  300, 500, and 1000 almost 
coincide.  Therefore, when applying Durbin method to 
the piezoelectric material fracture problem in this study, 
N  300 was sufficient to obtain accurate results.  Fig-
ures 4 and 5 display the results for Zhao methods 1 and 
2, respectively, using N different total numbers added.  
The figures demonstrate the similarity of the results of 
the two methods; errors were prevalent for N  300 and 
N  500, whereas N  600, 1000, and 1500 completely 
coincided.  Therefore, when applying Zhao methods 1 
and 2 to this dynamic fracture problem, N must equal at 
least 600 to obtain more accurate solutions.  This re-
quires significantly more terms for calculation than 
Durbin method. 

In the literature, the suggested value of the period T 
in Durbin method should be equal to the longest calcu-
lation time [7].  However, this study found that to cre-
ate accurate numerical results with fewer terms, the set 
value of the period T should be even greater than the 
longest calculation time, and T needs only to be set 
between 5 and 10 to obtain satisfactory results.  To 
explain these results, Fig. 6 compared Durbin method 
calculated using different periods T, when T  5 and  
N  300.  Figure 6 shows that latter period errors are 
significant when T  10, but that the results for T  20 
and T  75 were approximately similar.  Therefore, 
better numerical solutions can be obtained when T is set 
at a greater value.  Zhao [20] contended that Durbin 
method was insufficiently accurate when a long calcu-
lation time was used, primarily because the period was 
set too small.  However, Fig. 6 demonstrates that when 
Durbin method is applied to this dynamic fracture 
problem with piezoelectric materials, lengthening the 
period T increases accuracy and calculation speed. 

Figures 7 and 8 compared Zhao methods 1 and 2, re-
spectively, using different T.  The two figures show that 
when T  10, the latter part of the results are more 
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Fig. 2 Normalized dynamic stress intensity factors 
versus normalized time for purely elastic ma-
terials by different methods of Laplace trans-
form inversion. (T  75, T  5) 
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Fig. 3 Normalized dynamic stress intensity factors 
versus normalized time with various number 
of summations by Durbin method. (T  75,  
T  5) 
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Fig. 4 Normalized dynamic stress intensity factors 
versus normalized time with various number 
of summations by Zhao method 1. (T  75,  
T  5, k = constant) 
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Fig. 5 Normalized dynamic stress intensity factors 
versus normalized time with various number 
of summations by Zhao method 2. (T  75,  
T  5, k = constant) 
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Fig. 6 Normalized dynamic stress intensity factors 
versus normalized time with various periods T 
by Durbin method. (T  5, N  300) 
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Fig. 7 Normalized dynamic stress intensity factors 
versus normalized time with various periods T 
by Zhao method 1. (T  5, N  600) 
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Fig. 8 Normalized dynamic stress intensity factors 
versus normalized time with various periods T 
by Zhao method 2. (T  5, N  600) 

volatile; indicating that when the calculation time is 
long, the inverse transform results will become inaccu-
rate.  The results for T  20 and T  75 are nearly 
identical.  Therefore, when applying Zhao methods to 
the piezoelectric fracture problem in this study, a great-
er value T provides more accurate results.  To under-
stand the effect of T on the calculation results over a 
long time period, this study also calculated many dif-
ferent cases and discovered that for identical assump-
tions about period T, Zhao method 1 can calculate for 
the greatest amount of time while still obtaining better 
transient numerical results; followed by Durbin method, 
and finally by Zhao method 2.  If numerical solutions 
with long calculation times are required, this study 
recommends setting T to greater than two times the 
longest calculation time when using Durbin method, 
and to approximately three times the longest calculation 
time when using Zhao method 2.  Zhao method 1, 
however, only needs to be slightly greater than the 
longest calculation time.  Although increasing T could 
affect the accuracy of short-time numerical results, the 
results in this study indicate that the effect is insignifi-
cant.  Therefore, increasing the period is a feasible 
method for obtaining an accurate, long-time, transient 
numerical solution.  If the accuracy required for short 
time results is also fairly rigorous, calculating the tran-
sient solutions separately according to time and setting 
different periods T for different calculations should be 
considered to obtain relatively accurate results. 

Next, this study discusses the results of piezoelectric 
cracks subjected to electric displacement loads by ex-
plaining only the results calculated using Durbin meth-
od.  Figure 9 displays the numerical results for the 
transient stress intensity factors of a piezoelectric crack 
subjected to electric displacement impact.  The figure 
indicates that when load action is initiated, the stress 
intensity factor is induced immediately; and that the 
greater the electric displacement load, the greater the 
magnitude of the initial value.  Furthermore, Fig. 9 
demonstrates that when cst / a  0 ~ 1.2, the electric 
displacement load will cause the stress intensity factor 
to decrease in value, indicating a electric field could 
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Fig. 9 Normalized dynamic stress intensity factors 
versus normalized time for various elec-
tro-mechanical loads by Durbin method. (T  
20, T  5, N  300) 

retard the propagation of a crack.  When cst / a  2, the 
diffracted wave from the other tip of the crack had ar-
rived at the crack tip, and the stress intensity factor is at 
its maximum value.  Figure 9 also shows that variation 
in electric field magnitude has absolutely no effect on 
the time at which maximum stress intensity factor val-
ues occur.  Because the time-dependent functions for 
stress and electric displacement loads are identical (f (t) 
= g(t) = H(t)), Eq. (18) can theoretically be rewritten as 

 0 15 0 153

0 11 0 110

( )
( ) 1  ,

D e D ek t
M t

a

   
             

 (28) 

where M(t) is the inverse Laplace transform for func-
tion (1, ) ( )s f s .  Because the maximum value oc-
curs at ( ) / 0d M t dt  , and Eq. (28) shows that the 
ratio of e15 D0 / (0 11) is unrelated to this time.  It 
means that the time at which the dynamic stress inten-
sity factor reaches a maximum is absolutely unaffected 
by changes of the magnitude of electric displacement 
loads.  Figure 9 further shows that when cst / a  1.2 ~ 
4.2, the increase in electric displacement load will actu-
ally increase the stress intensity factor value; indicating 
that at this point, a electric field will promote crack 
propagation.  Subsequently, when cst / a  4.2 ~ 6.2, 
the greater the electric displacement load, the smaller 
the stress intensity factor; thereby revealing an inverse 
trend.  Therefore, the effect of the electric displace-
ment load on dynamic stress intensity factors varies 
over time; electric displacement load may at times 
promote, and at other times retard, the propagation of a 
crack in piezoelectric materials. 

For dynamic electric displacement intensity factors, 
Eq. (19) indicates that when g(t) = H(t), 3 ( )Dk t   

0 ( )D aH t , meaning that dynamic electric displace-
ment intensity factors immediately jump to a static so-
lution the moment after load is applied.  This phe-
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nomenon is due to the assumption that the speed of 
electromagnetic waves is infinite; therefore, the mo-
ment that electric displacement load is applied, the 
electromagnetic wave effect is induced at the crack tip. 

The above calculations all assumed the time-     
dependent load function f (t) = g(t) = H(t).  This study 
considers two special load forms in the following dis-
cussion.  The first type supposes that f (t) = g(t) = H(t) 
H(cst / a 6), or that the load is first applied at t = 0 
and then removed at cst / a 6.  The numerical results 
from each of the three inverse Laplace transforms are 
displayed in Fig. 10.  The figure shows that the results 
for Zhao methods 1 and 2 are relatively inaccurate, with 
especially volatile oscillations around cst / a 6.  
Therefore, applying either of Zhao methods to this type 
of step load function creates inaccurate results.  Figure 
10 also shows that because the load was not reapplied at 
cst / a 6, the stress intensity factor approaches zero as 
t approaches infinity.  The second type of load as-
sumes that f (t) g(t) t/tl H(t) (t/tl1) H(t tl), 
where tl is the ramp time required for the load to in-
crease from zero to 0 or D0.  Figure 11 displays the 
dynamic stress intensity factor results when Durbin 
method was applied to different ramp times.  The fig-
ure indicates that the greater the ramp time, the slower 
the initial rate of increase for stress intensity factors, 
thus the lower the maximum peak value; and later, the 
maximum value was obtained. 

5.  CONCLUSIONS 

In numerous studies, Laplace transforms have been 
used to solve the dynamic fracture problem with piezo-
electric materials, for which accurately calculating the 
numerical inversion of Laplace transforms is crucial.  
This study successfully applied three numerical inver-
sions of Laplace transform methods—Durbin method, 
Zhao method 1, and Zhao method 2—to the transient 
problem of a piezoelectric crack subjected to anti-plane 
mechanical and in-plane electric impacts.  The con-
clusions drawn from the results of this study are as fol-
lows: 

1. The transient numerical results of the problem can be 
achieved using three methods for the numerical in-
version of Laplace transforms.  The calculation 
figures demonstrate the effect of each diffracted 
wave on the crack tip stress intensity factor, and are 
compared with analytical solutions obtained by re-
search on purely elastic materials to verify the accu-
racy of these results. 

2. Depending on the time period, electric displacement 
load can either increase or decrease the transient 
stress intensity factor value, thereby retarding or 
promoting the propagation of the crack.  This study 
also finds that electric displacement intensity factor 
depends only on the electric displacement load, and 
is unrelated to the mechanical stress load. 
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Fig. 10 Normalized dynamic stress intensity factors 
versus normalized time under step-loading 
condition by different methods of Laplace 
transform inversion. (T  30, T  5, N  300 
for Durbin method and N  600 for Zhao 
methods) 
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Fig. 11 Normalized dynamic stress intensity factors 
versus normalized time with various ramp time 
tl by Durbin method. (T  20, T  5, N  300) 

3. In prior studies, Durbin method was primarily be-
lieved to be unable to accurately calculate results 
over a long time; however, this study finds that 
simply increasing the setting for period T can correct 
this inefficiency.  Though this change can slightly 
vary the results for short periods, they are still rela-
tively accurate, and the calculation efficiency is still 
comparatively high with that of Zhao method 1 and 
Zhao method 2.  This study also proposes recom-
mended values for the time period settings of the 
three methods. 

4. The numerical results produce a greater oscillation 
when Zhao methods are applied to a step-load case.  
If the total number of summations N does not con-
tinually increase, these two methods remain less ac-
curate than Durbin method does. 
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