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Efficient scheme for parametric fitting of data in arbitrary dimensions
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We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For
continuous systems, our scheme is exact and the derived explicit expression is very helpful for further ana-
lytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decom-
position. Through a few numerical examples, we show that our algorithm costs much less CPU time and
memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a
large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure
of fluctuating systems. We then derive the exact relation between the correlation function and the detrended
variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
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I. INTRODUCTION

Various physical systems in Nature, from the scale of
atomic clusters to the scale of oceans, consist of macroscopic
structures. Some examples are molecular-beam-epitaxial
growth at high temperature [1,2], pulse-current electrochemi-
cal deposition [3], cultivated tumor growth [4], and the tem-
perature and salinity distribution in the world oceans [5].
Moreover, many time series data also show macroscopic
trends, such as the clustering features of seismic sequences
[6], the interfiring time intervals between neural action po-
tentials [7], and the heart-rate fluctuations during sleep [8].
When performing various experiments, people try to con-
dense the data and extract the essence by fitting data to ap-
propriate parametric models. Without knowledge of the ori-
gin of macroscopic structures, the polynomial function is
commonly chosen to be the fitting function. The values of
the coefficients of the polynomial function are determined by
a least-squares fit to the data set.

In the literature, the most commonly used methods for the
least-squares fit are the method of normal equations and the
method of singular value decomposition (SVD) [9-11].
However, each of these two methods has some drawbacks.
(1) Although the ideas behind the method of normal equa-
tions are very straightforward and natural, the analytical so-
lutions of the normal equations are hardly attainable except
in some simple cases. In addition, the numerical solutions of
the normal equations suffer seriously from the roundoff er-
rors. (2) Among the available methods in the literature, the
SVD method is known to be the most accurate method for a
least-squares fit. However, this method takes a relatively
long computation time and large memory space. Thus, to fit
a large amount of data points to a high-degree polynomial in
high dimensions, the SVD method is in practice not feasible.
Since the need for data fitting to polynomial functions is very
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common, we are strongly motivated to construct a fitting
algorithm, which is relatively efficient and accurate for pro-
cessing large data sets in arbitrary dimensions.

Notably, fluctuating systems with the formation of macro-
scopic structures have drawn much attention in recent years.
Some examples are electrochemical deposition, physiology
signals, and the mosaic structure of DNA sequences
[3,7,8,12-14]. The common feature of these systems is the
existence of long-range positive (or negative) correlation be-
tween the fluctuations. The scaling exponents can then be
used to categorize the universality classes of these systems.
People usually adopt the polynomial approximation to obtain
the best guess at the global structures of such systems. Since
these fluctuating systems usually contain large amounts of
data points, our proposed fitting scheme is very suitable for
extracting the global structures of these systems effectively.
In addition, in our proposed algorithm, the fitting parameters
are explicitly expressed in a systematic way. It will be very
helpful for further analytical study of the scaling analysis of
fluctuations.

Interestingly, in the field of computational molecular bi-
ology, Peng er al. [12-14] have proposed a “detrended fluc-
tuation analysis” (DFA) method to determine the long-range
correlation in DNA sequences but exclude the effect caused
by the mosaic structure. Its basic algorithm [12-14] is briefly
given as follows. The first step is to extract the trend (or the
macroscopic structure), which is expressed in terms of a
gth-degree polynomial with the coefficients determined by a
numerical least-squares fit. The second step is to calculate
the corresponding gth-degree detrended variance function
and analyze its scaling behaviors. Although the DFA method
has been widely accepted as a standard analysis scheme in
the study of fluctuating systems with the formation of global
structures, there still exist two unresolved issues in this
method. (1) The DFA method is based on the following con-
jecture. For any fluctuating system in arbitrary dimensions,
the detrended variance function can successfully suppress the
influence of trends (or global structures) and, at the same
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variance functions, and the detrended variance functions of
fluctuating systems in arbitrary dimensions have not yet been
derived. We are strongly motivated to address the above two
issues rigorously. Note that, in our proposed fitting scheme,
all the fitting parameters of the global structure are explicitly
expressed in terms of Legendre polynomials. By employing
this expression, we are able to analytically obtain the exact
relation among the correlation functions, the variance func-
tions, and the detrended variance functions. If these relations
are obtained, one just needs to know the information about
the correlation functions and then the other two quantities
can be easily derived. Hence, a large amount of computation
time can be saved. Furthermore, by using these obtained ex-
act relations, we can then give a rigorous proof of the intui-
tive conjecture of the DFA method.

The outline of this paper is as follows. In Sec. II, we
briefly review the concept of the general least-squares fit and
its two commonly used methods: normal equations and the
SVD method. In Sec. III, by employing the Legendre poly-
nomials, we propose a scheme for parametric fitting and dis-
cuss its merits. In Sec. IV, we use three examples to numeri-
cally demonstrate the merits of our proposed scheme over
the old methods. In Sec. V, the exact relation between the
correlation function and the detrended variance function for
fluctuating systems with formation of global structures is de-
rived. We then present a scaling analysis applicable for any
fluctuating systems. In Sec. VI, a brief summary is given.

II. GENERAL LEAST-SQUARES FIT AND THE METHOD
OF SINGULAR VALUE DECOMPOSITION

In this section, we will first briefly review the concept of
general least-squares fit and its two commonly used meth-
ods: normal equations and the SVD method. Then, the merits
and the drawbacks of each method will be discussed.

Suppose that one is measuring a variable y as a function
of x, a vector in the d-dimensional space. Given a set of data
points {y(x)}, measured within a d-dimensional observation
window, one often would like to condense the data and ex-
tract the essential information by fitting the data set to a
parametric model with adjustable parameters. Without losing
generality, the polynomial functions are usually chosen to be
the fitting functions and the fit supplies the appropriate coef-
ficients. That is, the fitting function is a {g}th-degree [{g}
=(qi,----44)] polynomial with adjustable parameters aj,),

{q} d

Figpx) = > a{n}H (x; = %)",
{n}={0} J=1

with the summation running over the set of indices 0=n;
=g, for all 1 =i=d, and one obtains the appropriate param-
eter values by minimizing

() = 1)

with (---) denoting the average over a d-dimensional obser-
vation window centered at X and of size /; X --- X[, For
continuous systems, the coefficients {a,,} satisfy the follow-
ing relations:
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d {q} d I nj+nj(
y 1 (x;=%)% ) = > a{n/}H (‘5)
j=1

{n'}={0} j=!
[1+(= 1))
2(n;+ n]' +1)

(1)

for all {n}’s. For discrete systems, the coefficients {ay,} sat-
isfy the relations

d
y(X)H (x;—x)"
j=1

{q} d 1 y . ”j+"}
= E a{n’}].__[ _2 (xj_l) (2)

{n"}={0} =1 L lixm 2

for all {n}’s. In the literature, the collection of Egs. (1) or (2)
are called the normal equations of the least-squares problem.
To determine {ay,} in Eqs. (1) or (2), one needs to deal with
the inverse of a tensor of rank 2d. Since the above line of
thought is very natural and straightforward, one usually
comes to solving the normal equations. However, the nu-
merical solution of {ay,} directly from Egs. (2) is very sus-
ceptible to roundoff error, and to analytically obtain {ay,,}
from Egs. (1) or (2) is barely feasible except for some simple
cases. Thus, solving normal equations directly is not a rec-
ommended way to deal with the least-squares problem.

For discrete systems, Cuyt et al. [15] have proposed to
reformulate the multivariate data fitting problem in terms of
a product of orthogonal polynomial basis, instead of the mul-
tinomial basis. For discrete systems with the number of data
points (which are sampled at optimal locations) equal to the
number of fitting parameters, these authors have theoretically
shown that, by employing the fast LU factorization with par-
tial pivoting, both computational cost and the degree of ill
conditioning can be greatly improved when using an or-
thogonal polynomial basis. Note that, in linear algebra, the
LU factorization with partial pivoting is a matrix decompo-
sition which writes a matrix as the product of a lower trian-
gular matrix, an upper triangular matrix, and a permutation
matrix.

To numerically solve all kinds of least-squares problems,
the most often recommended technique in the literature is the
SVD method [9,11] for its general and rigorous treatment of
ill-conditioned situations. This method is based on the fol-
lowing theorem of linear algebra [9,11]. Any m X n matrix A,
with m=n, can be decomposed as

A=U-® VT,

The matrices U, ®@, and V are an m X n column-orthogonal
matrix, an nXn diagonal matrix with elements ¢; being
positive or zero (the singular value), and an n X n orthogonal
matrix, respectively. Given an m X n matrix A and an m X 1
vector B, the n X 1 vector @ minimizing |A-a— | is shown
to be
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a=V-&.U"-B

with the elements of the n X n diagonal matrix 0 being 1/ ¢;
(if ¢;#0) or zero (if ¢;=0). See Refs. [9,11] for the detailed
proof of the above theorem. Subsequently, we give the main
steps for implementing the SVD method in parametric fitting
of data.

(1) Put the measured data set {y(x)} in the m X 1 vector 8
with the elements 8;=y(x;) and {x;; j=1,...,m} denoting
the data points in the x space.

(2) Let {fi(x); i= .,n} denote the basis functions and
the fitting function is given by 2, a;f;(x).

(3) The nX 1 vector e is then constructed by the fitting
parameters {¢;} and the m X n matrix A constructed by {f;(x)}
with the elements A ;;=f;(x;).

(4) Then the appropriate fitting parameters {a;} are ob-
tained by the minimization of |A-a— B|. By employing the
theorem we just mentioned, one gets A=U-®-VT and a
=V-®-UT-B.

In theory, there should not be any column degeneracy in
the matrix A. However, in some cases the matrix A might be
ill conditioned; namely, some of the d)j’s are so small that
their apparent values are probably an artifact of roundoff
error. In such cases, the vector e (of fitting parameters) ob-
tained by zeroing the small ¢;’s is usually much better than
the solution with the small ¢j’s left nonzero. Thus, the SVD
method cannot be applied blindly. One must decide at what
threshold to zero the small ¢;’s. If the SVD method is ap-
plied correctly, it is the most reliable method in dealing with
the least-squares problem. However, it has one significant
disadvantage: It usually requires a very long computation
time for iteration and a large memory space to store an extra
array of size m X n. Thus, for the fitting with a large amount
of data points, the SVD method might be practically infea-
sible.

III. AN ALGORITHM WITH GREAT EFFICIENCY

In this section, we would like to propose a different
scheme for parametric fitting. Our proposed scheme is exact
for continuous systems. For discrete systems, this scheme is
almost as accurate as the SVD method, and it takes much
less CPU time and memory space than the SVD method in
computation. In the following, we will first give a detailed
derivation of our scheme and then discuss its implications
and applications.

Recall that, to determine {ay,} in Eqs. (1) or (2), one
needs to deal with the inverse of a tensor of rank 2d. For
continuous systems, one can actually avoid the difficulty in
solving the inverse of a high-rank tensor by choosing an
appropriate set of orthogonal polynomial basis {f;(x)}, which
satisfies the following relation:

/2

1
(filx)f;(x)) = 7f dx f{(x)f(x)=0 for all i # j.

-2
3)

In the literature [16], the classical orthogonal polynomials
are categorized into three classes, Jacobi-like, Laguerre-like,
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and Hermite-like polynomials, with the intervals of orthogo-
nality being [-1,1], [0,%), and (—%,%), respectively. Obvi-
ously, Laguerre-like and Hermite-like polynomials do not
meet the required relatlon Eq. (3). In general, Jacobi-like
polynomials {J(”“ "(x)} satlsfy the orthogonal relation
S dx H® ”)(x)J(" V() (x)=0 for all i#j, with the
Welght function H(“ ”)(x) (1-=x)*(14x)" and the parameters
m,v>—1. An important subclass of Jacobi-like polynomials
is the Gegenbauer polynomials, which correspond to
{JE“’”)(x)} with u=v>-1. Gegenbauer polynomials consist
of two important subclasses: Legendre polynomials and two
types of Chebyshev polynomials, corresponding to {J*" (x)}
with u=v=0 and u=v= = 1/2, respectively. Clearly, the set
of Legendre polynomials has the weight function simply 1
and will satisfy the required relation Eq. (3) under appropri-
ate scaling. Hence, the set of Legendre polynomials

[ir2]

YR S EpAC e AR

S AR £ .
P )1 ‘(1_2])'x for i=1,2,...

(4)

with the orthogonal property [ dx P,(x)P;/(x)= % is a per-
fect candidate to be chosen.

We express
{at d £)
Vig(x) = > C{n}H P, (—;L) (5)
{n}={0}  Jj=1 J
The minimization of ([y(x)-¥,(x)]?) then leads to
d .
= yo0TT Cny+ 1)pnj(%'%x2) NG
J= j

For illustration, we explicitly list some coefficients:

coo = (y(x)),
c10=6(y(x)z),

11 =36(y(x)z122),
5 2
Cy= 5())(’()(1221 -1)),

1= 15(y(x) (1227 = 1)z,),

c30="T(y(x)(20z] - 3z))),

with the dimensionless quantity z;=(x;—X;)/l;. Hence, we
obtain

{q} d )
Vig(x) = E Y(X)H (2n;+ 1)P —%
{”}={0} j=1 .

j
XHP <2(xl x))

In the following analysis, the symbol [¢] is used to denote
the union of the sets of indices {n}={n,,n,,...,n,;} with
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TABLE 1. A list of the values of numerical fitting parameters for example 1 in Sec. IV. The values are obtained from the SVD method
and our algorithm proposed in Sec. III, respectively. 128 X 128 data points are used for fitting. The ratios of the CPU time and the memory
space cost for our method to those for the SVD method are 0.025 and 0.09, respectively.

aoo aio doy azo apy ap aso as) apn ap3
Exact value 5 1 —4 3 1 -2 -1 0 -2 0
SVD 5.000 1.000 —4.000 3.000 1.000 —2.000 —1.000 0.0000 —2.000 0.0000
Our method 5.000 0.9993 —4.001 2.999 0.9999 —1.999 —0.9991 0.0000 —1.999 0.0014
{n}=n,+ny+: - +n,;=q and all n; being nonnegative inte- {g} d g} d
gers. Thus, > c{n}H Pni(xi) = > a{n}H X 9)
(=0} i=1 {m=lo} =1
d R
Slalx = > \ y®Il@n+ 1P 205 =%) The merit of our scheme in numerical parametric fitting is
nil=q P K l; efficiency, i.e., taking much less CPU time and memory
d space than the SVD method. In the following, we will give
XH p 2(x; = %) ) an estimation of the complexity of computation time and
o I ’ memory occupancy for both the SVD method and our

The above result can be viewed as the original y(x) con-
volved by some specific filter, and this result is exact for
continuous systems in arbitrary dimensions.

In addition, for a fluctuating system with the formation of
global structure, the above result y{¢](x) can also be used to
express the global structure. In Sec. V, by employing the
explicit expression of y{¢](x), we will undertake a detailed
analytical study of the correlation function and the detrended
variance function of fluctuating systems.

Next, for numerical parametric fitting of discrete systems,
we need to take a continuum approximation of the original
data set in order to apply the above scheme. Let
{(i,....j)} denote the original discrete data set within a
d-dimensional observation window of grid size [; X -+ X,
(i.e., j;=1,2,...,1,). This data set is approximated as a con-
tinuous step function and rescaled to the range Hle[—l 7,
with the continuous step function z(x) given by z(x)

. . ji—li/2—1 —1i/2 .
=y(j1, ... jg) for 55— =x,<""T= and i=1,2,...,d. Fol-
lowing the scheme for continuous systems, the fitting func-

tion is then expressed as

{q} d
Zg = 2 cpllp, ().
fn=fo} =1

The parametric fitting corresponds to finding the set of coef-
ficients ¢,y minimizing

1 1
f . f dx[z(x) - Z,,(x) %
-1 Ja

It leads to

1 1 d
Ciny = f o f dx Z(X)H
-1 -1 i=1

for discrete systems. If one is interested in the correspon-
dence between the coefficients {cy,} and {ay,}, it can be
easily derived through the relation

2n,- +1
2 Pni(-xi) (8)

scheme. Let m, n, and d denote the total number of data
points, the number of fitting parameters, and the dimension-
ality of the system, respectively. The main computation time
of the SVD method is spent on the execution of Householder
reductions, of which the time span is about O(mn?). By con-
trast, in our scheme, the operation of the inner product be-
tween the data and each basis function costs the CPU time of
O(m). There are n basis functions in total. Hence, the com-
putation time complexity of our method is about O(mn). The
complexity of memory occupancy for the SVD method is
O(n(m+n)), which can be easily derived from the main steps
of the SVD method given in Sec. II. By contrast, the com-
plexity of memory space for our fitting scheme is O(m
+m"pV4) [about O(m) for d=2], which can be obtained
from Eq. (8). We will demonstrate this merit of our method
through a few numerical examples in the next section. In
addition, the SVD method cannot be applied blindly; namely,
one needs to deal with the subtlety of ill-conditioned matri-
ces with great care. In contrast, our scheme is generally ap-
plicable everywhere with straightforward execution. Thus,
for a large amount of data fitting, our scheme is obviously
superior to the traditional SVD method.

IV. NUMERICAL DEMONSTRATION

In this section, we will use three examples to demonstrate
the merits of our proposed algorithm in numerical parametric
fitting.

A. Example 1: A polynomial of degree 3 in two dimensions

In this example, we will draw the data set from a known
polynomial function and compare fitting results from the
SVD method and our method. The function we choose is a
polynomial of degree 3 in two dimensions,

F(X) =5+ x; — 4y + 37 + x5 — 205 — X — 2 X3

> aijxilxé'

0=i+j=3

Table I gives the result of parametric fitting of example 1
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with the total grids being 128 X 128 points. The third row
gives the values of {a;;} obtained by the SVD method. The
fourth row gives the values of {a;;} obtained by our algorithm
proposed in Sec. III with the transformation of coefficients
according to Eq. (9). In this example, the ratios of the CPU
time and the memory space cost for our method to those for
the SVD method are 0.025 and 0.09, respectively. Our
method is obviously much more efficient than the SVD
method in computation. The relative deviation between the
fitting parameter value obtained by our method and the exact
value is less than 0.09%. Subsequently, we numerically test
how the fitting results improve as the number of grid points
for fitting increases. We find that the relative deviation is less
than 0.01% if the total grids are more than 1000 X 1000
points.

B. Example 2: Interfacial growth

Next, let us consider an example in interfacial growth
phenomena [1,2]. The growth process is described by a sto-
chastic partial differential equation in 2+ 1 dimensions with
spatiotemporally correlated noise:

dh(x,1) == vV*h(x,1) + p(x,1), (10)

where h(x,t) denotes the interface height at position x and
time ¢, and 7(x,) represents Gaussian-distributed noise of
zero mean and power-law-decaying correlation

77(X,[) U(X’,t,) — D|X _ X/|2p—2|t _ t/|20—1

with 0=p<1/2 and 0= 6<1/2. Here, the overbar denotes
the ensemble average. In the right-hand side (RHS) of Eq.
(10), the first term accounts for the surface diffusion of de-
posits to a nearby position with lower chemical potential and
the second term accounts for the shot noise. The above
growth equation with white noise corresponds to the famous
Herring-Mullins equation [17]. It is well known that many
experiments can be well described by the Herring-Mullins
equation; for example, the growth of amorphous Si films by
thermal evaporation with a low substrate temperature [ 18], Pt
sputter deposited on glass at room temperature [19], and the
epitaxial growth of Si on a Si(111) substrate [20]. In contrast,
the electrochemical noise is known to be spatiotemporally
correlated [21,22] and thus the pulse-current electrochemical
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FIG. 1. (Color online) (2+1)-dimensional interface configura-
tion in a local observation window of 128 X 128 lattice sites, nu-
merically generated from Eq. (10) with the parameters p=6=0.3,
D=v=1, the lateral system size 4096 X 4096 lattice sites, and time
t=1.8 X 10° time steps.

deposition process is better described by Eq. (10) with spa-
tiotemporally correlated noise.

Through numerically generating the interface configura-
tion governed by Eq. (10) with spatiotemporally correlated
noise, we observe that the interface configuration gradually
develops large mounds as the growth time increases. Figure
1 shows a typical interface morphology governed by Eq. (10)
after a long growth time. Specifically, the values of the pa-
rameters in Eq. (10) used to generate Fig. 1 are as follows:
the noise correlation exponents p=6=0.3, the parameters D
=v=1, the growth time t=1.8 X 10° time steps, and the lat-
eral system size 4096X4096 lattice sites with periodic
boundary conditions. Figure 1 plots the (2+ 1)-dimensional
interface configuration in a local observation window of
128 X 128 lattice sites. We take the data set of Fig. 1 as our
second example for parametric fitting. The fitting function
we choose is a polynomial of degree 4 in two dimensions,
y‘(x):EogiJrjgaijx’ixé. The local observation window is res-
caled to [-1,1]X[=1,1]. Then, the values of the interface
heights are rescaled with the same scaling factor along the
substrate direction. Table II gives the result of parametric

TABLE II. A list of the values of numerical fitting parameters for example 2 in Sec. IV. The values are
obtained from the SVD method and our algorithm proposed in Sec. III, respectively. 128 X 128 data points
are used for fitting. The ratios of the CPU time and the memory space cost for our method to those for the

SVD method are 0.02 and 0.06, respectively.

apo aio apy a apy an aso azy
SVD —51.93 —19.12 —17.01 35.38 1.562 —45.32 —3.422 15.15
Our method —51.93 —19.13 —17.00 35.36 1.561 —45.28 —3.413 15.14
ap aops ) asy a as aops
SVD 12.32 10.49 —30.90 15.23 14.31 —17.53 —35.57
Our method 12.32 10.49 —30.87 15.22 14.30 —17.52 —35.52
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TABLE III. A list of the values of numerical fitting parameters for example 3 in Sec. IV. The values are
obtained from the SVD method and our algorithm proposed in Sec. III, respectively. 355 X 342 data points
are used for fitting. The ratios of the CPU time and the memory space cost for our method to those for the

SVD method are 0.014 and 0.043, respectively.

aopo aio aop ag ap an asg
SVD 18.97 0.1292 25.45 —0.5036 —8.384 —21.49 —1.424
Our method 18.97 0.1300 25.45 —0.4981 —8.385 —21.49 —1.429
()] ap aops [N) asy an as
SVD —5.004 —15.80 —37.56 —1.223 2.650 5.418 4.684
Our method —4.999 —15.80 —37.54 —1.229 2.651 5.417 4.684
Ao aso aqy asy ans a4 aps
SVD 7.544 0.6889 —0.3428 1.101 8.573 15.56 19.97
Our method 7.541 0.6932 —0.3486 1.101 8.572 15.56 19.95

fitting of example 2 with the total grids being 128X 128
sites. The second row in each box of Table II gives the value
of {a;;} obtained by the SVD method. The third row gives the
values of {a;;} obtained by our algorithm with the transfor-
mation of coefficients according to Eq. (9). In this example,
the ratios of the CPU time and the memory space cost for our
method to those for the SVD method are 0.02 and 0.06,
respectively. The relative deviation between the fitting pa-
rameter value obtained by our method and that by the SVD
method is less than 0.1% except for the coefficient as
(whose relative deviation is 0.26%). Again, this discrepancy
will diminish as the number of grid points increases. We find
that the relative deviation will be less than 0.01% if the total
grids are more than 1000 X 1000 points.

C. Example 3: Annual mean temperature for the world ocean
on 0.25° grid

Now let us consider an example in the world ocean tem-
perature distribution. It is well known that the world oceans
contain large-scale permanent or semipermanent structures
(such as the Pacific Ocean current, the Atlantic Ocean cur-
rent, and the Gulf Stream), which have great influence on the
global climatology. The data set of annual, seasonal, and
monthly mean temperature and salinity for the world ocean
on a 0.25° latitude and longitude grid is given in the World
Ocean Database 2001, which is provided by the National
Oceanographic Data Center under the NOAA Satellite and
Information Service [23]. This data set is obtained by a spe-
cial method, the objective analysis technique. (The interested
reader may refer to Ref. [5] for a detailed description.)

It is well known that both increasing temperature and de-
creasing salinity can act to decrease local density. The 0.25°
grid climatological mean values of temperature and salinity
for the annual, seasonal, and monthly time periods represent
mean oceanographic characteristics and can be used to test
the validity of various ocean circulation models. Hence,
ocean climatologists usually use a polynomial approximation
to obtain a best guess at the probable structure of the ocean

climatological mean field. As the third example to demon-
strate the merits of our fitting algorithm, we draw from the
data set of the 0.25° latitude and longitude grid annual mean
temperature from World Ocean Database 2001 [23]. The area
chosen for this example is the central region of the Pacific
Ocean from 179.75°E to 91.5°W longitude and 71.75°S to
13.75°N latitude, at the level of 125 m depth from the sea
surface. The total grid points are 355 X 342 points. The rise
and fall of the temperature are due to an ocean current pass-
ing through this region. The fitting function we choose is a
polynomial of degree 5 in two dimensions, J(x)
=< +j55a,-jx",x§. The latitude and longitude grids for fitting
are rescaled to [—1,1]X[-1,1]. Table III gives the result of
parametric fitting of example 3. The second row in each
column of Table III gives the values of {a,;} obtained by the
SVD method. The third row gives the values of {a;;} obtained
by our algorithm with the transformation of coefficients ac-
cording to Eq. (9). In this example, the ratios of the CPU
time and the memory space cost for our method to those for
the SVD method are 0.014 and 0.043, respectively. We ob-
serve that the reduction of the computation time for our
method (over the SVD method) becomes more significant as
the number of fitting parameters increases. In this example,
the relative deviation between the fitting parameter value ob-
tained by our method and that by the SVD method is larger
than in examples 1 and 2, because the total number of fitting
parameters in this example is much larger than those in ex-
amples 1 and 2. The relative deviation between the value
obtained by our method and that by the SVD method is less
than 0.6% except for the coefficients a,, and a4, (whose
relative deviations are 1.09% and 1.7%, respectively).

In words, our algorithm for numerical fitting is much
more efficient than the traditional SVD method. In addition,
the SVD method needs to take a large memory space to store
a matrix of size m X n (with m being the total number of data
points and n being the total number of fitting parameters) and
to decompose the matrix into a product of several matrices.
Thus, for a large amount of data fitting, the SVD method
may become infeasible in practice. In contrast, our method
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does not take large memory space and can always be handled
just by a desktop PC. The only drawback of our method in
numerical fitting is that it is an approximation. However, the
precision of our fitting results can be greatly enhanced as the
total number of data points increases. Hence, we believe that
our method is the best algorithm for fitting with a large num-
ber of data points.

V. THE CORRELATION FUNCTION, THE VARIANCE
FUNCTION, AND THE DETRENDED VARIANCE
FUNCTION

Since fluctuating systems with the formation of global
structures are widely observed in Nature, let us focus on such
systems in this section. The most important statistical quan-
tities in this class of systems are the correlation function, the
variance function, and the detrended variance function. In
the following, we plan to explicitly obtain the exact relations
among these statistical quantities. Let y(x) represent a ran-
dom function of x, with x being a vector in a d-dimensional
space. The correlation function is defined as

G(r) =[y(x) - y(x+r)]*

with the overbar denoting the ensemble average. The vari-
ance function within a d-dimensional observation window is
defined as

J1a) = {yx) = ) (11)

with (---) and the overbar denoting the spatial average over
an observation window of size H?:]l,- and the ensemble aver-

Wz(ll, .

S (2n;+1)* +1)2 2
Clny#i0y =
j= 1 ;12

) lﬁl(zn (@n;+ 1) f”z
25 12

By employing the properties that the Legendre polynomials
are either even or odd functions of their arguments and the
correlation function G(r) is an even function of all rj, wWe

obtain
2x
dx P, ( )
L

- 1 2(21’1 + 1)2 Li2=r;

C{"};&{O} T 2] 1 1/2
XP”j(%z';ﬁz)} }G(r). (16)

J

Substituting Eqgs. (13) and (16) into Eq. (14), we conse-
quently obtain the exact relation between the [¢]th-degree
detrended variance function and the correlation function as

1/2
dx f
1/2
l/2—x
dx; f
l/2—x
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age, respectively. In addition, by using the scheme we pro-
posed in Sec. III, one can easily extract the macroscopic
structure of the fluctuating system within the observation
window. Let the [g]th-degree polynomial ¥[¢](x), Eq. (7),
represent the [¢]th-degree global structure function of the
fluctuating system. Then, the [¢]th-degree detrended vari-
ance function within a d-dimensional observation window is
defined as

wlgl(ly, .. 1g) = (y(x) = gl ). (12)

With some calculation, we first obtain the relation between
the correlation function G(r) and the variance function
d

w2(ly,...,1,) as
2 [l
s
liJo

i=1 %

wz(ll,...,ld)z( dri(l; - )) -G(r). (13)

By using Egs. (5), (7), (11), and (12), the [g]th-degree de-
trended variance function is related to the variance function

as follows:
<o
wilgl(ly, Ly =wi(ly, .l E c (H )
inl=1 jo1 2nj+ 1
(14)
Subsequently, by employing Eq. (6), one gets
2 2%\ |———
dx;P, (%)m}.(%)}wm
J
2 2x;+2r;
dr,P, (%)Pnj(—x%i”ar). (15)
J

wlqlly, ... ly) = dr,-) G(r)K[q](r) (17)

d I.
1 1 (7
(5
25\ Jo

with the kernel given by

d

Kq](r)= I{E 11

dx;P, (27)(1)

(18)

1/2 rj
2(2n,+ 1)f
nfl=q |\ j=1 12

XPn,( 2x1~ ;— 2r!~)i|
J .
J

As an illustration, let us consider the case with d=2. We
explicitly list out K[0](r) to K[3](r):
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2
K[olr) =1 21,-2r),
j=1

2 3
K[1](r) = K[0](r) + E (ZZj —6r;+ 4%)(211-, - 2rj,),

J=1 J

2 3 5
K[2](r) = K[1](r) + > (21_,. — 107+ 20% - 12%’)
= i b

2 3
r
x @2l -2+ 1 (21j —6rj+ 4;24),

J=1 J

2 3 5 7
I r I

K[3](r) = K[2](r) + ,EI (2lj ~ 1rj+ 563 =845+ 40;;)
= J J J

3 5
r r
X (2L = 2r;) + (21]. ~ 10742055 - 124)

4
J lj
3
I
X (2ljr —6ry +4IT) ,

j/
with j'=j(mod 2)+1.

Since many fluctuating systems are modeled by continu-
ous stochastic partial differential equations, the obtained ex-
plicit relations among the correlation function, the variance
function, and the detrended variance function can greatly
help the analytical investigation of such systems. In addition,
the direct numerical calculation of the high-order detrended
variance function from its definition, Eq. (12), is very CPU-
time consuming. Now, with the explicit relations among cor-
relation function, the variance function, and the detrended
variance function being derived, one just needs to obtain the
correlation function first and then the detrended variance
function can be obtained easily without the cost of large CPU
time.

To numerically verify the obtained relations [Egs. (17)
and (18)], we perform some numerical simulation on two-
dimensional fractal surfaces as follows. We first numerically
generate y(x;,X;), which is the fractional Brownian field
characterized by the Hurst exponent « [24]. The variance
function of the two-dimensional fractional Brownian surface
w2 (11, 1) = {[Vso(¥1,¥2) = Vo1, 2)) ) s expected to scale
as (I5+05)% with 0<a<1. Without losing generality, we
choose cases with the Hurst exponent =0.3, 0.5, and 0.7 in
our simulation. To check the accuracy of yg,(x;,x,), we draw
a log-log plot (Fig. 2) of w?(l;,1,) vs [1+15 for the numeri-
cally generated fractional Brownian surfaces. The whole
fractal domain is 4096 X 4096 lattice sites. The variance
function is first calculated within an observation window of
size [; X [, and then a sliding average is taken over the whole
fractal domain. The excellence of the data fitting in Fig. 2
confirms the accuracy of yg,(x;,x,) representing the frac-
tional Brownian field. Subsequently, we numerically impose
a global structure function
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T T T T T
100 1000 10000

FIG. 2. (Color online) Log-log plot of the variance function
w?(ly,1,) for two-dimensional fractional Brownian surfaces vs l%
+13, in which (/;,,) denote the side lengths of the observation
window. The whole system size is 4096 X 4096 lattice sites. The
data refer to surfaces with Hurst exponents @=0.3, 0.5, and 0.7,
represented by the square, circle, and triangle symbols, respectively.
The solid lines are drawn as guides to the eye.

2
X1 X1 Xy X1 Xy
s =4[ 35 () 55) =255 )
3
ad|
“\10? 1
<103> (19)

in the same fractal domain, i.e., x;=1,2,...,4096. Conse-
quently, the two-dimensional surfaces are defined as
Y(X1,%2) = Yolobat(X1,X2) + Ysi0(X1, X5). We then numerically cal-
culate the [¢]th-degree detrended variance function w?[¢] in
two ways: The first way is the direct calculation from its
definition, Eq. (12), and the second way is through the de-
rived relation, Eqgs. (17) and (18). Figure 3 clearly shows that
R[q], the ratio of the values of w*[¢] obtained in these two
ways, always falls in the range [0.99,1.01] for various values
of the Hurst exponent «a and the detrended degree ¢, if the
side length of the observation window (/) is larger than 24
lattice sites. Hence, the derived explicit relation between the
correlation function and the detrended variance function,
Egs. (17) and (18), is numerically reconfirmed. Moreover,
one can employ Egs. (17) and (18) to numerically obtain the
values of w’[¢], and the reduction of computation time is
remarkable. For example, the ratio of the computation time
to obtain w’[¢] (with /=4,8,...,100 and ¢=1,2,3) from
Egs. (17) and (18) to that from Eq. (12) is about 0.012.
Next, we would like to address the following issue. In the
formalism of the DFA method proposed by Peng et al
[12-14], the detrended variance function is designed to retain
the scaling behaviors due to the stochastic nature of the sys-
tems and to exclude the influence of global structures. Al-
though this design is intuitively correct and has been justified
by numerical examples in the literature, it still lacks a rigor-
ous analytical proof. In the following, by undertaking a de-
tailed analysis of the kernel function K[¢](r), we will give a
rigorous proof of the above issue. We first recast y(x) as
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Y(X) =Y g10bal(X) + V5i0(X). Yeroba(X) represents the global struc-
ture, expected to be continuous and smooth. yg.(x) repre-
sents the part from some stochastic nature of the system rela-
tive to the global structure. From the definition of the
correlation function G(r), G(r) can also be separated into
two parts Ggiobal(T) +Gyo(r). It is physically reasonable to
assume that Gy (1) is analytic and thus can be expressed in
terms of a power series expansion. Since the correlation
function is a “difference” correlation function, we further

PHYSICAL REVIEW E 78, 011112 (2008)

expect that Ggjopy(r) is an even function of all r; and thus
Gglobal(r)=Eﬁn}‘=lb{n}ﬂleﬁlz"f. In most physical situations, the
dominant term of G,(r) is proportional to r*% with a char-
acteristic scaling exponent «, which is usually not an integer.

Subsequently, the kernel K[¢](r) is rewritten as K[q](r)
EE‘{n}‘Sq[HleFni(r,-)]. After some calculation, we obtain the
following property of F,,i(r,-), with m; being any nonnegative
number (including nonintegers):

I O’ ml=1’2’ ,I’li—l,
f dra{"iF, (r) =Y "= 1)"Q2n;+ DT (m;+ 1) , (20)
0 i otherwise.
(2mi + l)r(m, -n;+ l)r(ml +n;+ 2)
Then, the above relation is employed to compute [ H‘?_l[o,zi]K[q](l')rZ“dr-
(i) For w a positive integer,
M‘ d Ii
f J K[f]](r)"zﬂdl'= E 2 d— H f Fni(ri ”,'zmid”i
IT;_,[0.7; n¥=qg {m}= i=1 Y0
i=1l0.1;] [{nll=q Hm}l=n H(mi!)
i=1
| d O, m,-=1,2, ,ni—l,
=3 3 I B mn+ DEem+ 1) |
[{ny=q| Km}=p i=1 . - - otherwise.
11 m QCm;+ DI'(m; = n; + DI'(m; +n,;+ 2)
i=1
With some calculation and by induction, it can be shown that
the above integral is equal to O for u=1,2,...,q. In addition,
in many physical situations, one usually takes the observa- oot
tion window with equal side lengths (i.e., /;=1 for all {) and 105 w07 5 1 5
thus the above integral is proportional to I?#*?? for u=q c A A3
=

+1,g+2,....

(ii) For u a noninteger, the calculation becomes extremely
complicated and no general closed form can be attained.
Since most physical situations have the substrate dimension
d=2, we choose to undertake the calculation for d=2 with
the side lengths of the observation window equal to /. First,
consider the integral

H,(L,ny,ny) = f dr r'l”rgz(r% + r%)'”
Ix1

Jrtno 22 2 (ni+]
T2 rm+2u+2) S\ 2
n+1 1
—u-— T 21
m=— 2) (21)

with the incomplete Beta function [16]

X

B({,&;x) Ef 11 =& dar.

0

095 . . T : T

1.05 a=0.5

R[q]
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FIG. 3. (Color online) R[¢] represents the ratio of the value of
the [¢]th-degree detrended variance function w?[¢] calculated from
Egs. (17) and (18) to that calculated from Eq. (12). The side lengths
(1;,1) of the observation window are set as [;=[,=I
=20,24,...,68. The whole system size is 4096 X 4096 lattice sites.
Note that the two-dimensional surfaces are set as y(x;,x,)
=yglobal(xl ,x2)+ysm(xl ,)Cz), with Yelobal given by Eq (19) and Ysto
being the fractional Brownian surfaces shown in Fig. 2. The solid
lines are drawn as guides to the eye.
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By employing the above integral and the expansion formula
for the Legendre polynomial, we then derive

f dr Fnl(rl)Fnz(rz)(r% + r%)“
Ix1

2 n;

L @2ni+ 1) (=ny); (1 +ny);

=4PPH (1,0,0) + 4] | (Z , i
a i1 \jmo (it SIAEL

XH'u(l,z‘]] + 1,2j2+ 1) —4(2n2+ 1)

% e (= )1 +ny),

oo (2k+ 1) (k!>

ny
(=n) (1 +ny);
XH, (1,0,2k+1)-4(2n;+ 1 —
,U-( ) ( n )Jg() (2,]+ 1)(]-!)2l2j—1

f Klg)(r)(r} + m)tdr=" 2
X1

nitny=q

m+1

| 244294 G )y (C ),
=! [ 2 i, T2 2

o ®
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XH,,(1,2j +1,0) (22)

with (n);=n(n-1)---(n—j+1). Subsequently, by using Eqs.
(21) and (22) and the following relations for the incomplete
Beta function [16]:

reér
B(&.£o) = % CBEEI-Y,  (23)
_E” .
B = 1L E40; (24)

& i (&+1);

we finally obtain

l l
dr]f erFnl(rl)Fnz(rZ)(r%-'-rg)’u
0 0

» (2n1+1)(2n2+1)
v=0 2 ni+ny=q

S (=n1),(1+ny) (= ny) (1 + ny),

v
v=0 2 n=0

o 12M+4 )

By substituting the expansion of G(r)[=G gopal(T) + Go(T)]
into Eq. (17) and employing the properties of the kernel
functions we just derived, we rigorously show that, by rais-
ing the degree of the detrended variance function, the contri-
bution due to the global structure can be successfully sup-
pressed. The above result is applicable in any dimensions. In
addition, at least in two dimensions, we rigorously show that
the detrended variance functions do retain the scaling expo-
nent « (if it is not an integer) originating from the stochastic
nature of the fluctuating system.

VI. CONCLUSION

In the physical sciences, data fitting is a very important
step for researchers to condense the data and extract the es-
sential information from experiments. Given a set of data
points, one usually fits the data set to a parametric model.
Without losing generality, polynomial functions are com-
monly chosen to be the fitting functions and the fit gives the
appropriate parameter values. In addition, many fluctuating
systems in Nature consist of global structures; examples in-

1 1
S Q)+ )k p+2)( ! k!)2<(k+ Do Gt 1)V+,)

. ] .
23 CBS o g mn s 1)S,

—n)i (1 +n); 1 N 1
=0kt D2k +2p+ 3K\ (k+ Dy T (1201
(25)

clude molecular-beam-epitaxial growth, electrochemical
deposition, the clustering features of seismic sequences, the
climatological temperature and salinity distribution of the
world oceans, physiology signals, and the mosaic structure
of DNA sequences. People usually adopt a polynomial ap-
proximation to obtain a best guess at the global structures of
such systems. In the literature, the method of normal equa-
tions and the SVD method are two commonly used methods
for numerical fitting. However, each of these two methods
has some drawbacks. The method of normal equations is
rather susceptible to roundoff errors. Although the SVD
method is very accurate, it requires a relatively long compu-
tation time and large memory space. Thus, the SVD method
is not practically feasible for fitting a large amount of data. In
this work, by employing Legendre polynomials, we propose
a different algorithm for parametric fitting. Our proposed
scheme is exact for continuous systems. For numerical fit-
ting, our proposed schemes takes much less CPU time and
memory space than the traditional SVD method in computa-
tion. Although our proposed scheme is an approximation for
numerical fitting of discrete systems, its accuracy can be
greatly enhanced as the number of data points increases. We
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believe that our algorithm is the best method for fitting a
large amount of data points. Furthermore, for fluctuating sys-
tems with formation of global structures, we explicitly derive
the exact relations among the correlation function, the vari-
ance function, and the detrended variance function in arbi-
trary dimensions. The obtained relations can greatly help fur-
ther analytical and numerical study of such systems. In
addition, by undertaking a detailed analysis of the kernel
functions, we rigorously show that the detrended variance
functions indeed retain the scaling behaviors due to the sto-
chastic nature of the system and exclude the influence of
global structures on the scaling behaviors, verifying the in-
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tuitive design of the DFA method. All our results are gener-
ally applicable in arbitrary dimensions.
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