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We derive the general shape equations in terms of Euler angles for a uniform elastic rod with spontaneous
torsion and curvatures and subjected to external force and torque. Our results based on an analytic formalism
show that the extension of a helical rod may undergo a one-step discontinuous transition with increasing
stretching force. This agrees quantitatively with experimental observations for a helix in a chemically defined
lipid concentrate. The larger the twisting rigidity, the larger the jump in the extension. The effect of torque on
the jump is, however, dependent on the value of the spontaneous torsion. In contrast, increasing the sponta-
neous torsion encourages the continuous variation of the extension. An “over-collapse” behavior is observed
for the rod with asymmetric bending rigidity, and an intrinsic asymmetric elasticity under twisting force is
found.
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The shape and elasticity of a long thin rodsi.e., a fila-
mentd is a significant issue, not only because of its wide
application in engineering and sciencef1g, but also for recent
experiments and theories which revealed that it may account
for some elastic properties of microscopic objects, from car-
bon nanotubesf2–5g to biomaterialsf6–26g. The conditions
to form a helix from a rod and its relevant stability and
elasticity are, in particular, interesting topics since the helix
is one of the simplest filamentary structures found in nature.
It has been reported that a rod under stretching may undergo
a sharp multistep extension transition, from a free-standing
helix to a distorted helixf22g. On the other hand, recent
experiments for a helix in a chemically defined lipid concen-
tratesCDLCd observed a one-step reversible sharp transition
of extension from an almost perfect helix, to an almost
straight linef9g. Whether the elastic model can describe such
observations is therefore an intriguing question.

In this paper we derive the shape equations for a uniform
rod with spontaneous torsion and curvatures in terms of the
Euler anglesu, f, andc. We find analytically that a helical
rod may undergo a one-step discontinuous transition under a
stretching force, which quantitatively agrees with the experi-
mental observations for a helix in a CDLCf9g. We find that
the larger the twisting rigidity, the larger the jump in the
extension. On the other hand, the effect of torque is depen-
dent on the value of the spontaneous torsion. In contrast,
increasing spontaneous torsion encourages the continuous
variation of the extension. For the rod with asymmetric
bending rigidity we observe an “over-collapse” behavior and
an intrinsic asymmetric elasticity under twisting.

Using Euler angles to relate the fixed coordinate system to
the frame rigidly embedded in the rodf1,15,17–20g, the tan-
gent vectort3;dr /ds of the center line position vectorr of
a rod can be written ast3=hsinf sinu ,−cosf sinu ,cosuj,
where s is the arclength. The general configuration of an
elastic rod can be described by a triad of unit vectors
ht issdji=1,2,3, wheret1 and t2 are oriented along the principal
axes of the cross section.t issd satisfy the generalized Frenet
equationsf1,20–22g, dt issd /ds=−S j ,kei jkv jssdtkssd, whereei jk

is the antisymmetric tensor andhv jssdj are the curvature and
torsion parameters. The normaln of the rod can be ex-
pressed as n=hcosf cosc−cosu sinf sinc ,sinf cosc

+cosu cosf sinc ,sinu sincj. It follows swith Ẋ;dX/dsd
that v1=sinu sincḟ+coscu̇, v2=sinu coscḟ−sincu̇, v3

=cosuḟ+ċ. The linking numbersLkd and the supercoiling
degreessd of a rod can be expressed asf18g

Lk =
1

2p
E

0

L

sċ + ḟdds, s =
Lk − Lk0

Lk0
, s1d

where Lk0 is the Lk in the undeformed statesf =0 and G
=0d, andL is the contour length of the rod.

Under an external torqueG and a forcef sf .0 for a
stretching forced along thez direction, the energy of a uni-
form rod can be written asf20–22g

E =E
0

L

Eds, s2d

E = 1
2fa1sv1 − v10d2 + a2sv2 − v20d2 + a3sv3 − v0d2g

− f cosu − Gsḟ + ċd, s3d

where a1, a2 are the bending rigidities,a3 is the twisting
rigidity, andv10, v20, andv0 are spontaneous curvatures and
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twist rate, respectively. Note that if the force has all three
componentsssimilar to the case of fixing both ends of the
rodd, the term f cosu must be replaced byf ·t. We do not
consider this much more complicated case because the force
used in a force experiment is always uniaxial.

The undeformed shape of a rod is given byv1=v10, v2
=v20, andv3=v0. These equations determine a free-standing
helix with constant curvatures=Îv10

2 +v20
2 d and constant tor-

sion s=v0d.
ExtremizingE, we obtain the shape equations

− f sinu + 1
4f2a3 − a1 − a2 + sa1 − a2dcos 2cgsin 2uḟ2

+ fa2v20 cosc + a1v10 sinc − sa1 − a2dsin 2cu̇gċ

+ ḟf− a3v0 sinu + cosusa2v20 cosc + a1v10 sincd

+ sa3 + sa1 − a2dcos 2cdsinuċg + sa1 cos2 c

+ a2 sin2 cdü + sa1 − a2dcosc sinu sincf̈ = 0, s4d

− G + sinuf− a2v20 cosc − a1v10 sinc + sa1

− a2dcosc sincu̇ + sinusa2 cos2 c + a1 sin2 cdḟg

+ a3 cosuscosuḟ + ċ − v0d = C, s5d

sa1 − a2dcosc sincu̇2 + sinusa1v10 cosc − a2v20 sincdḟ

− sa1 − a2dcosc sin2 u sincḟ2 + a3scosuf̈ + c̈d

− u̇ha2v20 cosc + a1v10 sinc

+ fa3 + sa1 − a2dcos 2cgsinuḟj = 0, s6d

where C is an integral constant. A helix requiresussd=u
=const swe chooseu as a constant henceforth for conve-
nienced andfssd=ḟhs with ḟh also being a constant. There-
fore, for a helix, Eqs.s4d–s6d can be simplified to

ċ =
f sinu − sḟh

2/4df2a3 − a1 − a2 + sa1 − a2dcos 2cgsin 2u − ḟhfcosusa2v20 cosc + a1v10 sincd − a3v0 sinug

a2v20 cosc + a1v10 sinc + ḟhfa3 + sa1 − a2dcos 2cgsinu
, s7d

ċ =
C + G − sinuf− a2v20 cosc − a1v10 sinc + ḟh sinusa2 cos2 c + a1 sin2 cdg − a3 cosusḟh cosu − v0d

a3 cosu
, s8d

c̈ =
− ḟh sinusa1v10 cosc − a2v20 sincd + ḟh

2sa1 − a2dcosc sin2 u sinc

a3
. s9d

Since on the right-hand sides of Eqs.s7d ands8d, all quanti-
ties except forc are constants,c must also be a constant,
except for the previously solved casea1=a2, and v10=v20
=0 f1g. We recover the result reported in Ref.f27g. The con-
ditions to form a helix is then determined by the vanishing of
the numerators in Eqs.s7d–s9d.

Let us now suppose that the chain is fixed ats=0. An
extremum in the energy requires the following additional

boundary conditionssBCsd at s=L: fs]E /]u̇d ·dugs=L=0,

fs]E /]ḟd ·dfgs=L=0, and fs]E /]ċd ·dcgs=L=0. For a helix,
the first BC is equivalent to the vanishing of the numerator in
Eq. s9d so it is automatically satisfied. And note that for a
helix, we have only one undetermined constantC in the nu-
merator of Eq.s8d; one cannot require that boths]E /]ḟds=L

=0 and s]E /]ċds=L=0, since it gives overdetermined equa-
tions. The remaining BCs are

dfsLd = 0 anddcsLd = 0; s10d

or s]E/]ḟds=L = 0 anddcsLd = 0; s11d

or s]E/]ċds=L = 0 anddfsLd = 0. s12d

dcsLd=0 ordfsLd=0 mean that we need to fixcsLd or fsLd,
respectively. But sincec=const, fixingcsLd does not pro-
vide an extra equation. To realize this condition one simply

does not stick the cross section of the end tightly on a non-
deformable surface, which allows the relaxation ofc to the
required value. This is also the BC used in most force ex-
periments. In contrast, fixingfsLd leads to the constraint

ḟh=ffsLd−fs0dg /L to determine the unknown constant.
This condition is, however, difficult to realize since it re-
quires to fix bothfs0d andfsLd and may require complicate
applied torque on both ends. But note that by replacingG by
G+C, the BCss10d ands11d give exactly the same results so
they are in fact equivalent. In the same way, fixingu andf at
s=0 is in fact unnecessary for a helix.

From the shape equations and BCs we can find relations
betweenf, G sor sd, E, and cosu. The final equations are
essentially quartic equations of cosu and sinc, and so can
be solved to arbitrary accuracy. BCss11d and s12d lead to
different solutions. But in general, under the samef and G,
the solutions obtained from BCss12d always have higher
energies than the solutions found from BCss11d. It means
that the latter should be more stable or easier to realize, so
we shall focus on those solutions. Note that for a helix,z
;cosu is equal to the relative extension and this is also an
advantage of the use of Euler angles.

The solutions obtained from the shape equations may be
unstable since they may correspond to a maximum in energy.
The stablesor metastabled rod requires
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d2E =E
0

L S o
i,j=1,5

]2E
]hi]h j

dhidh jDds. 0, s13d

with h1=u, h2=c, h3= u̇, h4=ḟ, h5=ċ. The stability crite-
rion can be obtained from the positive definiteness ofS
;detu]2E /]hi]h ju. For a helix,S is a constant and can be
evaluated easily.

Figure 1 shows typical results of the force-extension rela-
tion for a helix. Curve sad, with v0=0.2, v10=1.0, v20
=0.05, a1=1, a2=5, a3=4, G=0, gives a critical case, in
which z varies smoothly with increasing force, but changes
rapidly aroundf =0.65. Curvesbd shows that increasinga3
causes a first-order transition ofz from 0.4375 to 0.9311 at
f =0.6900. In contrast, if we decreasef from the full length
sz=1d, the same rod should collapse atf =0.5528, andz
would drop from 0.7830 to 0.3025, which means that a hys-
teresis occurs. Decreasingv0 also favors the transition, as
shown in curvescd. But increasingv20 discourages the jump,
as shown in curvesdd. In contrast, increasingv10 favors the
jump. The effect ofG is more complex than expected. In
general, a largerG leads to a larger criticalf, and the helix
can exist only in a finite range off for a strong negativeG.
We find that if v0 is large enough, increasingG tends to
cause a jump, as shown in curvesed. However, for a small
v0, a small uGu disfavors the jump but a large positiveG
favors the jump. Moreover, we do not observe multiple-steps
transition as reported for a distorted helixsunder nonvanish-
ing tensile forced in Ref. f22g. We also find thatz just after
the jump is always very close to 1 for different choices of
parameters.

Multiple local minima in the energy functionE can be
observed for the rods near the critical point, as shown in Fig.
2. The bifurcating behavior ofE is responsible for the sharp
transition and the hysteresis loop. The energy-force curve is
self-crossed when the rod undergoes a transition, as shown in
curvessbd andsed. Moreover, we find that the crossover point
always gives the lowest energy under a given force. There-
fore, in principle, the jump inz should occur at the crossover

point so the hysteresis may not be observable. However, in
practice, the jump is more likely to occur at the tip of the
sharp edge of the energy-force curveswhich corresponds to
the tip of the sharp edge of the extension-force curved, since
to jump at the crossover point requires a careful equilibrium
at that point. Therefore, in fact, the jump can occur at any
point between the crossover point and the tip of the sharp
edge so these two points define a metastable regime. IfE
varies monotonously, as in curvessad and sdd, there is no
sharp transition inz.

It has been reported that a helix in a CDLC can undergo a
one-step reversible sharp transition in the relative extensionz
from an almost perfect helix to an almost straight linesz
=1d f9g, and there is a metastable regime,z=0.28 to z
=0.41 snote that the pitch anglec in Ref. f9g is the same as
p /2−u in this workd, in which upon nucleation, the helix
separates into two domains, one straight and the other helical
sz=0.28d. A free-energy model was constructed in Ref.f9g to
account for the phenomena. However, we find that our elas-
ticity model can predict these observations. We use the ra-
dius R0, z s=z0=0.19d of the free-standing helix, and the
elastic constant reported to remove three parameters in our
model and fit the other parameters to the observed data.
For an isotropic helix, where there is a total of four
parameters to fit, we can get perfect agreement with experi-
mental observations with the choicea1=a2=1.7797
310−19 N m2, a3=18.686310−19 N m2, v0=0.098 18
3105 m−1, Îv10

2 +v20
2 =0.507 323105 m−1 sthis is the form

in which v10 and v20 appear in the expressions for the iso-
tropic cased. In particular, we can predict a metastable regime
from z=0.278 to 0.413. However, it is known that there is
anisotropy in the studied helix. This gives additional degrees
of freedom in the choice of parameters, namelya1Þa2
and v10 and v20 appear separately. Using for instance
a1=3.4690310−19 N m2, a2=1.0407310−19 N m2, a3
=22.718310−19 N m2, v0=0.098 183105 m−1, v10
=0.235 903105 m−1, v20=0.449 133105 m−1. This choice
of parameters fits well the data and predicts a metastable
regime betweenz=0.31 and 0.41.

It is interesting to note that we always haveS=0 for a
free-standing helix. This is simply because the axis of a free-
standing helix can point in an arbitrary direction. For small
uf u, S is negativesexcept forv10=v20=0, whenS is always
positived. This is a consequence of our assumption thatu

FIG. 1. Relative extensionscosud vs force for a helix. The val-
ues of the parameters in the figure are:sad sdotted lined v0=0.2,
v10=1.0, v20=0.05, a1=1, a2=5, a3=4, G=0; sbd ssolid lined the
same as insad except fora3=10. The solid vertical lines indicate the
jump points for decreasing and increasingf, respectively;scd sdash-
dotted lined the same as insad except forv0=0.1; sdd sdashed lined
the same as insad except forv20=0.2; sed ssolid lined the same as in
sad except forG=0.2; sfd sshort dash-dotted lined positive part ofS
for the casesed, S.0 for f .0.8817. The same units are used forf
anda1v10

2 .

FIG. 2. Energy-force relation for a helix. The values of the
parameters in this figure are the same as in Fig. 1, but for clarity, we
do not display the data corresponding to curvescd in Fig. 1. The
same units are used for the force and the energy per unit length as
for a1v10

2 .
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=const, and means that a perfect helix is generally unstable
under a small force; in other words, it can adopt a different
shape, such as a helix slightly distorted at the endssas seen
in Ref. f9g for a helix in a CDLCd. Under a larger stretching
force S.0. These results are consistent with the conclusion
that whena1=a2, the effect of pulling a helix is to stabilize
it, whereas pushing the helix will create unstable modesf28g.
In contrast, increasingG tends to destabilize a helix.S.0
usually appears just before the critical point in the force-
extension curve, as can be seen in curvesfd of Fig. 1.

Whenv10=v20=0, we have sinc=0 or cosc=0, and the
simplest solution for the shape equations isz=1, representing
a twisted vertical rod. However,z=1 does not always give
the lowest-energy solution. We find that in general, under a
fixed stretching force and with sufficiently largeusu ss,0 in
such a cased, anda3,a2, the rod may “over collapse,” from
z=1 to a helix with finitez,1, as shown in curvesad of Fig.
3. It recovers slightly to a local maximum ofz with a further
increase inusu, and thenz decreases again;S.0 in this re-
gime so that the helix is at least in a metastable state. In
contrast, ifa3.a2, no over-collapse occurs. Some more in-
teresting phenomena occur when the rod is subjected to a

fixed compressive force. It reveals a continuous but asym-
metric elasticity whenuf u is small, but tends to have a sym-
metric and continuous behavior whenuf u is large, though the
symmetric center is not ats=0. The stronger the asymmetry
of the bending rigidities, the more obvious the phenomena is.
The results witha2@a3@a1 are displayed in curvessbd and
scd of Fig. 3. This result shows that the asymmetric bending
rigidities of a rod lead to intrinsic asymmetric elasticity,
agreeing with that obtained using the statistical mechanics
approach for the same modelf21g. It also resembles the be-
havior of a double-stranded DNA molecule at room tempera-
ture and subjected to a moderate stretching forcef11,12g.

In summary, we derive the shape equations for a uniform
elastic rod in terms of Euler angles and find the conditions to
form a helix. We provide analytic proof that the extension of
a helix under external force and torque may be subject to a
one-step sharp transition, which quantitatively agrees with
the experimental observations for a helix in CDLCf9g.
Though the shape equations we derived are very general, we
focus only on the simplest helical solutions in this work. In
practice, a stable rod exhibits many other shapesf6,7,27,28g.
Under what conditions these shapes will change from one to
another is a very interesting issue. This question has been
addressed extensively by solving the relevant kinematical
equationsf6,7,27,28g, but our stationary shape equations and
stability criterion may provide additional views on the ques-
tion. In this paper, thermal effects are not considered. Prob-
ably the most important, the configurational entropic effect,
leads to a contraction of the rod, analogous to a compressive
force for a long rod, and may make the transition behavior
smoother.
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FIG. 3. Relative extensionscosud vs supercoiling degree for a
helical rod. The values of the parameters in the figure are:sad sdot-
ted lined v0=0.2,v10=v20=0, a1=1, a2=5, a3=3, f =0.1; sbd ssolid
lined v0=0.2, v10=v20=0, a1=1, a2=100, a3=10, f =−0.1; scd
sdashed lined the same as insbd except forf =−5.
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