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Elasticity and stability of a helical flament
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We derive the general shape equations in terms of Euler angles for a uniform elastic rod with spontaneous
torsion and curvatures and subjected to external force and torque. Our results based on an analytic formalism
show that the extension of a helical rod may undergo a one-step discontinuous transition with increasing
stretching force. This agrees quantitatively with experimental observations for a helix in a chemically defined
lipid concentrate. The larger the twisting rigidity, the larger the jump in the extension. The effect of torque on
the jump is, however, dependent on the value of the spontaneous torsion. In contrast, increasing the sponta-
neous torsion encourages the continuous variation of the extension. An “over-collapse” behavior is observed
for the rod with asymmetric bending rigidity, and an intrinsic asymmetric elasticity under twisting force is

found.
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The shape and elasticity of a long thin réice., a fila- Using Euler angles to relate the fixed coordinate system to

men) is a significant issue, not only because of its widethe frame rigidly embedded in the r¢#l,15,17-20), the tan-
application in engineering and scier{dg, but also for recent gent vectort;=dr /ds of the center line position vectar of
experiments and theories which revealed that it may accours rod can be written ag={sin ¢ sin §,-cos¢ sin 8, cos6},

for some elastic properties of microscopic objects, from carwhere s is the arclength. The general configuration of an
bon nanotubef2-5] to biomateriald6—26]. The conditions elastic rod can be described by a triad of unit vectors
to form a helix from a rod and its relevant stability and {t;(s)};-; » 3 Wheret; andt, are oriented along the principal
elasticity are, in particular, interesting topics since the helixaxes of the cross sectioti(s) satisfy the generalized Frenet
is one of the simplest filamentary structures found in natureequationg1,20-23, dt;(s)/ds= —2 kEijk @i (9t(s), whereej

It has been reported that a rod under stretching may undergg the antisymmetric tensor afa;(s)} are the curvature and
a sharp multistep extension transition, from a free-standingorsion parameters. The normal of the rod can be ex-
helix to a distorted heliX22]. On the other hand, recent pressed as n={cos¢ cosy—cosésin ¢ siny, sin ¢ cosyp

experiments for a helix in a chemically defined lipid concen-
trate (CDLC) observed a one-step reversible sharp transition FC0SH OS¢ Siny, Sinf'sin "b} It follows (with X= dX/ds)

of extension from an almost perfect helix, to an almostthat w;=sinégsin Y+ COSYH, wy=sin O coSy—sin b, ws
straight line[9]. Whether the elastic model can describe such:cosa¢+¢ The linking number(Lk) and the supercoiling
observations is therefore an intriguing question. degree(o) of a rod can be expressed [dsS]

In this paper we derive the shape equations for a uniform
rod with spontaneous torsion and curvatures in terms of the
Euler angless, ¢, and . We find analytically that a helical
rod may undergo a one-step discontinuous transition under a
stretching force, which quantitatively agrees with the experiwhere Lk is the Lk in the undeformed statg=0 andI’
mental observations for a helix in a CDU®@]. We find that =0), andL is the contour length of the rod.
the larger the twisting rigidity, the larger the jump in the  Under an external torqué and a forcef (f>0 for a
extension. On the other hand, the effect of torque is deperstretching forcg along thez direction, the energy of a uni-
dent on the value of the spontaneous torsion. In contrasfprm rod can be written a20-22
increasing spontaneous torsion encourages the continuous L
variation of the extension. For the rod with asymmetric Ezf &ds )
bending rigidity we observe an “over-collapse” behavior and '
an intrinsic asymmetric elasticity under twisting.
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twist rate, respectively. Note that if the force has
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all three - T + sin [ - a,w,, COSY — A1 SIN Y+ (84

componentgsimilar to the case of fixing both ends of the e ) .
rod), the termf cosé must be replaced b§-t. We do not — 8,)cosy sin 6+ sin f(a, cos ¢+ &y sin’ ) ¢]
consider this much more complicated case because the force + a5 c0SH(COSOp + h— wo) =C, (5)

used in a force experiment is always uniaxial.

The undeformed shape of a rod is given dy=w,q, w,

=w,q, andwz=wq. These equations determine a free-standing

helix with constant curvaturé=\ w2+ w3 and consta
sion (Zwy).

ExtremizingE, we obtain the shape equations

- fsin 6+ 3[2a;— a; — @, + (a; — @,)cos 24]sin 20¢°

+[By0 COSY + Bywy'SiN ¢ — (8 — 8y)Sin 246

(ag — ay)cosisin wbz + 5in (w10 COSY — Awog SiN 1)
~ (a, — ay)cosy sir? 0'sin grdp? + ag(cos O + 1))
- é{azwzo COSi+ ajwqpSin g

+[ag+ (ay — a)cos 2lsin 6} =0, (6)

nt tor-

+ [~ agwp SiN 6+ COSO(@ywa COSY + 8w SIN 1)) where C is an integral constant. A helix require&s)=6

+ (ag + (a; — 8,)COS 2)sin O] + (8, co ¥

+a, Sir ) 6+ (a, — a,)cosysin O sin =0,

=const (we choosef as a constant henceforth for conve-

nience and ¢(s) = ¢p,s with ¢, also being a constant. There-
(4)  fore, for a helix, Eqs(4)—(6) can be simplified to

l;//_ f sin 60— ($2/4)[2ag— a, — @, + (a; — @,)cOS

2SN 26 — B[ COS B(Bpwon COSY + 83w SN 1) — agwy SiN ]

AWy COSY + 31010

o= C+ T = sin f[— a,w,o COSY — a3 w10 SiN ¢

. (D

sin g+ ¢p[ag + (ay — a,)cos 24]sin 6

+ ¢y, Sin 6(a, o ¢ + 3 SIN? )] — ag cos Ay, COS O — wp)

i ¢ SiN (83010 COS Y — Bywo0 SIN ) + d(ay — ap)cOSY Sir? O sin i

: (8)

az cosd

Since on the right-hand sides of E@g) and(8), all qu
ties except forys are constantsyy must also be a co

9)

az

anti-  does not stick the cross section of the end tightly on a non-
nstant, deformable surface, which allows the relaxationgofo the

except for the previously solved caag=a,, and w;p=w,;  required value. This is also the BC used in most force ex-

=0[1]. We recover the result reported in RE27]. The
ditions to form a helix is then determined by the vani
the numerators in Eq$7)—(9).

Let us now suppose that the chain is fixedsatO

extremum in the energy requires the following additional
boundary conditions(BCs) at s=L: [(d€/d6)-56]s =0,

con-  periments. In contrast, fixingb(L) leads to the constraint
shing Of¢h2[¢(L)—¢(0)]/L to determine the unknown constant.
This condition is, however, difficult to realize since it re-
quires to fix bothg(0) and ¢(L) and may require complicate
applied torque on both ends. But note that by repladirzy

I'+C, the BCs(10) and(11) give exactly the same results so

. An

[(9E19¢) - 3]s =0, and [(9E/ ) - Sl =0. For a heliX, they are in fact equivalent. In the same way, fixingnd at

the first BC is equivalent to the vanishing of the num

erator ins=0 s in fact unnecessary for a helix.

Eqg. (9) so it is automatically satisfied. And note that for a  From the shape equations and BCs we can find relations

helix, we have only one undetermined const@rih the nu-

betweenf, I' (or o), £ and cos. The final equations are

merator of Eq(8); one cannot require that bot€/d¢)s.  essentially quartic equations of césnd sing, and so can
=0 and(d€/d) =0, since it gives overdetermined equa- be solved to arbitrary accuracy. B@%1) and (12) lead to

tions. The remaining BCs are
6¢(L) =0 anddy(L) = 0;
or (9€ld¢)< =0 andSy(L) = 0;

or (55/01;//);L =0 anddg(L) =0.

different solutions. But in general, under the safend T,

the solutions obtained from BC&2) always have higher
(10) energies than the solutions found from BQ4). It means
(11) that the latter should be more stable or easier to realize, so

we shall focus on those solutions. Note that for a hetix,
(12) =cosd is equal to the relative extension and this is also an

advantage of the use of Euler angles.

S5Y(L)=0 or 8¢(L)=0 mean that we need to fixL) or ¢(L), The solutions obtained from the shape equations may be
respectively. But sincey=const, fixingy(L) does not pro- unstable since they may correspond to a maximum in energy.
vide an extra equation. To realize this condition one simplyThe stable(or metastablerod requires
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FIG. 1. Relative extensio(tosé) vs force for a helix. The val- ) ]
ues of the parameters in the figure afa) (dotted lin® wy=0.2, FIG. 2. I_Ener_gy-_force relation for a h_ellx_. The values of_ the
w10=1.0, 0,0=0.05,a,=1, a,=5, az=4, ['=0: (b) (solid line) the paramet(.ers in this figure are the same as in Fig. 1 bu_t for clarity, we
same as ifta) except foraz=10. The solid vertical lines indicate the d0 not display the data corresponding to cufegin Fig. 1. The
jump points for decreasing and increasigespectively(c) (dash- ~ Same lenltS are used for the force and the energy per unit length as
dotted lind the same as ifa) except forwy=0.1; (d) (dashed ling ~ fOr &1®1o
the same as ifg) except forw,,=0.2;(e) (solid line) the same as in
(a) except forl'=0.2; (f) (short dash-dotted linepositive part ofS
for the casge), S>0 for f >0.8817. The same units are used for
anda; w3,

point so the hysteresis may not be observable. However, in
practice, the jump is more likely to occur at the tip of the
sharp edge of the energy-force curfwehich corresponds to
the tip of the sharp edge of the extension-force cyrsimce
to jump at the crossover point requires a careful equilibrium
L PE at that point. Therefore, in fact, the jump can occur at any
52E:f ( > P 57Ii57lj>d5> 0, (13)  point between the crossover point and the tip of the sharp
0 \ij=1,5 77eT; edge so these two points define a metastable regimé. If
varies monotonously, as in curvéa) and (d), there is no
with 7,=6, 7,=¢, 75=0, =, 75=¢. The stability crite- ~ Sharp transition ire. .
rion can be obtained from the positive definitenessSof [t has been reported that a helix in a CDLC can undergo a
=de{E/ aman|. For a helix,S is a constant and can be one-step reversible sharp transition in the relative extersion
evaluated easily. from an almost perfect helix to an almost straight lifre

Figure 1 shows typical results of the force-extension rela=1) [9], and there is a metastable regimes0.28 to z
tion for a helix. Curve(a), with wy=0.2, w1p=1.0, w,,  =0-41(note that the pitch anglér in Ref. [9] is the same as
=0.05, a,=1, a,=5, a3=4, I'=0, gives a critical case, in 7/2-6 in this work), in which upon nucleation, the helix
which z varies smoothly with increasing force, but changesseparates into two domains, one straight and the other helical
rapidly aroundf=0.65. Curve(b) shows that increasing; ~ (2=0.28. A free-energy model was constructed in Réf.to
causes a first-order transition nffrom 0.4375 to 0.9311 at account for the phenomena. However, we find that our elas-
£=0.6900. In contrast, if we decreagdrom the full length  ticity model can predict these observations. We use the ra-
(z=1), the same rod should collapse &t0.5528, andz  dius Ry, z (=%=0.19 of the free-standing helix, and the
would drop from 0.7830 to 0.3025, which means that a hyselastic constant reported to remove three parameters in our
teresis occurs. Decreasing, also favors the transition, as model and fit the other parameters to the observed data.
shown in curve(c). But increasingw,, discourages the jump, For an isotropic helix, where there is a total of four
as shown in curvéd). In contrast, increasing;o favors the ~ parameters to fit, we can get perfect agreement with experi-
jump. The effect ofl" is more complex than expected. In mental observations with the choice,=a,=1.7797
general, a largeF leads to a larger critical, and the helix X 10N m?  a;=18.686<x 10N m?,  w,=0.098 18
can exist only in a finite range dffor a strong negativ€. X 10° m™, Vw?,+ w3,=0.507 32< 10° m™* (this is the form
We find that if wy is large enough, increasing tends to  in which w,y and w,, appear in the expressions for the iso-
cause a jump, as shown in cur@. However, for a small tropic case In particular, we can predict a metastable regime
wo, @ small|T'| disfavors the jump but a large positiié  from z=0.278 to 0.413. However, it is known that there is
favors the jump. Moreover, we do not observe multiple-stepsnisotropy in the studied helix. This gives additional degrees
transition as reported for a distorted helinder nonvanish- of freedom in the choice of parameters, namely+ a,
ing tensile forcgin Ref.[22]. We also find that just after and w,, and w,, appear separately. Using for instance
the jump is always very close to 1 for different choices ofa;=3.4690<x 107N m?,  a,=1.0407x 10N m?, a,
parameters. =22.718< 10719 N m?, wo=0.098 18<10° m™1, w10

Multiple local minima in the energy functioff can be =0.23590<10° m™, w,,=0.449 13x 10° m L. This choice
observed for the rods near the critical point, as shown in Figof parameters fits well the data and predicts a metastable
2. The bifurcating behavior of is responsible for the sharp regime betweez=0.31 and 0.41.
transition and the hysteresis loop. The energy-force curve is It is interesting to note that we always hage0 for a
self-crossed when the rod undergoes a transition, as shown free-standing helix. This is simply because the axis of a free-
curves(b) and(e). Moreover, we find that the crossover point standing helix can point in an arbitrary direction. For small
always gives the lowest energy under a given force. Therdf|, Sis negative(except forw,g=w,0=0, whenS is always
fore, in principle, the jump iz should occur at the crossover positive). This is a consequence of our assumption that
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10 fixed compressive force. It reveals a continuous but asym-
3 0.8 metric elasticity wherjf| is small, but tends to have a sym-
206 metric and continuous behavior whifhis large, though the

§ 0.4 symmetric center is not at=0. The stronger the asymmetry
E 02 of the bending rigidities, the more obvious the phenomena is.
> The results witha,> a;>a,; are displayed in curvei) and

(c) of Fig. 3. This result shows that the asymmetric bending
rigidities of a rod lead to intrinsic asymmetric elasticity,
agreeing with that obtained using the statistical mechanics
approach for the same mod&1]. It also resembles the be-
havior of a double-stranded DNA molecule at room tempera-
ture and subjected to a moderate stretching fotdel2.

In summary, we derive the shape equations for a uniform
elastic rod in terms of Euler angles and find the conditions to
=const, and means that a perfect helix is generally unstabligrm a helix. We provide analytic proof that the extension of
under a small force; in other words, it can adopt a differenta helix under external force and torque may be subject to a
shape, such as a helix slightly distorted at the eladsseen one-step sharp transition, which quantitatively agrees with
in Ref. [9] for a helix in a CDLQ. Under a larger stretching the experimental observations for a helix in CDL@].
force S>0. These results are COI’I_SiStent W|th the COHC_|_USiOh|'h0ugh the Shape equations we derived are very generaL we
that whena, =a,, the effect of pulling a helix is to stabilize focys only on the simplest helical solutions in this work. In
it, whereas pushmg .the helix will create qr_wstable m@déﬂ; practice, a stable rod exhibits many other shdpes 27,28.

In contrast, increasing’ tends to destabilize a held6>0  ynder what conditions these shapes will change from one to
usually appears just before the critical point in the force-gnother is a very interesting issue. This question has been
extension curve, as can be seen in cufiyef Fig. 1. addressed extensively by solving the relevant kinematical
- Whenw;o=wy0=0, we have sify=0 or cosy=0, and the  gquationg6,7,27,28, but our stationary shape equations and
simplest solution for the shape equationsdl, representing  stapility criterion may provide additional views on the ques-
a twisted vertical rod. Howeveg=1 does not always give tjon. In this paper, thermal effects are not considered. Prob-
the lowest-energy solution. We find that in general, under gy the most important, the configurational entropic effect,
fixed stretching force and with sufficiently large (0<0in  |eads to a contraction of the rod, analogous to a compressive
such a case anda;<a,, the rod may “over collapse,” from  force for a long rod, and may make the transition behavior
z=1 to a helix with finitez<1, as shown in curvéa) of Fig.  gmoother.
3. It recovers slightly to a local maximum afwith a further
increase ino], and thenz decreases agailg> 0 in this re- This work has been supported by the National Science
gime so that the helix is at least in a metastable state. I©€ouncil of the Republic of China under Grants No. NSC
contrast, ifaz>a,, no over-collapse occurs. Some more in-93-2112-M-032-006, and 92-2112-M-008-051, and the Natu-
teresting phenomena occur when the rod is subjected to ral Sciences and Engineering Research Council of Canada.

FIG. 3. Relative extensiofcosé) vs supercoiling degree for a
helical rod. The values of the parameters in the figure @edot-
ted I|ne w0:0.2, wm:wzo:O, al:]., a2:5, a3:3, f:01, (b) (SO“d
line) wp=0.2, w1g=wyp=0, a;=1, a,=100, az3=10, f=-0.1; (c)
(dashed lingthe same as iftb) except forf=-5.
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