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A study on thes1+1d-dimensional superrough growth processes is undertaken. We first work out the exact
relations among the local interfacial widthw, the correlation functionG, and thepth degree residual local
interfacial widthwp with p=1,2,3, . . .. Therelations obtained are exact and thus can be applied to anys1
+1d-dimensional growth processes in the continuum limit, no matter whether the interface is superrough or not.
Then we investigate the influence of the macroscopic structure formation on the scaling behavior of the
superrough growth processes. Moreover, we show analytically that the residual local interfacial widthwp

excludes only the influence of the macroscopic structure on the scaling behavior of the system and retains the
true scaling behavior originating from the stochastic nature of the system. Finally, we analyze and simulate
some superrough growth models for demonstration.
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I. INTRODUCTION

Kinetic interfacial roughening phenomena have been of
great interest for the past two decades[1–4]. Recently, much
attention has been focused on superrough growth processes
because of their peculiar interfacial morphology[5–16]: the
saturated global interfacial widths diverge faster than the sys-
tem sizeL. The most distinct feature of the superrough in-
terface is that its local scaling deviates from the usually
Family-Vicsek dynamic scaling function[17]. This anoma-
lous scaling behavior has been so widely observed numeri-
cally, analytically, and experimentally, ranging from
molecular-beam epitaxial growth[5–8], interface advance in
porous media[9], wood fracture surfaces[10], electrochemi-
cal deposition[11,12], even to brain tumor growth[13].
Among all the experimentally accessible quantities, one of
the most informative quantities is the correlation function
Gsr ,td defined askfhsx,td−hsx+r ,tdg2lL with hsx,td denoting
the interface height andk¯lL, throughout the paper, denoting
the spatial average over the whole system of lateral sizeL
(there is also an implicit ensemble average when this is
needed). Various superrough growth processes obey the fol-
lowing anomalous dynamic scaling ansatz[14]:

Gsr,td = ur u2afsur u/t1/z,ur u/Ld s1d

with the scaling function

fsur u/t1/z,ur u/Ld , 5sur u/t1/zd−2a for ur u @ t1/z,

sur u/t1/zd−2k for L @ t1/z @ ur u,
sur u/Ld−2k for t1/z @ L.

6 s2d

Here, the two independent scaling exponentsa and z are
given the names roughness exponent and dynamic exponent,
respectively. Note that the appearance of a third nonzero in-
dependent exponentk is the signature of this anomalous dy-

namic scaling ansatz[14], distinct from the usual Family-
Vicsek dynamic scaling ansatz[17].

The interface configurations of these superrough growth
processes gradually develop global mountains or valleys(for
example, see the figures in Refs.[11,12,15]), which have
great influence on the scaling behavior of the system. This
phenomenon can be easily understood: all these superrough
growth processes are associated with local interfacial orien-
tational instability but, at the same time, with fixed or peri-
odic boundary conditions restricting the development of glo-
bal interface tilt. Interestingly, various fluctuating time series
problems such as physiological signals, atmospheric variabil-
ity, currency exchange rates, and DNA sequences all show
trends in addition to the statistical heterogeneity[18]. The
generalized detrended fluctuation analysis method, proposed
to systematically exclude the effect of trends by a power
series expansion, has recently been numerically studied in
detail in Ref.[18]. Expressed in terms of the Legendre poly-
nomial, we analytically worked out the explicit expression
for the trends of fluctuating systems to any order and pointed
out the possibility of applying the generalized detrended
fluctuation analysis method to superrough interfacial rough-
ening processes in Ref.[19]. However, there still remain
some unresolved issues.(1) The spirit of the generalized de-
trended fluctuation analysis method is to eliminate the influ-
ence of the background on the scaling behavior of the sys-
tem. However, a rigorous proof is still lacking that this
detrending operation itself will not alter the true scaling be-
havior originating from the stochastic nature of the system.
(2) The explicit relations among the correlation function, the
original local interfacial width, and the residual local inter-
facial width (relative to the macroscopic structure) have not
been worked out. In this paper, we would like to work out
the above two issues in detail. We will focus on
s1+1d-dimensional superrough growth processes and explore
the subtleties in extracting the scaling exponents. The outline
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of this paper is as follows. First, the exact relations among
the local interfacial widthw, the correlation functionG, and
the pth degree residual local interfacial widthwp, with p
=1,2,3, . . .,will be derived. Subsequently, we will explore
their scaling relations and the influence of the macroscopic
structure formation on the scaling exponents. Finally, the im-
plications of the obtained results and their applicability to
various fluctuating systems will be discussed.

II. RESIDUAL LOCAL INTERFACIAL WIDTH AND
CORRELATION FUNCTION

First, let hsx,td denote the 1+1-dimensional interface
height at a certain timet and the lateral positionx in a con-
tinuous system. One realization of the local interfacial width
in an observation window, centered atx̂, of length ls!Ld is
then given by

w2sl ; x̂;td ; kfhsx,td − khsx,tdll;x̂g2ll;x̂, s3d

with k¯ll;x̂ denoting throughout this paper the spatial aver-
age over an observation window, centered atx̂, of length l.
Using a pth degree polynomial to extract the contribution
from macroscopic structure formation, the correspondingpth
degree residual local interfacial width in that observation
window of lengthl is defined as

wp
2sl ; x̂;td ; kfhsx,td − ĥpsx; x̂;tdg2ll;x̂, s4d

where thepth degree polynomialĥpsx; x̂; td is obtained from
a least squares fit tohsx,td within that observation window.
Figure 1 gives a pictorial illustration about the above related
quantities. Since the Legendre polynomialPqsxd is a polyno-
mial of degreeq and satisfies the orthogonal relations[20]

E
−1

1

dxPqsxdPq8sxd =
2

2q + 1
dq,q8, s5d

we thus choose the Legendre polynomialPq(2sx− x̂d / l) to be

the basis ofĥpsx; x̂; td; namely,

ĥpsx; x̂;td = o
q=0

p

CqPqS2sx − x̂d
l

D s6d

with the coefficient

Cq = s2q + 1dKhsx,tdPqS2sx − x̂d
l

DL
l;x̂

, s7d

obtained from the relation

]wp
2sl ; x̂;td
]Cq

= 0. s8d

To be self-contained, we listed Eqs.(4)–(7), which were de-
rived in Ref.[19]. For details of the derivation, see Ref.[19].

Now we will employ the above results to work out ex-
plicit and exact relations among the original local interfacial
width, the correlation function, and thepth degree residual
local interfacial width. From the definition ofGsr ,td and

kw2sl ; x̂; tdlL, it is straightforward to obtain the relation[16]

kw2sl ; x̂;tdlL =
1

l2
E

0

l

drsl − rdGsr,td. s9d

Subsequently, by applying Eqs.(6) and (7), it is straightfor-

ward to derive the relationkfhsx,td− ĥpsx; x̂; tdgĥpsx; x̂; tdll;x̂

=0. Thus,

wp
2sl ; x̂;td ; kfhsx,td − ĥpsx; x̂;tdg2ll;x̂

= kfhsx,td − ĥpsx; x̂;tdghsx,tdll;x̂

= kh2sx,tdll;x̂ − o
q=0

p
1

2q + 1
Cq

2. s10d

By using the definition ofw2sl ; x̂; td and Eq.(7), we then
obtain the relation betweenw2sl ; x̂; td and wp

2sl ; x̂; td as fol-
lows:

FIG. 1. (a) A typical interface configuration of
s1+1d-dimensional superrough growth processes.(b) The solid
curve represents the interfacial configurationhsxd within a local
window of sizel (! the lateral system sizeL) extracted from(a).
The dotted, dashed, and dash-dotted curves in the left, middle, and

right sections represent thepth degree polynomialĥpsxd with p=1,
2, and 3, respectively, obtained from least squares fits to the inter-
facial configuration in that local window.
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wp
2sl ; x̂;td = w2sl ; x̂;td − o

q=1

p
1

2q + 1
Cq

2. s11d

Then we will employ the above obtained results to derive the
exact relation betweenkwp

2sl ; x̂; tdlL and Gsr ,td. From Eq.
(7),

kCqù1
2 lL =

s2q + 1d2

l2
E

−l/2

l/2

dr8E
−l/2

l/2

dr9PqS2r8

l
DPqS2r9

l
Dkhsx

+ r8,tdhsx + r9,tdlL. s12d

By employing the definition ofGsr8−r9 ,td and the well-
known property ofPqsxd [20] e−1

1 Pqsxddx=0 for all qù1, we
then have

kCqù1
2 lL = −

s2q + 1d2

2l2
E

−l/2

l/2

dr8E
−l/2

l/2

dr9PqS2r8

l
DPqS2r9

l
D

3Gsr8 − r9,td

= −
s2q + 1d2

l2
E

0

l

drGsr,tdE
−l/2

l/2−r

dr9PqS2sr + r9d
l

D
3PqS2r9

l
D . s13d

Substituting Eqs.(9) and(13) into Eq.(11), we consequently
obtain the exact relation betweenkwp

2sl ; x̂; tdlL andGsr ,td as

kwp
2sl ; x̂;tdlL =

1

l2
E

0

l

drGsr,tdKpsrd s14d

with the kernel

Kpsrd = o
q=0

p

s2q + 1dE
−l/2

l/2−r

dr9PqS2sr + r9d
l

DPqF2r9

l
G .

s15d

Thus, we have succeeded in obtaining the exact relations
amongkw2sl ; x̂; tdlL, Gsr ,td, and kwp

2sl ; x̂; tdlL. The relations
obtained are exact and thus can be applied to any
s1+1d-dimensional growth processes in the continuum limit,
no matter whether the interface is superrough or not.

We will further explore the properties of the kernelKpsrd,
since they have a great influence on the scaling relations
among kw2sl ; x̂; tdlL, Gsr ,td, and kwp

2sl ; x̂; tdlL. The kernel
Kpsrd can be recast as follows:

Kpsrd = o
q=0

p Fl − s2q + 1dE
0

r

dr̂PqX1 − 2S r̂

l
D2CG . s16d

The detailed derivation of Eq.(16) from Eq. (15) is given in
Appendix A. Then, from Eq.(16) and the definition of Leg-
endre polynomialPqsxd, it is straightforward to tell that the
kernelKpsrd is a polynomial ofr with terms of odd power up
to degree 2p+1 plus a constant term. For illustration,K0srd
to K3srd are explicitly listed as follows:

K0srd = l − r ,

K1srd = 2l − 4r + 2r3/l2,

K2srd = 3l − 9r + 12r3/l2 − 6r5/l4,

K3srd = 4l − 16r + 40r3/l2 − 48r5/l4 + 20r7/l6. s17d

The most important feature of the kernelKpsrd is as follows:
with b an arbitrary positive number(including nonintegers),

E
0

l

drr2bKpsrd = 5 0 for b = 1,2, . . . ,p,

l2b+2F s− 1dpsp + 1dGsbdGsb + 1d
s4b + 2dGsb − pdGsb + p + 2dG otherwise. 6 s18d

The detailed derivation is given in Appendix B.
Now, we will apply the above obtained results to investi-

gate the scaling relations amongkw2sl ; x̂; tdlL, Gsr ,td, and
kwp

2sl ; x̂; tdlL in detail. We first rewritehsx,td as

hsx,td = hmacrosx,td + hstosx,td, s19d

in which hmacrosx,td denotes the height of the macroscopic
structure at positionx and timet, and hstosx,td denotes the
noise-induced height fluctuation relative to the macroscopic
structure. By substituting the above expression forhsx,td
into the definition ofGsr ,td, it is straightforward to obtain

Gsr,td = Gmacrosr,td + Gstosr,td s20d

with Gmacrosr ,td and Gstosr ,td denoting the contributions
from the macroscopic structure and from the noise-induced
fluctuation relative to the macroscopic structure, respectively.
Supposing the macroscopic structure to be continuous and
smooth, the termGmacrosr ,td is expected to be analytic inr.
Note thatGsr ,td is a differencecorrelation function, so one
hasGs−r ,td=Gsr ,td and Gs0,td=0. Thus, the power series
expansion ofGmacrosr ,td should contain only those terms
with even power without the constant term, i.e.,Gmacrosr ,td
=oq=1

` Â2qstdr2q. In addition, suppose thatGstosr ,td is equal to

Â2astdur u2a, with a being a positive noninteger number, dis-

ANOMALOUS SCALING OF SUPERROUGH GROWING… PHYSICAL REVIEW E 70, 036115(2004)

036115-3



tinct from the macroscopic structure. From Eq.(9), we have

kw2sl ; x̂;tdlL =
1

l2
E

0

l

drsl − rdfGmacrosr,td + Gstosr,tdg

= o
q=1

` F Â2qstd
s2q + 1ds2q + 2d

Gl2q

+ F Â2astd
s2a + 1ds2a + 2d

Gl2a. s21d

We see that the scaling behavior ofkw2sl ; x̂; tdlL is exactly
the same as that ofGsr ,td. In contrast, by employing Eq.(14)
and the above obtained most important feature ofKpsrd given
in Eq. (18), we have

kwp
2sl ; x̂;tdlL =

1

l2
E

0

l

drKpsrdfGmacrosr,td + Gstosr,tdg

= o
q=p+1

` F s− 1dpsp + 1dGsqdGsq + 1dÂ2qstd
s4q + 2dGsq − pdGsq + p + 2d

Gl2q

+ F s− 1dpsp + 1dGsadGsa + 1dÂ2astd
s4a + 2dGsa − pdGsa + p + 2d

Gl2a.

s22d

Indeed, the termssl2, l4, . . . ,l2pd in kw2sl ; x̂; tdlL due to mac-
roscopic structure formation have been successfully sup-
pressed here and, at the same time, the terml2a due to the
stochastic nature still remains. Consequently, we have rigor-
ously shown that the residual local interfacial width
kwp

2sl ; x̂; tdlL excludes only the influence of the macroscopic
structure on the scaling behavior of the system and retains
the true scaling behavior originating from the stochastic na-
ture of the system.

III. APPLICATIONS

In the following, we will apply the above obtained rela-
tions to some interfacial growth processes. First, we consider
the following interfacial growth equations in 1+1 dimen-
sions[6]:

]thsx,td = s− 1dm+1n]x
2mhsx,td + hsx,td s23d

with integermù2, wherehsx,td denotes white noise with
zero mean. By using a scaling analysis, it is straightforward
to obtain the dynamic exponentz=2m and the roughness
exponenta=s2m−1d /2. For integermù2, the roughness ex-
ponenta.1 and, thus, the interfacial growth processes de-
scribed by the above class of growth equations display su-
perroughening phenomena. The asymptotes of the
correlation functionGsr ,td in the intermediate time regime
ur uz/n! t!Lz/n and the late time regimet@Lz/n are given
by

uGsr,tduur uz/n!t!Lz/n . o
q=1

`

A2q8 t2sa−qd/zr2q + A2a8 ur u2a s24d

and

uGsr,tdut@Lz/n . o
q=1

m

B2q8 L2sa−qdr2q + B2a8 ur u2a, s25d

respectively, withL denoting the lateral system size. The
detailed derivation was given in Ref.[6]. Note that the terms
st2sa−1d/zr2,t2sa−2d/zr4, . . . ,t2sa−m+1d/zr2m−2d and
sL2sa−1dr2,L2sa−2dr4, . . . ,L2sa−m+1dr2m−2d due to the macro-
scopic structure formation in the intermediate time regime
ur uz/n! t!Lz/n and the late time regimet@Lz/n, respec-
tively, are all dominant over the true scaling termur u2a origi-
nating from the stochastic nature of the system. As we
showed in the previous section, the square of the local inter-
facial width kw2sl ; x̂; tdlL will have exactly the same
asymptotic behavior as that of the correlation function
Gsr ,td, namely,

ukw2sl ; x̂;tdlLulz/n!t!Lz/n . o
q=1

`

A2q9 t2sa−qd/zl2q + A2a9 l2a

s26d

and

ukw2sl ; x̂;tdlLut@Lz/n . o
q=1

m

B2q9 L2sa−qdl2q + B2a9 l2a. s27d

Thus, the termsst2sa−1d/zl2,t2sa−2d/zl4, . . . ,t2sa−m+1d/zl2m−2d and
sL2sa−1dl2,L2sa−2dl4, . . . ,L2sa−m+1dl2m−2d due to the macro-
scopic structure formation in the intermediate time regime
lz/n! t!Lz/n and the late time regimet@Lz/n, respec-
tively, are all dominant over the true scaling terml2a.

Since the leading anomalous terms in the intermediate and
late time asymptotes of the square of the local interfacial
width are simply polynomials ofl with even power froml2

up to l2m−2, the sm−1dth order detrending of the original

interface configuration[i.e., the subtraction ofĥm−1sx,td
=oq=0

m−1CqstdPq(2sx− x̂d / l) from hsx,td] is necessary in order
to extract the roughness exponent from the true scaling term
originating from the stochastic nature of the system. For sys-
tems obeying conventional Family-Vicsek scaling[17], sev-
eral works[21–24] in the literature have pointed out that the
typical method of measuring the roughness exponents,
i.e., log10fGsr ,td /Gsr8 ,tdg /2 log10sur u / ur8ud u t@ur uz and ur8uz

or log10fkw2sl ; x̂; tdlL / kw2sl8 ; x̂; tdlLg /2 log10sl / l8d u t@lz and l8z,
does not give reliable estimates in practical situations with
finite time, finite system size, and finite spatial resolution. In
contrast, for systems with macroscopic structure formation,
the typical method does not give correct estimates of the
roughness exponent even in the continuum limit(i.e., large
system size and large time). For systems obeying conven-
tional Family-Vicsek scaling, the detrending operation can-
not improve the deviation of the numerically estimated scal-
ing exponents from the theoretical values(due to finite size
and/or finite time effects), while for systems with macro-
scopic structure formation, the detrending operation is a
“must do” in order to get reliable estimates of scaling expo-
nents.

Next, we study the curvature model[24] in 1+1 dimen-
sions. The growth rule is given as follows.(1) A site is cho-

N.-N. PANG AND W.-J. TZENG PHYSICAL REVIEW E70, 036115(2004)

036115-4



sen randomly.(2) The freshly landed atom relaxes immedi-
ately to the site with the largest local curvaturehi−1+hi+1

−2hi among this site and its nearest neighbors. We first mea-
sure the local interfacial width and the equal-time height dif-
ference correlation function with the system sizeL=8192
sites and averaged over 20 realizations. In Fig. 2, we show
the excellent data collapse of the scaledGsr ,td / r2a vs t / rz

and kw2sl ; x̂; tdlL / l2a vs t / lz with the roughness exponenta

=3/2 and thedynamic exponentz=4. The data for the local
interfacial width are shifted downward by one unit for vis-
ibility. The nonsaturation of the scaling functions in Fig. 2
indicates that this system obeys the anomalous dynamic scal-
ing ansatz described by Eqs.(1) and (2). Since the interface
of the curvature model gradually develops a macroscopic
structure, we then numerically measure thepth degree re-
sidual local interfacial width withp=1 or 2 for the same
system size and realization number as those in Fig. 2. Figure
3 is a log-log plot of the scaledkwp

2sl ; x̂; tdlL / l2a vs t / lz with
p=1 or 2, where the data forp=2 are shifted downward by
one unit for visibility. Note that, in the continuum limit, the
first order detrending of the curvature model should be suf-
ficient to suppress the leading anomalous term and let the
residual local interfacial width retrieve the conventional
Family-Vicsek scaling, i.e., reach saturation whent@ lz.
However, for finite size and finite time,kw1

2sl ; x̂; tdlL suffers
from a long crossover before retrieving the conventional
scaling; in contrast, the transition ofkw2

2sl ; x̂; tdlL from the
transient regime to the saturated regime is much sharper, as
can be seen in Fig. 3.

Hence, to deal with systems with finite time and finite size
(as in experiments), a higher order(than the theoretical pre-
diction) detrending operation is helpful for removing the in-
fluence of macroscopic structure formation on the scaling
behaviors of superrough interfaces. To demonstrate this point
more explicitly, we measure the quantity

al1/l2,pstd ; log10S kwp
2sl1; x̂;tdlL

kwp
2sl2; x̂;tdlL

DY 2 log10S l1
l2
D

with p=1 or 2. Figure 4 shows the effective roughness ex-
ponental1/l2,pstd vs the rescaled timet / l1

z with z=4 in a semi-
logarithmic plot. Note that the result forp=2 is shifted up-
ward by 0.5 units for visibility. The simulation is done with a
lateral system sizeL=8192 and averaged over 12 runs. The
results indicate that the value ofal1/l2,p=1

is largely influenced
by the finite time effect and has not reached saturation even
at t.103l1

z, which is 4 096 000 even for a quite small value
of l1=8. In contrast, the value ofal1/l2,p=2

reaches saturation
at t, l1

z as expected and the finite time effect is negligible.
For completeness, we also study the finite size effect. Figure
5 shows the effective roughness exponenta8/16,p=2 vs time t
with several different values ofL in a semilogarithmic plot.
The simulation is done with realizations equal to 60, 20, and

FIG. 2. The log-log plots of Gsr ,td / r2a vs t / rz and
kw2sl ; x̂; tdlL / l2a vs t / lz with a=3/2 and z=4 for the
s1+1d-dimensional curvature model. The solid and dashed lines
with the slopes 3/4 and 1/4, respectively, are merely drawn for a
guide to the eye.

FIG. 3. The log-log plots of kw1
2sl ; x̂; tdlL / l2a and

kw2
2sl ; x̂; tdlL / l2a vs t / lz with a=3/2 and z=4 for the

s1+1d-dimensional curvature model.

FIG. 4. The effective roughness exponental1/l2,p
std vs the res-

caled time t / l1
z with z=4 in a semilogarithmic plot for the

s1+1d-dimensional curvature model. Note that the result forp=2 is
shifted upward by 0.5 units for visibility.
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5 for the lateral system sizeL=210, 212, and 214, respectively.
The results indicate that the finite size effect does not have a
significant influence on the values of the effective roughness
exponentsal1/l2,p, as can be seen in Fig. 5. In other words,
the residual local interfacial widthwp is used to extract the
true scaling originating from the stochastic nature of the sys-
tem by discarding the influence of macroscopic structure.
When measuring the scaling exponents of superrough inter-
faces in experiments, the first, second, etc., order detrending
procedures should be performed in turn until the results are
stable, i.e., independent of the finite time effect.

IV. CONCLUSION

In conclusion, we undertook a study on
s1+1d-dimensional superrough growth processes. We first
worked out the exact relations among the local interfacial
width w, the correlation functionG, and thepth degree re-
sidual local interfacial widthwp with p=1,2,3, . . . .. The
relations obtained are exact and thus can be applied to any
s1+1d-dimensional growth processes in the continuum limit,
no matter whether the interface is superrough or not. Then,
an investigation of the influence of the macroscopic structure
formation on the scaling behavior of the superrough growth
processes is undertaken. In addition, we explicitly showed
that the residual local interfacial widthwp excludes only the
influence of the macroscopic structure on the scaling behav-
ior of the system and retains the true scaling behavior origi-
nating from the stochastic nature of the system. Finally, we
studied a class of linear growth equations Eq.(23) and a
superrough growth model(the curvature model) for demon-
stration.
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APPENDIX A

Equation(15) can be first recast as follows:

Kpsrd = o
q=0

p Fs2q + 1dE
−l/2

l/2

dr9PqS2sr + r9d
l

DPqS2r9

l
D

− s2q + 1dE
l/2−r

l/2

dr9PqS2sr + r9d
l

DPqS2r9

l
DG

; o
q=0

p

fAq − Bqg. sA1d

From the definition of the Legendre polynomialPqsxd and
the orthogonal relation[20]

E
−1

1

xnPqsxddx= 5 0 for n = 0,1, . . . ,q − 1,

2S q!

s2q + 1d!! D for n = q, 6
sA2d

it is straightforward to obtain

Aq = l .

The derivation ofBq is much more complicated. First, by
a change of variabler̃ ;1/2−r9 / l, we have

Bq = s2q + 1dlE
0

r/l

dr̃Pq„1 + 2sr/ld − 2r̃…Pqs1 − 2r̃d.

sA3d

Subsequently, by substituting the known relation[20]

Pqs1 + 2xd = o
m=0

q Sq

m
DSq + m

m
Dxm sA4d

into the above equation and with some tedious calculation,
we obtain

Bq = s2q + 1dlo
n=0

2q
sr/ldn+1

sn + 1d!

3Fo
m=0

n
s− 1dmsq + n − md!sq + md!

sq − n + md!sq − md!m!sn − md!G
= s2q + 1dlo

n=0

2q
sr/ldn+1

sn + 1d!
tns2q + 1,qd, sA5d

where tn is the Chebyshev polynomial[20]. By employing
the property

FIG. 5. The effective roughness exponenta8/16,2std vs time t
with several different lateral system sizesL in a semilogarithmic
plot for the s1+1d-dimensional curvature model.
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t2n+1s2q + 1,qd = 0,

t2ns2q + 1,qd = s− 1dns2nd!S2n

n
DSq + n

2n
D ,

we then obtain

Bq = s2q + 1dlo
n=0

q
s− 1dn

2n + 1
Sq

n
DSq + n

n
DS r

l
D2n+1

.

Finally, by using the relation given in Eq.(A4), Bq is then
recast as

Bq = s2q + 1dE
0

r

PqX1 − 2S r̂

l
D2Cdr̂. sA6d

Consequently, the kernelKpsrd is derived as Eq.(16).

APPENDIX B

Here, we will derive the most important feature of the
kernelKpsrd, Eq. (18). First, with b being a positive number
and substituting Eq.(16) for Kpsrd, we have

E
0

l

drr2bKpsrd = o
q=0

p F l2b+2

2b + 1
− s2q + 1d

3E
0

l

dr̂E
r̂

l

drr2bPqX1 − 2S r̂

l
D2CG

= o
q=0

p F l2b+2

2b + 1
− S 2q + 1

2b + 1
Dl2b+1

3E
0

l

dr̂PqX1 − 2S r̂

l
D2C + S 2q + 1

2b + 1
D

3E
0

l

dr̂r̂2b+1PqX1 − 2S r̂

l
D2CG

; o
q=0

p

fÃq + B̃q + C̃qg. sB1d

With a change of variabler̃ ;1−2sr̂ / ld2, Ãq, B̃q, andC̃q can
be recast as follows:

Ãq =
l2b+2

2b + 1
,

B̃q = − S l2b+2

2b + 1
DS2q + 1

2Î2
DE

−1

1

dr̃
Pqsr̃d
Î1 − r̃

,

C̃q = S l2b+2

2b + 1
DS2q + 1

4
DE

−1

1

dr̃S1 − r̃

2
Db

Pqsr̃d. sB2d

Next, by employing the relation[20]

E
−1

1

dr̃
Pqsr̃d
Î1 − r̃

=
2Î2

2q + 1
,

we then haveÃq=−B̃q= l2b+2/ s2b+1d and thus

E
0

l

drr2bKpsrd = o
q=0

p

C̃q

=
1

4
S l2b+2

2b + 1
DE

−1

1

dr̃S1 − r̃

2
Db

3Fo
q=0

p

s2q + 1dPqsr̃dG
=

l2b+2sp + 1d
2b+2s2b + 1dE−1

1

dr̃s1 − r̃db−1

3fPpsr̃d − Pp+1sr̃dg; sB3d

here we have used the relation[20]

o
q=0

p

s2q + 1dPqsr̃d =
sp + 1dfPpsr̃d − Pp+1sr̃dg

1 − r̃

in deriving the last expression in Eq.(B3).
(i) For b=1,2, . . . ,p, by employing the orthogonal rela-

tion for the Legendre polynomial given in Eq.(A2), we eas-
ily obtain e−1

1 dr̃s1−r̃db−1Pp sor p+1dsr̃d=0 and, thus,
e0

l drr2bKpsrd=0.
(ii ) For any positive number(including nonintegers) b

Þ1,2, . . . ,p, by using the relation[20]

E
−1

1

fsr̃dPpsr̃ddr̃ =
1

2pp!
E

−1

1 dpfsr̃d
dr̃p s1 − r̃2dpdr̃, sB4d

it is straightforward to obtain

E
−1

1

dr̃s1 − r̃db−1Ppsr̃d =
s− 1dp2bfGsbdg2

Gsb − pdGsb + p + 1d
sB5d

with G denoting the Gamma function[20]. Consequently, we
have

E
0

l

drr2bKpsrd = l2b+2F sp + 1d
2b+2s2b + 1dG

3E
−1

1

dr̃s1 − r̃db−1fPpsr̃d − Pp+1sr̃dg

= l2b+2F s− 1dpsp + 1dGsbdGsb + 1d
s4b + 2dGsb − pdGsb + p + 2dG .

sB6d
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