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We take a detailed study on the restricted solid-on-solid(RSOS) model with finite nearest-neighbor height
differenceS. We numerically show that, for all finite values ofS, the system belongs to the random-deposition
(RD) class in the early time stage and then crossovers to the Kardar-Parisi-Zhang(KPZ) class. We find that the
crossover time scales asSz with the crossover exponentz=2.06. Besides, we analytically study the RSOS
model by grouping consecutive sites into local configurations to obtain the Markov chain describing the time
evolution of the probability distribution of these local configurations. For demonstration, we use the RSOS
model with S=2 as an explicit example and calculate the correlation functions and even scaling exponents
based on the obtained probability distribution of local configurations. The results are very consistent with those
obtained from direct simulation of the RSOS model.
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I. INTRODUCTION

Recently, there have been plenty of studies on the phe-
nomenon of kinetic roughening of growing interfaces[1–4].
The comprehension of this phenomenon plays an important
role in understanding and controlling a lot of interesting
growth processes. Both numerical simulations and real ex-
periments have observed that a large variety of growth pro-
cesses can be divided into only a few universality classes
[1–4]. Each class is characterized by the specific values of
the two scaling exponents: the roughness exponenta and the
growth exponentb. Namely, withhsx ,td denoting the sur-
face height at positionx and timet starting from a flat sub-
strate, the surface width satisfies the dynamic scaling ansatz
[5]

wsL,td = hkfhsx,td − h̄stdg2lj1/2 , LafS t

LzD , s1d

whereL is the lateral system size and the scaling function
fsyd,yb for y!1 and fsyd,constant fory@1 with the dy-
namic exponentz=a /b. Here and throughout this paper, the
overbar denotes spatial average and the angular brackets de-
note statistical ensemble-average. The correlation function
obeys similar dynamic scaling

Gsr ,td = kfhsx + r ,td − hsx,tdg2l , r2agS t

rzD , s2d

wherer = ur u and the scaling functiongsyd,y2b for y!1 and
gsyd,constant fory@1.

Note that the important features of growing surfaces usu-
ally can be analyzed and described by some microscopic
rules. A number of discrete models for growth phenomena
have been proposed and studied successfully by computer
simulations. On the other hand, evolution of the growing

surface is also, in the coarse-grained sense, described by a
continuum equation with additive noise[1–4]. It is generally
believed that there is a correspondence between discrete
growth models and continuous stochastic Langevin equa-
tions. The most common way of establishing the link is to
compare the obtained values of the scaling exponents. The
other way is to derive the continuum equation from a given
discrete model analytically[6,7]. However, the higher order
effects are inevitably neglected in these approaches[6,7].
Thus, we expect that the crossover behavior, if any, in the
discrete models would be obscure in the corresponding con-
tinuum equation obtained from these analytical approaches.
Since every approach has its own merit and limitation, any
alternative analytical approach to study these growth models
will be of particular interest.

Among the various discrete growth models, the restricted
solid-on-solid (RSOS) model with finite nearest-neighbor
height differenceS, proposed by Kim and Kosterlitz[8], has
drawn much attention for its simplicity and wide applicabil-
ity, such as the far-from-equilibrium crystal growth at low
temperatures[1–4]. For instance, a recent experiment shows
that the(001)-surface morphology of GaAs annealed at fixed
temperature and pressure can be well explained by the an-
nealed version of the RSOS model by including the next-
nearest-neighbor interaction[9]. The study of(001)-oriented
GaAs surfaces is technologically important, since it is the
starting point for fabricating the majority of high-speed op-
toelectronic devices and the roughness of surfaces may dete-
riorate the optical properties of devices. Moreover, even the
chemically induced surface roughening occurring through
the exothermic release of reaction energy in catalytic reac-
tions on the substrate can also be described in the framework
of the RSOS model[10]. In the course of roughening via
exothermic catalytic reactions, the reaction energy is trans-
ferred to substrate atoms. Thus, it may induce the substrate
atoms out of their original sites and consequently create va-
cancies. Since the roughness of a practical catalyst may ef-
fect its global activity, the understanding of such roughening*Corresponding author; email address: wjtzeng@mail.tku.edu.tw
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phenomena may guide the ways for designing new catalysts
and controlling catalytic processes.

It is generally believed that the RSOS model, in the long
time and large distance limit, belongs to the universality
class of the Kadar-Parisi-Zhang(KPZ) equation[11]. Indeed,
the continuum limit of the RSOS model withS=1 has been
analytically shown[12,13] to belong to the class of the KPZ
equation. However, there still lacks extensive studies on the
general RSOS model with any possible finiteS. The single-
step model[14], closely related to the RSOS model, is also
believed to belong to the KPZ universality class. Both the
single-step model and thesS=1d RSOS model exhibit fast
convergence into the KPZ scaling regimes in numerical
simulations. Since the height difference between two neigh-
boring sites can only assume two values(+1 or −1), the
single-step model is mathematically more tractable[15]. In
particular, this model can be mapped onto some extensively
studied models in equilibrium or nonequilibrium statistical
mechanics, such as the kinetic Ising model[14,16], the
asymmetric simple exclusion process[17], and the six-vertex
model[14,15]. Some properties of the single-step model can
thus be acquired analytically from the exact results of these
well-studied models[15,16]. In contrast, less analytical study
has been conducted on the RSOS model. In addition, from
the experimental point of view, much interest is focused on
the very early time aspects of growing interfaces as encoun-
tered in actual molecular-beam-epitaxial growth. This moti-
vates us to take an extensive study on the general RSOS
model with any possible finite nearest-neighbor height differ-
enceS.

The outline of this paper is as follows. In Sec. II, the
deposition rules of the RSOS model is described and we take
an extensive numerical study on the early time behavior of
the RSOS model with any finiteS. In Sec. III, the Markov
chain to describe the time evolution of the probability distri-
butions for the local configurations is analytically studied
and we use the RSOS model withS=2 as an explicit ex-
ample. Finally, a summary is given in Sec. IV.

II. INITIAL-STAGE GROWTH PHENOMENA

We first give the growth rules of the RSOS model as
follows:

(1) Choose a site randomly(say, sitex) among allL sites.
(2) If ufhsx,td+1g−hsx−1,tduøS and ufhsx,tg+1d−hsx

+1,tuøS, addhsx,td by 1 and addDts=1/Ld to the time.
(3) Otherwise, do nothing.
(4) Repeat the whole process.

Note that, in the original paper of the RSOS model, the au-
thors suggested that the average height of the surface, instead
of the number of growth attempts, should be adopted as the
simulation time[8].

Since the growth rules of the RSOS model have a param-
eter S, one may wonder how this parameter affects the be-
havior of the surface of the RSOS model. In the original
paper of the RSOS model[8], the authors found that for
small S, the scaling exponentb is unchanged. Thus they
claimed that the behavior of the surface of the RSOS model
is independent of the parameterS. However, if one tries to

extendS to infinity, the RSOS model reduces to the random
deposition(RD) model. The scaling exponentb of the RD
model in s1+1d-dimensions is 1/2, quite different from that
of the sS=1d RSOS model, which is believed to be in the
KPZ university class and should have the value 1/3 ins1
+1d-dimensions. Moreover, we know that the surface width
of the sS=1d RSOS model with a substrate of finite size will
saturate as the growth time is large enough. This is not the
case of the RD model. The surface width of the RD model
increases with the growth timew, t1/2 and there is no satu-
ration behavior. In this section, we concentrate on the initial-
stage growth behavior and look into how the scaling expo-
nentb changes its value. In Fig. 1, we show the results from
the computer simulations of the RSOS model in
s1+1d-dimensions with different height difference restriction
S in the early-time stage. We observe that the surface width
scales with time(which is the average surface height here) as
w,hmean

1/2 at the very early stage and then crossovers to an-
other scalingw,hmean

1/3 . For illustration, we draw straight
lines with the slope equal to 1/2 and 1/3, respectively, along
the data to make the crossover more obvious. The intersec-
tion of these straight lines defines the transition point. It in-
dicates that the RSOS model behaves like the RD model in
the very early stage of the growth process and, after a dura-
tion of time, it “feels” the restrictions on the height differ-
ences and turns into the KPZ universality class. We numeri-
cally find that the surface width in the initial-stage growth
process satisfies the following dynamic scaling ansatz:

wsS,hmeand = twsSdfShmean

thsSd
D s3d

with

FIG. 1. The log-log plot of the surface width versus the mean
surface height in the initial-stage growth process of the general
s1+1d-dimensional RSOS model with the height difference restric-
tion S=1,4,16,64,256, the system sizeL=4096 sites, and aver-
aged over 1000 independent runs.
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fShmean

thsSd
D , Hfhmean/thsSdg1/2 for hmean! thsSd,

fhmean/thsSdg1/3 for thsSd ! hmean! Lz,

s4d

in which thsSd and twsSd denote the transition mean height
and the transition surface width, respectively. The inset of
Fig. 2 gives the scaling plot, which shows excellent data
collapse of the original curves from Fig. 1. In Fig. 2, we also
show the scaling relation between the transition mean height
thsSd andS: thsSd,Sz with z<2.06. Next, we give a Flory-
type scaling argument to explain the origin of this scaling
behavior. Recall that the RSOS model is just the RD model
with restrictions on the height differences. In the beginning
of the growth process, there is almost no chance for the
neighboring-site height differences larger thanS and the be-
havior of the surface is thus similar to that of the RD model.
From the properties of the RD model, we know that the
surface width at this stage increases with time(which is the
average surface height here) according tow,hmean

1/2 . When
the surface width is about the valueS, the surface will “feel”
the restrictions and crossover to the KPZ class. So we get a
relation between the transition mean height andS, S

,thsSd1/2. Thus, the scaling exponentz=2. The numerical
value ofz obtained from the simulation is indeed very close
to 2. In a word, the RSOS model with any finite nearest-
neighbor height differenceSbelongs to the KPZ universality
class after a long transient time characterized by the scaling
exponentz and the RSOS model withS=` reduces to the
RD model. In comparison, a recent study[18] shows that the
RSOS model with any finite hopping distancel0 also belongs
to the KPZ universality class and the RSOS model withl0
=` belongs to the universality class of the Villain-Lai-Das
Sarma equation[19].

III. LOCAL CONFIGURATIONS AND PROBABILITY
DISTRIBUTIONS

In the following, the local configurations of the RSOS
model and their probability distribution will be investigated
in detail. We define the local configurations through the
height differences between nearest neighbors, because the
absolute height of each site keeps increasing and only the
height differences are relevant in determining the success of
a growth attempt. By juxtaposing two consecutive height dif-
ferences, we get a three-site local configuration defined as
Kx;hhsx−1d−hsxd ,hsxd−hsx+1dj for the one centered atx.
The three-site local configurations have the property that for
each successful growth at sitex, three and only threelocal
configurations(Kx−1, Kx, and Kx+1) change to new states
while all the others remain intact. In this way, the growth
problem can be redefined in terms of the finite-state automata
[20]. Consideration extended to local configurations with
more sites is straightforward.

Next, we will use thesS=2d RSOS model as an explicit
example for demonstration. We will analytically obtain the
steady-state probability distributions of the local configura-
tions and then calculate the correlation functions and even
the scaling exponents based on the obtained probability dis-
tributions of local configurations. For thesS=2d RSOS
model, the height difference between consecutive sites can
assume the values +2, +1, 0, −1, or −2 and thus there are 25
possible three-site local configurations. The 25 possible local
configurations are listed in Table I.Pisx,td is defined as the
probability of the local configurationKx to be of typei at
time t. Since periodic boundary conditions are implemented,
the RSOS model is invariant under spatial translations.
Therefore,Pi’s are independent of the position and we can
drop the argumentx. Thus,Pistd may be viewed as the prob-
ability of the local configuration, centered atany site, to be

FIG. 2. The log-log plot of the transition mean height,thsSd,
versus the restriction on the nearest-neighbor height differenceS of
the general RSOS model ins1+1d-dimensions. The straight line is
obtained by least squares fit to the data with the crossover exponent
equal to 2.06. The inset shows excellent data collapse of the curves
from Fig. 1. It confirms that the scaling behavior of the general
RSOS model crossovers from the RD regime to the KPZ regime.

TABLE I. The 25 possible three-site local configurations of thesS=2d RSOS model.sL ,Rd denotes
fhsx−1d−hsxd ,hsxd−hsx+1dg with the center of the local configuration at sitex.

Type sL ,Rd Type sL ,Rd Type sL ,Rd Type sL ,Rd Type sL ,Rd

1 s2,2d 2 s2,1d 3 s2,0d 4 s2,−1d 5 s2,−2d
6 s1,2d 7 s1,1d 8 s1,0d 9 s1,−1d 10 s1,−2d
11 s0,2d 12 s0,1d 13 s0,0d 14 s0,−1d 15 s0,−2d
16 s−1,2d 17 s−1,1d 18 s−1,0d 19 s−1,−1d 20 s−1,−2d
21 s−2,2d 22 s−2,1d 23 s−2,0d 24 s−2,−1d 25 s−2,−2d
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of type i at time t. If we know the equations governing the
dynamics of all thePi’s, we can study the time evolution and
find the asymptotic probability distribution of the local mor-
phology of the system.

Due to the left-right symmetry, we have the following
relations among thePi’s:

P1 = P25, P2 = P20, P3 = P15, P4 = P10, P6 = P24,

P7 = P19, P8 = P14, P11 = P23, P12 = P18, P16 = P22.

s5d

We may further reduce the number of independent variables
by employing the translational symmetry, which gives the
following relations:

P2 + P3 + P4 + P5 = P6 + P11 + P16 + P21,

P4 + P6 + P8 + P9 = P2 + P12 + P16 + P17. s6d

The conservation of probability gives usoiPi =1, which can
be reduced to the following equation with the help of Eq.(5):

2sP1 + P2 + P3 + P4 + P6 + P7 + P8 + P11 + P12 + P16d + P5

+ P9 + P13 + P17 + P21 = 1. s7d

Now we are ready to derive the dynamic equations. The
time evolution of the probabilities for local configurations
can be described as a Markov process. If we knowhPistdj,
the values of the probabilities for local configurations at time
t, the probabilities after a single growth attempthPist+Dtdj
can be derived based on the growth rules and the mean-field
approximation. Let us begin from the master equation

Nist + Dtd = Nistd + o
iÞ j

fWjistd − Wijstdg, s8d

whereNistd denotes the abundance of local configuration of
type i at timet with Nistd=LPistd andWijstd is thetransition
probability of the local configuration from typei to type j for
a durationDt=1/L at timet. The transition rules are listed in
Table II. SinceKx−1 andKx+1 are also affected by a success-
ful growth at sitex, we need to know the probability distri-
butions for the combinations ofKx−1, Kx, and Kx+1. Such
information should be provided by the probabilities of four-
site local configurations. Carrying on such exact analysis, we
will face an unlimited input of local configurations of larger
sizes and the mathematics will become intractable. Thus, we
have to make the mean-field approximation: assuming that
the consecutive local configurations are mixed randomly ac-
cording to their abundance.

This idea is further supported by simulation results in
Tables III and IV, as we will explain below. To estimate the
value of the roughness exponenta, we introduce

ar1/r2
=

1

2

lnhGsr1d/Gsr2dj
lnsr1/r2d

s9d

with 0, r1, r2!L and t→`. For a random-walk interface
with periodic boundary conditions the growth exponenta
has been shown to be 1/2[21]. Except for the periodic
boundary conditions, the height differences at difference

places in a random-walk interface are statistically indepen-
dent and we expectar1/r2

to be very close to 1/2 for any
r1, r2!L. From the growth rules of the RSOS model, we
also expect that the correlations of the height differences are
mainly of short ranges and therefore the values ofar1/r2

TABLE II. Rules of changes of local configurations of the
sS=2d RSOS model when an attempt of growth on sitex is made.
Kx−1, Kx+1, andKx will change to new states simultaneously accord-
ing to the given rules. Note that for each givenKx, there are five
possibilities forKx−1 andKx+1, respectively.

Kx−1 Kx Kx+1 Kx−1 Kx Kx+1

1→2 6→1 1→2 11→6

6→7 7→2 6→7 12→7

11→12 2→6 8→3 11→12 3→7 13→8

16→17 9→4 16→17 14→9

21→22 10→5 21→22 15→10

1→2 16→11 1→2 21→16

6→7 17→12 6→7 22→17

11→12 4→8 18→13 11→12 5→9 23→18

16→17 19→14 16→17 24→19

21→22 20→15 21→22 25→20

2→3 6→1 2→3 11→6

7→8 7→2 7→8 12→7

12→13 7→11 8→3 12→13 8→12 13→8

17→18 9→4 17→18 14→9

22→23 10→5 22→23 15→10

2→3 16→11 2→3 21→16

7→8 17→12 7→8 22→17

12→13 9→13 18→13 12→13 10→14 23→18

17→18 19→14 17→18 24→19

22→23 20→15 22→23 25→20

3→4 6→1 3→4 11→6

8→9 7→2 8→9 12→7

13→14 12→16 8→3 13→14 13→17 13→8

18→19 9→4 18→19 14→9

23→24 10→5 23→24 15→10

3→4 16→11 3→4 21→16

8→9 17→12 8→9 22→17

13→14 14→18 18→13 13→14 15→19 23→18

18→19 19→14 18→19 24→19

23→24 20→15 23→24 25→20

4→5 16→1 4→5 11→6

9→10 7→2 9→10 12→7

14→15 17→21 8→3 14→15 18→22 13→8

19→20 9→4 19→20 14→9

24→25 10→5 24→25 15→10

4→5 16→11 4→5 21→16

9→10 17→12 9→10 22→17

14→15 19→23 18→13 14→15 20→24 23→18

19→20 19→14 19→20 24→19

24→25 20→15 24→25 25→20

CHIEN, PANG, AND TZENG PHYSICAL REVIEW E70, 021602(2004)

021602-4



should converge to 1/2 for increasingr1 and r2 under the
condition r1,r2!L. As illustrated in Table III, the conver-
gence ofa is indeed very fast and the deviation is within
15% even for the lowest possible values ofr1 and r2. To
justify our conjecture for the range of the correlations, we
also measure the height-difference correlations, defined as

CDhsrd = kfhsx + rd − hsx + r − 1dgfhsxd − hsx − 1dgl.

s10d

The correlation of the height differences is indeed mainly
from the interactions of the nearest neighbors, as illustrated
in Table IV.

The flow equations governing the evolutions of thePi’s
are derived from the general formula Eq.(8). After we write
down the form of eachWij with the help of Table II and
collect the nonvanishing terms, we obtain the whole set of
flow equations forhPistd , ∀ ij. The explicit expressions of
these flow equations are given in the Appendix. We may
study the stationary behavior of these equations by setting
DPistd/Dt =0,∀ i. The asymptotic solution obtained by
solving the set of the stationary equations with the help of
Eqs.(6) and (7) are listed in Table V. In that table, we also
list the numerical results obtained from computer simulation
of the sS=2d RSOS model. Comparing these two results, we
see that our method gives quite accurate predictions of the
probability distribution for the local configurations of the

sS=2d RSOS model and the relative deviation is within 6%.
From the obtained results, we are able to calculate the

correlation function. For example,

Gsr = 1,t → `d = o
i

Pist → `dhfhsx + 1d − hsxdgij2,

s11d

wherefhsx+1d−hsxdgi denotes the quantity for the local con-
figuration of typei. For the value ofGsr ù3,t→`d, one may
“augment” each type of local configuration with their pos-
sible neighbors according to relative probabilities in the
spirit of the mean-field approximation. Then, we can build a
new set of local configurations with larger sizes and obtain
the values ofGsr ù3,t→`d. We may proceed to obtain the
growth exponentar1/r2

, defined in Eq.(9). The values of
ar1/r2

from the analytical calculation and from the direct
simulation of thesS=2d RSOS model are both listed in Table
VI for comparison. Note that, even with the device of “aug-
mentation” used in analytical calculations ofa3/2 and a4/3,
the results are still quite close to those from direct simulation
of the sS=2d RSOS model. The results from analytical cal-
culations and those from computer simulations both show
the tendency thatar1/r2

converges toward 1/2. Subsequently,
by iteration of Eq.(8) from t=0, we can obtain the time

TABLE IV. Simulation results of the height-difference correla-
tions CDhsrd defined in Eq.(10) for the sS=2d RSOS model with
L=4000 sites,t=53105 monolayers, and averaged over 600 inde-
pendent runs.

r 1 2 3 4

CDhsrd 0.220 0.0654 0.0293 0.0165

TABLE III. Simulation results of the exponentar1/r2
defined in

Eq. (9) for the sS=2d RSOS model withL=4000 sites,t=53105

monolayers, and averaged over 600 independent runs.

a2/1 a4/2 a8/4 a16/8 a32/16

0.572 0.5572 0.539 0.522 0.509

TABLE V. The steady state probability distribution for the local configurations of thesS=2d RSOS model.
The data are obtained from solving the steady state solution of Eqs.(12) to (26) and from direct computer
simulations of thesS=2d RSOS model withL=8000 sites,t=105 monolayers, and averaged over 500 inde-
pendent runs.

P1 P2 P3 P4 P5

Steady state solution 0.0510 0.0401 0.0339 0.0320 0.0513

Simulation 0.0542 0.0412 0.0338 0.0321 0.0493

P6 P7 P8 P9 P10

Steady state solution 0.0479 0.0397 0.0357 0.0406 0.0320

Simulation 0.0489 0.0391 0.0353 0.0390 0.0321

P11 P12 P13 P14 P15

Steady state solution 0.0453 0.0392 0.0377 0.0357 0.0339

Simulation 0.0447 0.0385 0.0379 0.0353 0.0338

P16 P17 P18 P19 P20

Steady state solution 0.0386 0.0383 0.0392 0.0397 0.0401

Simulation 0.0379 0.0376 0.0385 0.0391 0.0412

P21 P22 P23 P24 P25

Steady state solution 0.0253 0.0386 0.0453 0.0479 0.0510

Simulation 0.0249 0.0379 0.0447 0.0489 0.0542
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evolution ofPi’s (the probability distributions for local con-
figurations) and then perform the scaling plot ofGsr ,td / r2a

versust / rz to estimate the dynamical exponentz. Figure 3
shows the excellent data collapse ofGsr =1,td and Gsr
=2,td for a2/1=0.558 andz=2−a2/1=1.442. We do not in-
cludeGsr ,td with r .2 in the scaling plot of Fig. 3, since the
values ofGsr ,td with r .2 are obtained through the opera-
tion of “augmentation” in our mean-field approximation and
thus assume their saturation values as soon as all thePistd’s
reach saturations. Solely from the local configurations of the
RSOS model, we have successfully obtained the growth ex-
ponentsa andz. In this way, we demonstrate the effective-
ness of this approach for studying interfacial roughening
phenomena.

IV. CONCLUSION

Recently, there have been plenty of studies on the phe-
nomenon of kinetic roughening of growing interfaces, such
as advances of bacterial colonies, electrochemical deposi-
tion, flameless fire fronts, and molecular-beam-epitaxial
growth [1–4]. The comprehension of this phenomenon plays
an important role in understanding and controlling a lot of
interesting growth processes and thus is technologically im-
portant. For example, the development of thin film roughness
of the optoelectronic devices has great influence on their op-

tical properties due to the increasing number of the scattering
centers. Among the various discrete growth models, the
RSOS model with finite nearest-neighbor height difference
S, proposed by Kim and Kosterlitz, has drawn much atten-
tion for its simplicity and wide applicability. It is believed
that this model belongs to the KPZ universality class in the
continuum limit. Due to the simplicity of its growth algo-
rithm, it has been used as a template for modeling many
physical and chemical processes, e.g., the surface roughening
via exothermic catalytic reactions on the substrate.

However, the past studies in the literature all focus on the
RSOS model withS=1. Thus, we are motivated to take a
detailed numerical study on the RSOS model with arbitraty
nearest-neighbor height differenceS. We numerically show
that, for all finite values ofS, the system belongs to the RD
class in the early time stage and then crossovers to the KPZ
class. We find that the crossover time scales asSz with the
numerically measured crossover exponentz=2.06. Then, a
solid physical argument is given to explain the crossover
phenomenon and the value of the crossover exponent. This is
exactly the origin of the so-called “intrinsic width” in the
very early time stage of the growth. Our argument can be
extended to explain the origin of the intrinsic width in other
stochastic growth models such as the Family model[22], the
Wolf-Villain model [23], and the Das Sarma-Tamborenea
model [24], etc. Thegeneralizationto higher dimensions is
straightforward and we believe that the crossover exponent
z=2 is independent of dimensionality.

Besides, we propose an alternative analytical approach to
study the local stochastic growth models, by grouping con-
secutive sites into local configurations and then deriving the
time evolution of the probability distribution of these local
configurations. For demonstration, we use the RSOS model
with S=2 as an example and explicitly obtain the probability
distribution of local configurations. Based on the obtained
results, we then derive the correlation functions and even the
scaling exponentsa and z, which are consistent very well
with those obtained from direct simulation of the RSOS
model or the KPZ equation. Note that the values of
Gsr .2,td are obtained through the operation of “augmenta-
tion” in our mean-field approach and thus should not be used
to obtain the dynamics of the system. Only with the infor-
mation ofGsr =1,td andGsr =2,td, we are able to determine
the values of the scaling exponents, which fully confirm the
scaling relationa+z=2. In this way, we demonstrate the
feasibility and the effectiveness of this alternative approach
for studying the interfacial roughening phenomena governed
by local growth rules.
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APPENDIX

Here, we will give the explicit expressions of the flow
equations forhPistd , ∀ ij. With the help of Eq.(5), we only

TABLE VI. The growth exponentar1/r2
defined in Eq.(9) for

thesS=2d RSOS model. Data are obtained from two different meth-
ods: analytical calculations and computer simulations withL
=4000 sites,t=105 monolayers, and averaged over 103 independent
runs.

a2/1 a3/2 a4/3

Analytical calculation 0.558 0.532 0.522

Computer simulation 0.572 0.561 0.551

FIG. 3. The scaling plot ofGsr ,td obtained from our local con-
figuration approach withr =1 and 2 for thesS=2d RSOS model. It
shows excellent data collapse witha2/1=0.558 andz=2−a2/1

=1.442.
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need to list out the flow equations forhPistd , i
=1, . . . ,9 ,11,12,13,16,17,21j.

DP1

Dt
=

P6sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

−
P1sP2 + P3 + P4 + P5d

P1 + P6 + P11 + P16 + P21
, sA1d

DP2

Dt
= − P2 +

P1sP2 + P3 + P4 + P5d
P1 + P6 + P11 + P16 + P21

+
P7sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

−
P2sP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA2d

DP3

Dt
= − 2P3 +

P3P11

P3 + P8 + P11 + P12 + P13

+
P8sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

+
P2sP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA3d

DP4

Dt
= P3 − P4 +

sP9 − P4dsP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

−
P11P3

P3 + P8 + P11 + P12 + P13
, sA4d

DP5

Dt
= − P5 +

2P4sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

, sA5d

DP6

Dt
= P2 + P11 −

P6sP2 + P3 + P4 + P5d
P1 + P6 + P11 + P16 + P21

−
P6sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

−
P11P11

P3 + P8 + P11 + P12 + P13
, sA6d

DP7

Dt
= P3 − P7 + P12 −

P11P12

P3 + P8 + P11 + P12 + P13

−
P6sP2 + P3 + P4 + P5d

P1 + P6 + P11 + P16 + P21

−
P7sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

−
P7sP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA7d

DP8

Dt
= P4 − 2P8 + P13 −

P11sP13 − P8d
P3 + P8 + P11 + P12 + P13

−
P8sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

−
P7sP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA8d

DP9

Dt
= P5 − P9 + 2P8 −

2P11P8

P3 + P8 + P11 + P12 + P13

−
2P9sP2 + P7 + P12 + P17d
P4 + P6 + P7 + P8 + P9

, sA9d

DP11

Dt
= P7 − P11 +

P11P11

P3 + P8 + P11 + P12 + P13

−
P11sP2 + P3 + P4 + P5d

P1 + P6 + P11 + P16 + P21

+
P16sP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA10d

DP12

Dt
= P8 − 2P12 +

P11P12

P3 + P8 + P11 + P12 + P13

+
P11sP2 + P3 + P4 + P5d

P1 + P6 + P11 + P16 + P21

+
sP17 − P12dsP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA11d

DP13

Dt
= P6 − 3P13 +

2P11P13

P3 + P8 + P11 + P12 + P13

+
2P12sP4 + P7 + P8 + P9d
P2 + P7 + P12 + P16 + P17

, sA12d

DP16

Dt
= P12 +

sP21 − P16dsP2 + P3 + P4 + P5d
P1 + P6 + P11 + P16 + P21

−
P16sP4 + P7 + P8 + P9d

P2 + P7 + P12 + P16 + P17
, sA13d

DP17

Dt
= P13 − P17 +

2P16sP2 + P3 + P4 + P5d
P1 + P6 + P11 + P16 + P21

−
2P17sP4 + P7 + P8 + P9d
P2 + P7 + P12 + P16 + P17

, sA14d

DP21

Dt
= P17 −

2P21sP2 + P3 + P4 + P5d
P1 + P6 + P11 + P16 + P21

. sA15d
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