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Abstract
Background: The hierarchical clustering tree (HCT) with a dendrogram [1] and the singular value
decomposition (SVD) with a dimension-reduced representative map [2] are popular methods for
two-way sorting the gene-by-array matrix map employed in gene expression profiling. While HCT
dendrograms tend to optimize local coherent clustering patterns, SVD leading eigenvectors usually
identify better global grouping and transitional structures.

Results: This study proposes a flipping mechanism for a conventional agglomerative HCT using a
rank-two ellipse (R2E, an improved SVD algorithm for sorting purpose) seriation by Chen [3] as an
external reference. While HCTs always produce permutations with good local behaviour, the rank-
two ellipse seriation gives the best global grouping patterns and smooth transitional trends. The
resulting algorithm automatically integrates the desirable properties of each method so that users
have access to a clustering and visualization environment for gene expression profiles that
preserves coherent local clusters and identifies global grouping trends.

Conclusion: We demonstrate, through four examples, that the proposed method not only
possesses better numerical and statistical properties, it also provides more meaningful biomedical
insights than other sorting algorithms. We suggest that sorted proximity matrices for genes and
arrays, in addition to the gene-by-array expression matrix, can greatly aid in the search for
comprehensive understanding of gene expression structures. Software for the proposed methods
can be obtained at http://gap.stat.sinica.edu.tw/Software/GAP.

Background
Matrix visualization [4], for example the Cluster and
TreeView package [5], is an important exploratory data
analysis tool in the study of microarray gene expression
profiles. The visual patterns of genes (rows) and arrays
(columns) in the permuted gene-by-array expression pro-

file matrix are useful for clustering purposes. The hierar-
chical clustering tree and the singular value
decomposition are the two methods for identifying suita-
ble gene/array permutations. This section briefly reviews
the advantages and disadvantages of the two techniques
using the fibroblast to serum gene expression data [1,6].
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Hierarchical clustering tree (HCT)
The dendrogram of an agglomerative hierarchical cluster-
ing tree (HCT) is constructed through a sequential bot-
tom-up merging of "most similar" sub-nodes. This
sequential mechanism guarantees good local grouping
structures for permutations generated from rearranging
terminal nodes of agglomerative HCTs. For a gene expres-
sion data matrix of 517 genes observed in 13 arrays (we
use only the first 12 time series arrays, 0 minute to 24
hours) from the time series of serum stimulation of pri-
mary human fibroblasts, Eisen et al. [1] employed the
Pearson product moment correlation to measure
between-genes and between-arrays association. We adopt
the average linkage option in calculating between-cluster
relationships. We do not permute the array-array correla-
tion matrix because of the time series nature of the 12
arrays, although the permuted result is identical to the
original order for this particular correlation matrix. As
illustrated in Figure 1a, an HCT is "grown" on the 517-by-
517 correlation matrix for genes. The relative order of the
517 leaves of the dendrogram is then applied to sort the
517 rows/columns (symmetric) of the correlation matrix
and the expression profile matrix.

The branching structure of a dendrogram plays an impor-
tant role in identifying permutations of genes and arrays
by its arrangement of intermediate nodes. For a given HCT
with n terminal nodes (genes or arrays), there are n-1
intermediate nodes. Each of these intermediate nodes can
be flipped independently resulting in 2n-1 possible order-
ings of the terminal nodes from the same dendrogram
built on the identical proximity matrix. Bar-Joseph et al.
[7] had detailed discussion on the HCT intermediate
nodes flipping phenomena. It was first formulated by
Gruvaeus and Wainer [8]. To order the leaves of a binary
HCT when two ordered branches are merged, the new
branch is formed by placing the similar endpoints of the
joining branches adjacent to each other. Many different
heuristic ordering methods [1,9,10] have also been sug-
gested for solving this problem. Bar-Joseph et al. [7] pre-
sented a fast optimal leaf ordering for the hierarchical
clustering algorithm that maximizes the sum of the simi-
larities of adjacent leaves in the Travelling Salesman sense
[11], and we refer to this approach as the optimal tree
method. Bar-Joseph et al. [12] proposed a heuristic algo-
rithm for constructing k-ary trees by extending and
improving the optimal leaf ordering algorithm in [7].

Singular value decomposition (SVD) and Rank-two ellipse 
seriation (R2E)
For identifying smooth transitional expression patterns
and more global-grouping structures, people turn to
dimension reduction techniques, such as singular value
decomposition, for help [2,13,14]. Alter et al. [2] laid
down the mathematics of SVD for analyzing gene expres-

sion profiles and proposed the concept of eigenarrays and
eigengenes as representative linear combinations of origi-
nal arrays and genes. They further suggested that one sort
the arrays and genes according to the relative positions on
the subspaces spanned by the two leading eigenarrays and
eigengenes.

Chen [3] introduced a sorting algorithm called rank-two
ellipse (R2E) seriation which improves the SVD method
by extracting the elliptical structure of the converging
sequence of iteratively formed correlation matrices using
the eigenvalue decomposition. Figure 1b displays the
resulting matrix visualization of the human fibroblasts
expression profile sorted by the R2E algorithm. We see
that the R2E sorted correlation matrix identifies a very
smooth transitional pattern. More advantages of the R2E
method over the SVD method will be discussed in the
Methods section.

The proposed rank-two ellipse seriation-guided 
hierarchical clustering tree (HCT_R2E)
We propose to guide the flipping mechanism of a conven-
tional agglomerative HCT using the rank-two ellipse
(R2E) seriation of Chen [3] as an external reference. The
resulting algorithm automatically integrates the desirable
properties of HCT and R2E so that users have access to a
clustering and visualization environment for gene expres-
sion profiles that preserves coherent local clusters and
identifies global grouping trends.

The R2E-guided HCT with the corresponding permuted
matrices can be seen in Figure 1c. The permuted correla-
tion and gene expression matrices in Figure 1c resemble
the corresponding matrices in Figure 1b extremely well,
meaning that the coherent local structure (clusters) iden-
tified by the HCT architecture and the smooth global tran-
sitional pattern explored by the R2E algorithm do not
necessarily conflict with each other. An important note
here is that the dendrogram (hierarchical tree) architec-
ture (merging steps) in Figure 1c (with R2E guide) is iden-
tical to that of Figure 1a (without R2E guide). The only
thing different is the flipping mechanism of intermediate
nodes.

Global trend and the Robinson matrix
It is not common to permute the orders of arrays with
time series nature for preserving the time-to-time local
structure and the overall global time-trend. The local pat-
tern and the global trend usually do not co-exist well in a
given matrix unless a Robinson form [15] can be per-
muted from the matrix. A Robinson Matrix, R = [rij], is a
symmetric matrix such that rij ≤ rik if j <k <i and rij ≥ rik if i
<j <k. The basic property of a Robinson matrix is monoto-
nicity as one proceeds from the main-diagonal elements
to all four margins of the given matrix. For a permuted
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Matrix visualization for expression profiles map with corresponding pair-wise correlation map for Fibroblast to serum data [1]Figure 1
Matrix visualization for expression profiles map with corresponding pair-wise correlation map for Fibroblast to 
serum data [1]. Matrix visualization for expression profiles map with corresponding pair-wise correlation map for the time 
series of serum stimulation of primary human fibroblasts (Eisen et al. 1998) with three sorting algorithms. (a) Matrix visualiza-
tion with hierarchical clustering tree (HCT). (b) Matrix visualization with rank-two ellipse seriation (R2E). (c) Matrix visualiza-
tion with R2E guided HCT (HCT_R2E).
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Global trend and the Robinson matrixFigure 2
Global trend and the Robinson matrix. Matrix visualization for the between-array time series correlation matrix of data 
in [1]. (a) Between-array correlation matrix with time series randomized. (b) HCT sorted time series correlation matrix with 
local structure. (c) R2E sorted time series correlation matrix with (original) global trend. (d) HCT_R2E sorted time series cor-
relation matrix preserves both (original) local and global patterns.
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proximity matrix, Dn × n = [dij], the following simple anti-
Robinson loss function can be defined as the number of
deviations from the Robinson form

where I is an indicator function that outputs 1 if the con-
dition is satisfied. More general anti-Robinson scores,
generalized anti-Robinson (GAR), and relative general-
ized anti-Robinson (RGAR) scores, are defined in the
Methods section.

We elaborate on the global trend and the Robinson matrix
concepts using the correlation matrix for the 11 arrays (15
min ~24 hr, 0 hr contains a constant array in the down-
loaded data) of the Eisen et al. [1] time series data. Figure
2a has the between-array correlation matrix with time
points randomized. The up and down (non-monotonic)
pattern in every column and row illustrates a clear non-
(anti-) Robinson structure. Without a proper flipping
guidance of the intermediate nodes, an HCT may end up
as the matrix in Figure 2b. We can easily identify three
local clusters (4–6–8–12 hr, 16–20–24 hr, and 0.25–0.5–
1–2 hr) without observing the global smooth time series
trend. The correlation matrix sorted by the R2E order
(same as the original time order) keeps a near-Robinson
form as can be seen in Figure 2c. When we guide the flip-
ping mechanism of Figure 2b with the R2E global trend in
Figure 2c, the permuted correlation matrix displays simul-
taneously the three-cluster pattern and the smooth time
series trend, Figure 2d. For this particular example, the
HCT_R2E permutation in Figure 2d happened to coincide
with the R2E permutation in Figure 2c and the original
time series order.

Results
Three additional real data sets, together with the fibroblast
to serum gene expression data, are analyzed to demon-
strate the performance of the proposed method. The first
one is the annotated subset cell cycle data from [16]; the
second is the severe acute respiratory syndrome coronavi-
rus (SARS-CoV) studied in [17]; the transition metal study
in [18] is the final example. The same eight sorting algo-
rithms (SVD with one eigenvector (SVD1), SVD with two
eigenvectors (SVD2), self-organizing maps (SOM) [19],
rank-two ellipse (R2E), HCT with random flips
(HCT_RAM), optimal tree (HCT_OPT), SOM-guided tree
(HCT_SOM), and R2E-guided tree (HCT_R2E)) are tested
for all data sets. We only summarize the results of two
HCT and two non-HCT algorithms: SVD2, R2E,
HCT_OPT, and HCT_R2E. (Please see Additional file 1 for
detailed comparison of all eight sorting algorithms.)

Fibroblast to serum data
For the gene expression data matrix of 517 genes observed
in 12 arrays from the time series of fibroblasts to serum in
[1], we plot the GAR loss scores and the RGAR loss scores
in Figures 3ab without redrawing the permuted matrix vis-
ualizations.

Results
The GAR curves (window-size ranges from 1 to 516) for
the four sorting algorithms plotted in Figure 3a produce
the following observations:

• the R2E (smooth green line) clearly outperforms (lowest
GAR scores) the other three methods ;

• the HCT_OPT algorithm has poor global (large window-
size) performance;

• the proposed HCT_R2E method outperforms
HCT_OPT, and is nearly as good as the SVD2 algorithm in
the global sense.

We plot in Figure 3b the relative generalized anti-Robin-
son (RGAR) loss scores for better comparison of local
behaviours among the four methods, to observe the fol-
lowing:

• both HCT algorithms (curves with dots) outperform two
non-HCT (smooth curves) in small window-size area (1 �
w � 50);

• the optimal hierarchical clustering tree, HCT_OPT, has
the best performance among the four HCTs for the small-
est window-size area (1 � w � 35);

• the proposed HCT_R2E method actually scores best for
a small period in the middle range (35 � w � 75);

• the R2E algorithm dominates the competition from w =
100 on.

Without the visualization of two smooth transitional pat-
terns for up- and down-regulated genes in Figure 1b, HCT
in Figure 1a suggests many gene-clusters with very coher-
ent expression profiles, but with no knowledge of the pos-
sible embedded smooth transitional patterns. The
proposed HCT_R2E method automatically integrates the
coherent local property of HCT and the smooth global
trend of R2E to provide users the improved Figure 1c. The
visualization of the expression profile and the correlation
matrices in Figure 1c provide users exploration for local
behaviour of genes function closely together in small time
scale and for more complicate global relationship with
larger time interval simultaneously in such a time series
expression experiment.
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Generalized anti-Robinson (GAR) loss scores for Fibroblast to serum data [1]Figure 3
Generalized anti-Robinson (GAR) loss scores for Fibroblast to serum data [1]. Loss scores with varying window-
sizes for correlation matrix with 517 genes data [1] for the sorting algorithms, SVD2, R2E, HCT_OPT and HCT_R2E. (a) Gen-
eralized anti-Robinson (GAR) loss scores. (b) Relative generalized anti-Robinson (RGAR) loss scores
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Yeast cell cycle data
These data are a subset of the original 6240 genes
expressed at 17 time points used in Cho et al. [16]. We
selected the 145 genes that have been biologically charac-
terized and assigned to five different cell cycle phases
(early G1, late G1, S, G2, and M). Expression at one
abnormal time point was removed from the data set (as
suggested by [20]) resulting in our gene expression profile
of 145 genes at 16 time points.

Results
In addition to lower intermediate to global GAR and
RGAR loss scores (see Additional file 1 for details), the
permutation identified by the proposed HCT_R2E
method also possesses more meaningful biological impli-
cations than the other algorithms. The cell cycle phase dia-
grams for the three seriation algorithms (SVD2,
HCT_OPT, and HCT_R2E) are shown in Figure 4, where
the identical inner circle represents the 145 genes sorted
with the known cell cycle phase information. The outer
circle for each algorithm is rotated to its best position
among all 145 possible rotations according to the follow-
ing criteria: the simple match score computes the propor-
tion of correct (against known phase information)
matches for all 145 gene positions, ranging from 0 (worst)
to 1 (best); the weighted match score assigns weights of
(2, 1, 0) to genes that deviate from the known phase by (0,
1, 2) phase groups, and is also scaled to 0 (worst) to 1
(best); the total deviation score sums the deviations (by
number of genes) of all 145 genes to the boundaries of
their known phases. Both the simple match and weighted
match are gain scores (the higher the better) while the
total deviation is a loss score (the lower the better).

From Table 1 we see that the proposed HCT_R2E algo-
rithm outperforms the other seven algorithms in all three
matching scores. Through visualization, the cell cycle dia-
grams sorted by the three algorithms can be roughly sepa-
rated into three classes:

• SVD2 performed rather poorly;

• HCT_OPT permutation showed better correlation to the
known phases than SVD2;

• HCT_R2E arranged the 145 genes at positions very close
to their annotated phase positions.

Although the HCT_R2E algorithm aligned the 145 genes
close to their known phases, several genes deviated far
away from their annotated cell cycle phases, as can be seen
from the cell cycle diagram in Figure 4c. We further exam-
ined the phase annotations provided by another yeast cell
cycle study of Spellman et al. [21]; the cross-annotated
phase labels for both studies are listed in Additional file 2.

Cell cycle phase diagrams for Yeast cell cycle data [16]Figure 4
Cell cycle phase diagrams for Yeast cell cycle data 
[16]. Matching scores of the rearranged phase positions of 
the 145 genes sorted by the three seriation methods to the 
known (annotated) phase positions. (a) SVD2. (b) HCT_OPT 
order. (c) HCT_R2E order.
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The 15 genes with largest deviations from their annotated
phase groups sorted by the proposed HCT_R2E algorithm
are bold-faced. From the corresponding annotated phases
of [21], in the last column, we see that the Spellman et al.
[21] annotated phases for these 15 genes either fit better
into the overall cell cycle pattern (e.g., YKL067W from S to
G1, and YEL017W from early G1 to S/G2), or their phase
conditions are not annotated (7 out of 15). This result fur-
ther implies the proposed algorithm can be applied to
either verify known biological conditions or to explore
unknown phenomena.

Severe acute respiratory syndrome coronavirus (SARS-
CoV) data
In the severe acute respiratory syndrome (SARS) study of
Lee et al. [17], the expression profiles of 52 signature genes
are used to explore the between-sample severity pattern
from normal controls to acute SARS patients. A Euclidean
distance matrix among 55 samples (11 acute SARS (AS)
patients, 33 recovering SARS (RS) patients, and 11 normal
control (NC) subjects) using these 52 genes is computed
to identify a potential order that could reflect the severity
structure of the disease. There are three major differences
between this SARS example and the yeast cell cycle data
analysis. These are not time series gene expression data;
the focus is on the between-sample structure instead of
the gene set; and the proximity measure adopted is the
between-sample Euclidean distance instead of the correla-
tion coefficient.

Results
The same eight algorithms are used to sort the Euclidean
distance matrices for the 55 samples but only results of the
three methods, HCT_OPT, R2E, and HCT_R2E are dis-
played. The corresponding expression profile matrices
with related HCT dendrograms and the sorted colour
bands for sample identities are displayed in Figure 5. We
observe the following:

• there is a clear uni-dimensional Robinson pattern for
this SARS Euclidean matrix;

• the HCT_OPT (Figure 5a) algorithm presented rather
coherent local structure;

• R2E (Figure 5b) sorted samples identify colour bands
that exhibit a clear blue (NC) to yellow (RS) to red (AS)
severity structure of the disease;

• the Euclidean matrix sorted by the proposed HCT_R2E
(Figure 5c) method displays very coherent local relation-
ships, as well as extremely good global structure. Its iden-
tity colour band has a coherent within sample-subtype
pattern

We have summarized the numerical comparisons (GAR,
RGAR) for the eight sorting algorithms in Additional file
1.

In [17], the R2E permuted sample rank of SARS severity
was identified to be significantly correlated with the clini-
cal pulmonary infection score (CPIS) and other clinical
factors. The severity rank of samples was also found to be
highly correlated with the suppression of the human
adaptive immune system and the up-regulation of the
host receptors for corona viruses of SARS. Here we com-
pare the Pearson correlations (Spearman and Kendall cor-
relations give similar results) of the patient-orders
identified by the eight algorithms with two clinical varia-
bles: number of days after the onset of disease and the
clinical pulmonary infection score (CPIS). The results are
summarized in Table 2 and we note the following:

• the proposed HCT_R2E algorithm has the highest corre-
lation with number of days after the onset of disease while
the R2E method comes next;

• the proposed HCT_R2E algorithm has the highest corre-
lation with CPIS among all eight sorting methods, while
the SVD1 and HCT_OPT algorithms share second place

From these comparisons we observe a significant advan-
tage of the proposed R2E-guided hierarchical clustering
tree in searching for meaningful biomedical information
and correlation such that researchers can further propose
more precise hypotheses and conducting more accurate
experiments.

Transition metal stress data
Kaur et al. [18] tried to reconstruct physiological behav-
iours of Halobacterium NRC-1, an archaeal halophile, in
sublethal stress levels of six transition metals (Mn [II], Fe
[II], Co [II], Ni [II], Cu [II], and Zn [II]). Halobacterium
NRC-1 was exposed for five hours to at least three concen-
trations of each of the six transition metals. In Figure 5 of
[18], using 468 genes that changed significantly in at least
two conditions out of a total of 19 (3 concentrations for

Table 1: Matching scores of the rearranged phase positions for 
the 145 genes sorted by the eight seriation methods relative to 
the known (annotated) phase positions.

Seriation method Match Weighted match Total deviation

(a) SVD1 0.5103 0.6862 1584
(b) SVD2 0.4552 0.6483 1688
(c) SOM 0.6828 0.8068 907
(d) R2E 0.6759 0.8034 915
(e) HCT_RAM 0.5172 0.6759 1665
(f) HCT_OPT 0.6552 0.7966 1056
(g) HCT_SOM 0.5931 0.7379 1288
(h) HCT_R2E 0.7103 0.8241 818
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Matrix visualization for Severe acute respiratory syndrome coronavirus (SARS-CoV) data [17]Figure 5
Matrix visualization for Severe acute respiratory syndrome coronavirus (SARS-CoV) data [17]. Matrix visualiza-
tion for expression profiles map with corresponding pair-wise Euclidean distance map of 55 samples in the SARS study [17] 
with three sorting algorithms. (a) HCT_OPT order. (b) R2E seriation. (c) HCT_R2E order.
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each of the 6 transition metal with an additional concen-
tration from Fe [II]), an HCT and a correspondence anal-
ysis (CA, [22]) are carried out (we only obtained 444
genes using identical selection criteria). Their HCT permu-
tation for the 19 metal conditions does not correlate well
with the pattern displayed in their CA plot for the condi-
tions. Our task here is to guide the flips of HCT interme-
diate nodes by the R2E algorithm with the hope that the
resulting permutation does not contradict that of the CA
analysis.

Results
The CA plot is reconstructed in Figure 6a. Information for
the 444 genes is not displayed for better illustration of the
19 metal conditions. A clear linear trend Mn [II]-Fe [II]-Cu
[II]-Co [II]-Zn [II] is observed, with Ni [II] conditions that
deviate significantly from this trend. An average linkage
HCT is built on the paired Euclidean distance matrix of
the 19 metal conditions ([18] did not specify proximity
measure and linkage type in their study). The optimal
HCT and the proposed elliptical seriation-guided HCT
with their permuted Euclidean matrices are displayed in
Figure 6bc. Although HCT_OPT does identify good local
clusters for the metal groups, the overall permutation
does not correlate well with the linear trend from the CA
analysis. The HCT_R2E permutation not only correlates
with the linear trend of transition metal groups very well,
it also sorts the within-metal group concentration levels
precisely following those orders in the CA analysis in Fig-
ure 6a.

This study illustrates well that the proposed HCT_R2E
method is capable of providing permutations with both
good global and local properties, although the optimal
HCT still outputs better local orders numerically. The
accompanying distance matrix map clearly indicates the
Zn(0.005) and Cu(0.7) conditions, in addition to the Ni
[II] conditions, deviate from the main linear trend of these
transition metals and the Robinson pattern.

Discussion and Conclusion
When analyzing gene expression profile data sets,
researchers usually apply a hierarchical clustering tree
(HCT) to search for coherent local clusters and the singu-
lar value decomposition (SVD) to identify smooth global
trends. Users of HCT dendrograms would identify only
local clusters without knowing the existence of global
structure that might accompany cell cycle-regulated exper-
iments, dosage level studies, or subtypes of tumours.
Applications of SVD on the other hand may overlook the
importance of local behaviour.

While the optimal HCT [7] always produces permutations
with best local behaviour, the rank-two ellipse seriation
[3] gives the best global grouping patterns and smooth
transitional trends. The proposed hierarchical clustering
tree guided by rank-two ellipse seriation (HCT_R2E)
nicely integrates these two extremes and provides users
both coherent local clusters and smooth global patterns
for gene expression profile studies.

In four data analyses, the proposed HCT_R2E algorithm
not only exhibits outstanding numerical (statistical) per-
formance, it also provides us better insights into the bio-
medical information embedded in these high
dimensional data structures. Visualization of sorted prox-
imity matrices in addition to the visualization of the
expression profile matrices also greatly enhances the over-
all comprehension of the association structures of arrays
and genes.

Applicability and limitation
As was illustrated in the two time series data sets, the pro-
posed rank-two ellipse-guided hierarchical clustering
(HCT_R2E) is very powerful in identifying smooth time
series patterns. The SARS data and the transitional metal
data, on the other hand, showed the proposed method
can also be used to search for potential global grouping
structure for genes, and for arrays embedded in the given
gene expression profiles.

Table 2: Correlations between the SARS severity ranks derived from eight seriation methods using number of days after the onset of 
disease and clinical pulmonary infection score (CPIS).

Seriation method Pearson correlation (days) Pearson correlation (CPIS)

(a) SVD1 0.6303 0.5006
(b) SVD2 0.3276 0.1873
(c) SOM 0.4028 0.2925
(d) R2E 0.6497 0.4890
(e) HCT_RAM 0.1551 0.0230
(f) HCT_OPT 0.4249 0.5006
(g) HCT_SOM 0.6468 0.3151
(h) HCT_R2E 0.6693 0.5116
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Transition metal stress data [18]Figure 6
Transition metal stress data [18]. Visualization of differential gene expression profiles of Halobacterium NRC-1 exposed for 
five hours to at least three concentrations of each of the six transition metals (Mn [II], Fe [II], Co [II], Ni [II], Cu [II], and Zn 
[II]). (a) Correspondence analysis of the 19 metal-concentration combinations. (b) HCT_OPT with sorted Euclidean matrix 
map for the 19 conditions. (c) HCT_R2E with sorted Euclidean matrix map for the 19 conditions.
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When the underlying clustering pattern is a clear disjoint
one, the rank-two ellipse seriation method is only capable
of identifying the global between-cluster pattern, not the
within-cluster relationship. The optimal tree method gives
better permutations than the proposed method for such
circumstances.

The R2E algorithm (and the HCT_R2E method) is compu-
tationally more time consuming than other methods. It
takes a personal computer (Celeron (R) 3.2 GHz CPU
with 512 MB RAM) running C++ on Windows XP about
(0.09 sec, 9.09 sec, and 2.71 hr) to obtain the R2E permu-
tations for proximity matrices with (50, 500, 5000) rows/
columns. The computation complexity for R2E is of order
n3. The computing speed is much slower in the current
Java version GAP package although we are implementing
a much faster algorithm now. We have also developed a
prototype PC cluster system for performing the proposed
methods for very large proximity matrices that will be
released after it has been fully tested.

Methods
Various concepts have been proposed for rearranging
objects in statistical graphs in order to display informa-
tion structure more effectively. Chen [3] proposed the
concept of "relativity of a statistical graph" for placing
similar (different) objects at closer (distant) positions in a
statistical graph. The local property optimized by the
aforementioned HCT techniques realizes only half of the
relativity concept when it places similar objects in closer
proximity without the necessity of distancing distinct
objects.

Rank-two ellipse seriation
Chen [3] introduced a sorting algorithm called rank-two
ellipse (R2E) seriation that extracts the elliptical structure
at iteration with rank two of the converging sequence of
iteratively formed correlation matrices. R2E improves
SVD in identifying even smoother global permutations.
Please see Additional file 1 for an illustration with the 517
gene example. The permuted expression profile matrix
and the sorted gene-by-gene correlation matrix using R2E
are displayed in Figures 1b. The sorted expression matrix
displays a clear smooth transitional two-component pat-
tern.

There are two advantages of the R2E method over the SVD
method in the sorting of arrays and genes in expression
profile matrices. The first is that users do not need to
choose the number of leading components; the R2E
method always summarizes the embedding variation
structure into the final two eigenvectors of the rank-two
correlation matrix. With a uni-dimensional underlying
structure, the two eigenvectors form a half-ellipse pattern
for sorting purposes. The second advantage is that it can

be applied to any given proximity matrix, be it correlation,
covariance, Euclidean distance, or other proximity matrix
for genes and arrays.

Proximity matrix visualization
Although both the dendrogram of an HCT and represent-
ative genes (arrays) of an SVD are generated from given
proximity matrices, researchers usually do not pay much
attention to the sorted proximity matrices.

Comparing the permuted gene-by-gene correlation matri-
ces in Figures 1a and 1c we see that the HCT forms many
blocks along the main diagonal of the correlation matrix
while rank-two method identifies two smooth transi-
tional patterns for up- and down-regulated genes. With-
out the visualization of correlation matrix in Figure 1a,
HCT suggests many gene-clusters with very coherent
expression profiles, but with no knowledge of the possible
embedded smooth transitional patterns. In light of both
correlation matrices in Figures 1a and 1c one can see that
the gene-clusters actually are formed only because of the
constraints imposed by the HCT dendrogram branching
structure; the within-cluster coherent expression profiles
are correctly identified, but the between-clusters contrast-
ing patterns may not be applicable.

In addition to the visualization of permuted expression
profile matrices, we want to emphasize the importance of
visualization of sorted proximity matrices for comparing
the differences in permutations that result from various
sorting algorithms.

Integration of local clustering patterns and global grouping 
structures
Local coherent gene clusters with very similar expression
profiles may represent groups of genes that are co-regu-
lated by certain transcription factors or activated by iden-
tical binding sites. Global clustering patterns and smooth
transitional trends on the other hand, could signal some
biological processes at a higher-level control, such as
metabolite pathways or the cell-cycle operation. It is nec-
essary to develop clustering and visualization methods
that can simultaneously explore local behaviours as well
as global grouping effects of gene expression profiles.

This study proposes to guide the flipping mechanism of a
conventional agglomerative HCT with the rank-two
ellipse (R2E) seriation as an external reference. The stand-
ard working procedure of the proposed algorithm for gene
clustering is illustrated as steps 0~5 in Figure 7, using Fig-
ure 2 as an example. The same process can be applied for
array grouping and sorting.

We use the intermediate node N1 with sub-nodes (N3 and
N4) in Figure 2b to illustrate the flipping mechanism
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described in steps 2~4 of Figure 7. The external reference
R2E identified in Figure 2c assigned the relative positions
(1~11) to the 11 terminal nodes of Figure 2b in square
brackets. We have N3

T = {4HR, 6HR, 8HR, 12HR} and N4
T

= {16HR, 20HR, 24HR} with N3
O = {5, 6, 7, 8} and N4

O

= {9, 10, 11}. N3 and N4 are assigned the upper and lower
sub-nodes of N1 respectively since mean(N3

O) = 6.5 < 10
= mean(N4

O).

Generalized anti-Robinson criteria
In order to compare the performances of different sorting
algorithms, some standard criteria have to be established.
As is illustrated in Figure 8a, the minimum travelling dis-
tance in a travelling salesman problem can be used to
evaluate local behaviour, while the anti-Robinson event-
count (AR in equation 1 and Figure 8b) works well for glo-
bal performance. Given a distance-type proximity matrix,

Proposed R2E guided HCT procedure for gene clusteringFigure 7
Proposed R2E guided HCT procedure for gene clustering. The proposed algorithm for constructing the R2E-guided 
HCT for gene permutation using the between array correlation matrix in Figure 2.

0. Given a gene-by-array expression profile matrix, Mg*p, with g genes and p 
arrays. The following process can be applied for either gene or array grouping 
and sorting. 

 
1. Compute the gene-by-gene proximity (e.g., correlation, Euclidean distance, 

etc.) matrix Rg*g, (Figure 3a). 
 
2. Select an HCT linkage type (e.g., single, complete, average, centroid, etc.) 

and construct the hierarchical clustering tree, HCT, for Rg*g with g terminal 
nodes, Ti (i=1, …, g), and g-1 intermediate nodes, Nj (j=1, …, g-1). We 
further define Nj

T (j=1, …, g-1) the set of terminal nodes spanned by 
intermediate node Nj, (Figure 3b). 

 
3. Apply the converging sequence of iteratively formed correlation matrices [1] 

to Rg*g and obtain the rank-two ellipse seriation, R2E, for Rg*g. Define relative 
positions (1, …, g) of the g terminal nodes, Ti (i=1, …, g), in R2E as Oi 
(i=1, …, g) and define Nj

O (j=1, …, g-1) the set of relative positions of 
terminal nodes spanned by intermediate node Nj, (Figures 3c and 3b). 

 
4. Use R2E as an external reference to guide the flipping mechanism of HCT to 

obtain the final flipped tree, HCT_R2E. For an intermediate node Nj with two 
sub-nodes Nj1 and Nj2, assign Njk as the upper sub-node of Nj if 
mean(Njk

O)=min(mean(Nj1
O), mean(Nj2

O)), (Figure 3d). 
 
5. Sort Mg*p according to the relative terminal node positions of HCT_R2E, 

(Figure 3d). 
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the travelling salesman algorithm optimizes the permuta-
tion by minimizing the total consecutive distances along
the entire permutation. That is, one minimizes the sum-
mation along the off-diagonal containing the ith to
(i+1)st components of the matrix (Figure 8a).

For a permuted proximity matrix, Dn × n = [dij], the gener-
alized anti-Robinson loss function is defined as the
number of deviation from the Robinson form,

where w is the window-size defining the range of summa-
tion, and I is an indicator function that outputs 1 if the
condition is satisfied. Window-size is the number of col-

GAR I d d I d dij ik

i w j k i

ij ik

i j k i wi

n

= < + >
− ≤ < < < < ≤ +=
∑ ∑∑[ ( ) ( )],

( ) ( )1

(2)

Generalized anti-Robinson criteriaFigure 8
Generalized anti-Robinson criteria. Three anti-Robinson concepts. (a) Local traveling salesman criterion. (b) Global Rob-
inson concept. (c) Combined generalized anti-Robinson criterion.

(a) 
(b) 

w = 1  2   3             n-1  

(Global) 

-- anti-Robinson events 

(Local) 

(c)
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umns (rows) from the diagonal of D that we consider in
calculating the anti-Robinson events. Small window-sizes
refer to criteria for considering only local behaviours, and
larger window-sizes refer to criteria for more global rela-
tionship between subjects.

The minimum travelling distance can be treated as one
special Robinson form with a smallest window-size (w =
1) in counting the anti-Robinson events, while the origi-
nal AR (equation 1) criterion has the largest window-size
(w = n - 1). A window-size between 1 and n-1 opens up a
banding area from the main-diagonal for counting the
number of anti-Robinson events. This is called the gener-
alized anti-Robinson criterion (GAR) here. When we plot
the GAR scores against w (window-size) we usually see a
monotonic smooth increasing curve since the number of
anti-Robinson events grows larger with window-size. In
order to have better comparison among different sorting
algorithms for small window-sizes we also define the rel-
ative generalized anti-Robinson loss function,

which ranges between 0 (no anti-Robinson events) to 1
(all anti-Robinson events). The RGAR curves have better
resolution for small window-size region than the GAR
curves for comparing performance of algorithms.

Availability and requirements
The rank-two ellipse (R2E) seriation and the R2E-guided
hierarchical clustering tree methods are implemented in
the GAP (generalized association plots) system.

Project name: HCT-R2E

Project home page: http://gap.stat.sinica.edu.tw/Soft
ware/GAP

Operating systems: any OS that supports the Java environ-
ment

Programming language: Java

License: free
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Supplementary_material. The zipped archive 
[supplementary_material.zip] contains 1 documentary file (supple-
ment.doc) and 8 Figure files (Figure S1–8) as the supplement for this 
main article. It has more detailed information about matrix visualization 
and numerical comparisons of 8 sorting algorithms for Fibroblast to serum 
data, Yeast cell cycle data, Rank-two ellipse seriation, the figures for 
sequence of R2E convergency patterns, and SARS-CoV data with an intro-
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[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-155-S1.zip]

Additional File 2
Cell cycle phase annotations. The zipped archive [cell_cycle.zip] contains 
1 Excel file (cell_cycle_phase_annotations.xls). Cell cycle phase annota-
tions of the 145 genes in Cho et al. [16] cross-annotated by Spellman et 
al. [21]. Genes are arranged by the proposed HCT_R2E algorithm; phase 
conditions for [16] are colour coded according to the phase legend pro-
vided in Figure 4.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-155-S2.zip]
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