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Abstract

We consider the inverse problem of determining both the shape and the conductivity of a

two-dimensional periodic conducting scatterer from knowledge of the far-field pattern of TM waves

by solving the ill posed nonlinear equation. Based on the boundary condition and the measured

scattered field, a set of nonlinear integral equations is derived and the imaging problem is reformulated

into an optimization problem. The genetic algorithm is then employed to find out the global extreme

solution of the object function. As a result, the shape and the conductivity of the conductor can be

obtained. Numerical results are given to demonstrate that even in the presence of noise, good

reconstruction has been obtained.
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1. Introduction

Due to the large area of applications such as non-

destructive problems, geophysical prospecting and de-

termination of underground tunnels and pipelines, etc,

the inverse scattering problems related to the buried bo-

dies are of particular importance in the scattering theory.

In the past 20 years, many rigorous methods have been

developed to solve the exact equations [1�9]. However,

inverse problems of this type are difficult to solve be-

cause they are ill-posed and nonlinear [10]. As a result,

many inverse problems are reformulated into optimiza-

tion ones and then numerically solved by different itera-

tive methods such as the Newton-Kantorovitch method

[1�5], the Levenberg-Marquardt algorithm [6�8], and

the successive-overrelaxation method [9]. Most of these

approaches employ the gradient-based searching scheme

to find the extreme of the cost function, which are highly

dependent on the initial guess and usually get trapped in

the local extreme. The genetic algorithm [11] is an evo-

lutionary algorithm that uses the stochastic mechanism

to search through the parameter space. As compared to

the gradient-based searching techniques, the genetic al-

gorithm is less prone to converge to a local extreme. This

renders it an ideal candidate for global optimization. A

few papers had applied the genetic algorithm to recon-

struct the shape of a conductor [12�16]. However, to the

best of our knowledge, there are still no numerical results

by using the genetic algorithm for the periodic variable

conducting scatterers. In this paper, we present a compu-

tational method to recover the shape of a periodic vari-

able conducting cylinder based on the genetic algorithm.

In section 2, the theoretical formulation for the inverse

scattering is reported. The general principle of the ge-

netic algorithms and the way we apply them are de-

scribed. Numerical results are given for various objects*Corresponding author. E-mail: mhwu@ctcn.edu.tw
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of different shapes in section 3. Finally, some conclu-

sions are drawn in section 4.

2. Theoretical Formulation

A periodic two-dimensional imperfectly conducting

cylinder with conductivity �(�) is situated in a back-

ground medium with a permittivity �o and a permeability

�o, as shown in Figure 1. The array is periodic in the

x-direction with a periodic length d and is uniform in

the z-direction. The cross section of the metallic cylinder

is assumed to be described in polar coordinates in xy

plane by the equation � = F(�). A plane wave whose

electric field vector is parallel to the z-axis (i.e., trans-

verse magnetic, or TM, polarization) is incident upon the

periodic cylinder. Let
�
Ei denote the incident wave with

incident angel �, as shown in Figure 1. The scattered

field,
�
E E zs s� � can be expressed by

(1)

where

(2)

(3)

with

(4)

Here Gi (x, y; x	, y	) is the two-dimensional periodic

Green’s function [17,18], and Js(�) and J(�) are the in-

duced surface current density and an arc current density

which is proportional to the normal derivative of elec-

tric field on the conductor surface, respectively. The

boundary condition for a periodic imperfectly conduct-

ing scatterer with finite conductivity can be approxi-

mated by assuming that the total tangential electric field

on the scatterer surface is related to surface current den-

sity through a surface impedance. This boundary condi-

tion yields an integral equation for J(�):

(5)

For the direct scattering problem, the scattered field Es

is calculated by assuming that the periodic length d, the

shape function F(�) and the conductivity �(�) of the ob-

ject are known. This can be achieved by first solving

J(�) in (5) and calculating Es in (1). For numerical cal-

culation of the direct problem, the contour is first di-

vided into sufficient small segments so that the induced

surface current can be considered constant over each

segment. Then the moment method is used to solve (5)

and (1) with pulse basis function for expanding and

Dirac delta function for testing. Note that, for numerical

implementation of the periodic Green’s function, we

might face some difficulties in calculating this func-

tion. In fact, when y approaches y	, the infinite series in

(2) is very poor convergent. Fortunately, the infinite

series may be rewritten as a rapidly convergent series

plus an asymptotic series, which can be summed effi-

ciently. Thus the infinite series in the periodic Green’s

function can be calculated efficiently [17,18].

Let us consider the following inverse problem: given

the scattered field Es measured outside the scatterer, de-

termine the shape F(�) and the conductivity �(�) of the

object. Assume the approximate center of the scatterer,

which in fact can be any point inside the scatter, is known.

Then the shape F(�) function and conductivity function

�(�) can be expanded as:

(6)
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Figure 1. Geometry of a periodic imperfectly conducting cyl-
inder with a periodic spacing d along the x-direc-
tion.



(7)

where Bn, Cn, Dn and En are real coefficient to be deter-

mined, and 2 
 (N + 1) is the number of unknowns for

shape function and conductivity function. In the inver-

sion procedure, the genetic algorithm is used to mini-

mize the following cost function:

(8)

where Mt is the total number of measurement points.

E rs m

exp
( )
�

and E rs

cal

m( )
�

are the measured scattered field

and calculated scattered field, respectively. Note that

the regularization term �|F	(�)|2 was added in (8). Please

refer the reference [4] for detail.

Genetic algorithms are the global numerical optimi-

zation methods based on genetic recombination and evo-

lution in nature [19]. They use the iterative optimization

procedures that start with a randomly selected popula-

tion of potential solutions, and then gradually evolve to-

ward a better solution through the application of the ge-

netic operators: reproduction, crossover and mutation

operators. In our problem, both parameters Bn (or Cn, Dn

and En) are coded by the following equations:

(9)

The b
B c D En n n n

0

( , )or
, b

B C D En n n n

1

( , )or
, …, bL

B C D En n n n

�1

( , )or
(gene)

is the L-bit string of the binary representation of Bn (Cn,

Dn or En), and pmin and pmax are the minimum and the

maximum values admissible for Bn (Cn, Dn or En), re-

spectively. Here, pmin and pmax can be determined by

prior knowledge of the object. Also, the finite resolu-

tion with which Bn (Cn, Dn or En). The total unknown

coefficients in (9) would then be described by a an (N +

1) 
 2 
 L bit string (chromosome). The basic GA starts

with a large population containing a total of M candi-

dates. A chromosome describes each candidate. Then

the initial population can simply be created by taking M

random chromosomes. Finally, the GA iteratively gen-

erates a new population, which is derived from the pre-

vious population through the application of the repro-

duction, crossover, and mutation operators.

The new populations will contain increasingly better

chromosomes and will eventually converge to an opti-

mal population that consists of the optimal chromo-

somes. As soon as the object function (OBF) changes by

< 1% in two successive generations and the number of

generation exceeds pre-given one, the algorithm will be

terminated and a solution is then obtained.

3. Numerical Results

By a numerical simulation, we illustrate the perfor-

mance of the proposed inversion algorithm and its sen-

sitivity to random error in the scattered field. Let us

consider an imperfectly conducting cylinder array with a

periodic length d in free space and a plane wave of unit

amplitude is incident upon the object, as shown in Figure

1. The frequency of the incident wave is chosen to be 3

GHz; i.e., the wavelength � is 0.1 m. In the examples, the

size of the scatterer is about one third the wavelength, so

the frequency is in the resonance range.

In our calculation, four examples are considered. To

reconstruct the periodic length, the shape and the con-

ductivity of the cylinder, the object is illuminated by two

incident waves with incident angles � = 45 and 135°,

and the measurement points are taken on two lines with

Y = �2 m from x = -0.045 to 0.045 m. Each line has nine

measurement points. Note that for each incident angle

eighteen measurement points at equal spacing are used,

and there are totally 36 measurement points in each si-

mulation. The number of unknowns is set to 14, to save

computing time. The population size is chosen as 250

(i.e., M = 250). The binary string length of the unknown

coefficient, Bn (Cn, Dn or En) are also set to be 16 bits

(i.e., L = 16). In other words, the bit number of a chromo-

some is 224 bits. The search range for the unknown pe-

riodic length is chosen from 0.05 to 0.1. The search

range for the unknown coefficient of the shape function

is chosen to be from 0 to 0.1 and the unknown coefficient

of the conductivity is chosen to be from 1 to 200. The ex-

treme value of the coefficient of the periodic length, the

shape function and the conductivity can be determined

by the prior knowledge of the objects. The crossover

probability pc and mutation probability pm are set to be

0.8 and 0.04, respectively. The value of � is chosen to be

0.001.

In the first example, the shape and conductivity

function are chosen to be F(�) = (0.05 + 0.02 cos � +
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0.015 sin 2�) m with a periodic length d = 0.2 m and �(�)

= (100 + 10 cos � + 10 cos 2� + 10 sin � + 10 sin 2�) S/m.

The reconstructed shape function and conductivity func-

tion for the best population member (chromosome) are

plotted in Figure 2(a) and Figure 2(b). Here DR and

DSIG, which are called shape function and conductivity

discrepancies respectively, are defined as

(10)

(11)

where N	 is set to 100. Quantities DR and DSIG provide

measures of how well Fcal(�) approximates F(�) and

�cal(�) approximates �(�), respectively. From Figure

2(a) and Figure 2(b), it is clear that the reconstruction of

the shape and the conductivity function are quite good.

In addition, we also see that the reconstruction of con-

ductivity does not change rapidly toward the exact va-

lue until DR is small enough. This can be explained by

the fact that the shape function makes a stronger contri-

bution to the scattered field than the conductivity does.

In other words, the reconstruction of the shape function

has a higher priority than the reconstruction of the con-

ductivity. To investigate the sensitivity of the imaging

algorithm against random noise, two independent Gaus-

sian noises with zero mean have been added to the real

and imaginary parts of the simulated scattered fields.

Normalized standard deviations of 10-5, 10-4, 10-3, 10-2

and 10-1 are used in the simulations. The normalized

standard deviation mentioned earlier is defined as the

standard deviation of the Gaussian noise divided by the

rms value of the scattered fields. Here, the signal-to-

noise ratio (SNR) is inversely proportional to the nor-

malized standard deviation. The numerical result for

this example is plotted in Figure 3. It is understood that

the effect of noise is negligible for normalized standard

deviations below 10-3.

In the second example, we select the following shape

function F(�) = (0.03 + 0.009 cos 3�) m and conductivity

function �(�) = (80 + 15 cos 2� + 15 sin � + 20 sin 3�)

S/m and a periodic length d = 0.2 m. The purpose of this

example is to show that our method is able to reconstruct
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Figure 2. (a) Shape function for example 1. The star curve
represents the exact shape, while the solid curves
are calculated shape in iteration process. (b) Con-
ductivity function for example 1. The star curve
represents the exact conductivities, while the solid
curves are calculated conductivities in iteration
process.

(a)

(b)

Figure 3. Relative error of shape and conductivity as a func-
tion of noise.



different shape conductivity. Satisfactory results are

shown in Figure 4(a) and Figure 4(b).

In the third example, the shape and conductivity

function are selected to be F(�) = (0.05 + 0.02 sin � +

0.01 sin 2� + 0.01 sin 3�) m and �(�) = (80 + 12 cos � +

12 sin 2� + 24 sin 3�) S/m and a periodic length d = 0.2

m. Note that the shape function is not symmetrical about

either x axis and y axis. This example has further verified

the reliability of our algorithm. Refer to Figure 5(a) and

Figure 5(b) for details.

4. Conclusion

We have presented a study of applying the genetic

algorithm to reconstruct the shape and the conductivity

of a periodic variable conducting cylinder through the

knowledge of scattered field. Based on the boundary

condition and the measured scattered field, we have de-

rived a set of nonlinear integral equations and reformu-

lated the imaging problem into an optimization one. By

using the genetic algorithm, the shape and the conduc-

tivity of the object can be reconstructed. Even when the

initial guess is far away from exact, the genetic algorithm

converges to a global extreme of the object function,

while the gradient-based methods often get stuck in a lo-

cal extreme. Good reconstruction has been obtained

from the scattered fields both with and without the addi-
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Figure 4. (a) Shape function for example 2. The star curve
represents the exact shape, while the solid curves
are calculated shape in iteration process. (b) Con-
ductivity function for example 2. The star curve
represents the exact conductivity, while the solid
curves are calculated conductivities in iteration
process.

(a)

(b)

Figure 5. (a) Shape function for example 3. The star curve
represents the exact shape, while the solid curves
are calculated shape in iteration process. (b) Con-
ductivity function for example 3. The star curve
represents the exact conductivity, while the solid
curves are calculated conductivities in iteration
process.

(a)

(b)



tive Gaussian noise. According to our experience, the

main difficulties in applying the genetic algorithm to this

problem are how to choose the parameters, such as the

population size (M), bit length of the string (L), cross-

over probability (pc), and mutation probability (pm). Dif-

ferent parameter sets will affect the speed of conver-

gence as well as the computing time required. From the

numerical simulation, it is concluded that a population

size from 100 to 300, a string length from 8 to 16 bits,

and pc and pm in the ranges of 0.7 < pc < 0.9 and 0.0005 <

pm < 0.05 are suitable for imaging problems of this type.
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