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ABSTRACT

This study applied three-phase flow simulation to simulate the effect
of four different types of overflow pipes on clarification. These four
types of overflow pipes include: a 9 mm straight pipe (9-9), divergent
overflow pipe (9-12), convergent overflow pipe (12-9), and a 12 mm
straight pipe (12-12). The results indicate that under similar split ratios
and other variables of similar operations, the converge type overflow pipe
can obtain much more supernatant liquid, with greatly improved separation

efficiency.
I.INTRODUCTION In the past, many efforts have been made to develop
efficient hydrocyclones by designing the hydrocyclones
Hydrocyclone is favored classifying equipment for with some new structures to change the flow characteris-
solids separation [1, 2]. Its applications are in mineral tics of conventional hydrocyclones. For example, the
processing [3], and to a growing extent, in dewatering [4], water injected hydrocyclone [7] was developed to interrupt
deoiling [5], and water treatment [6], etc. the boundary layer flow to diminish the fine particle
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Unit: mm
Fig.1 Geometry of the hydrocyclone separator used for
both CFD simulations and experiments.

content in the underflow. Changirwaet al. [8] proposed a
hybrid hydrocyclone with one feed entry and three exits
that can separate oil, water, and sand, respectively. Lee
and Williams [9] recommended inserting a long rod into
the hydrocyclone. It may also be seen that the recovery
of smaller particle sizes was enhanced in the presence of
the rod. This might have some benefit if the hydrocyc-
lone is to be used for classification. Asomah and Napier-
Munn [10] indicate that cyclone inclination significantly
affects hydrocyclone performance; particularly for larger,
low pressure cyclones at inclinations of 45° or greater.
Grommers et al. [11] highlight that, after testing a total of
26 different hydrocyclones, the hydrocyclone geometry
design factors that are particularly important are the under-
flow diameter and the depth of the vortex finder.

In terms of other aspects that are relevant to the over-
flow pipe design, Shah et al. [12] show that, from the co-
efficients of the individual models developed, it is evident
that the vortex finder diameter has a more pronounced
effect on water split (or split ratio, defined as volumetric

Fig.2 Mesh sructure of the hydrocyclone separator.
The total number of computational cdllsis 101,280.

flow rate of underflow/overflow) than the spigot diameter
and feed pressure. Mainza et al. [13] proposed a hycro-
cyclone with one underflow opening and two overflow
openings. The main function of the dua vortex findersin
athree-product cyclone isto prevent the short-circuiting of
coarse material into the overflow, and to promote preferen-
tial separation of the material reporting to the inner and
outer overflow streams.

With developments in science and technology, mathe-
matical models based on computational fluid dynamics
(CFD) are highly desirable for solving flow fields in a
hydrocyclone [14, 15], clarifier [16], etc. However, the
complexity of the flow pattern of a hydrocyclone separator,
changes in the air core pattern, and the CFD of unsteady
flow were seldom discussed.

The objective of this study is to investigate the flow
pattern and particle tracing of a hydrocyclone with differ-
ent overflow pipe shape through FLUENT. Three-di-
mensional, VOF multiphase flow model, and the LES tur-
bulence model were used to explore the effect of overflow
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Fig. 3 Geometries and sizes of the four types of overflow pipes.

pipe shape on separation efficiency.
[I.NUMERICAL METHODS

1. Geometry and Meshes

The geometry and meshes of this hydrocyclone are
displayed in Fig. 1 and Fig. 2. The diameters of under-
flow and hydrocyclone were 8 and 45 mm, respectively.
The length of the cylindrical part was 65 mm, while the
length of the cone part was 75 mm, making an overall
cone angle. The hybrid mesh volumes used in this study
is101,280. The overflow pipe section consisted of pipes
with two ends of different diameters; one of 12 mm and
another of 9 mm. Changes in the combination of exit and
entrance for the overflow separately created four different
types of overflow pipes. They include 9 mm straight
pipes (9-9), divergent overflow pipes (9-12), convergent
overflow pipes (12-9), and 12 mm straight pipes (12-12)
(Fig. 3).

2. Turbulence Model

Only the DSM and LES provide implicit accounting
for local turbulence asymmetry, and therefore it is only
models like these that are able to accurately capture the
detail of the hydrocyclone flow field, as demonstrated by
Slack et al. [17]. Thus, we applied the LES turbulent
model in our smulation. LES is a transient simulation
that requires grid that is 3D and finer than other grids.

Therefore, grid independence studies were conducted, and
it was determined that once the number of elements were
halved and doubled, the solutions of the velocity field
showed a maximum difference of 5.1% between the con-
secutive grids.

A filtered variable (denoted by an overbar) is defined

by:

#(X)=[,8(X)G(X,X")dx’ @

where D is the fluid domain, and G is the filter function
that determines the scale of the resolved eddies. In the
commercial CFD code FLUENT, the filtering operation is
implicitly embedded within the finite-volume discretiza-
tion process:

a(x):vijvgp(x')dx’,x’ev @

where V is the volume of a computational cell. The filter
function, G (X, X’), implied hereisthen:

, %,x’ev
G(X,X)= 3
0, X" otherwise

Filtering the Navier-Stokes equations, one obtains:

ap 9, _\
oo I =0 )
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where g is the stress tensor due to molecular viscosity
defined by:

o. = ﬂ_‘rai _E ﬂé‘
s X, X 340 )

and t;; is the subgrid-scal e stress defined by:

7; = puu; — pUu, @)

3. Initial and Boundary Conditions

The inlet fluid is moving at a constant speed, and the
boundary condition is as follows:

V = constant @inlet pipe 8

The outlet fluid is moving under the absolute pressure of
1 atm; therefore, the gauge pressure at underflow/overflow is
zero. Theboundary conditions are:

@underflow 9
@overflow (20

No-slip boundary conditions were applied on all walls
of the hydrocyclone. The computational fluid dynamics
program, FLUENT 6.1 (Fluent Inc., USA), solved the
governing equations (Egns. 4-7), together with the associ-
ated initial and boundary condition equations (Egns. 8-10).
The pressure staggered option (PRESTO) was adopted,
which is a pressure interpolation scheme reported as useful
for predicting the high swirl flow characteristics that pre-
vail inside the hydrocyclone body. The SIMPLE &ago-
rithm scheme was applied, which uses a combination of
continuity and momentum equations to derive an equation
for pressure. Interpolation for field variables, from cell
centers to the faces of the control volumes with a
higher-order quadratic upwind interpolation (QUICK)
spatial discretization scheme was used. The calculations
were carried out with the maximum relative error of 10-4
for fluid velocity evaluations.

[11. EXPERIMENTAL METHOD

Silicon oxide powder with a density of 2200 kg/m®

V-5

X V-4

Hydrocy¢lone

Agitator

Fig.4 Experimental setup of the hydrocyclone separator
system. The various components include a cen-
trifugal pump, storage tank, agitator, pressure
gauges (P-1, P-2, P-3), recycle valve (V-2), inlet
vave (V-1), overflow vave (V-4), underflow
valve (V-3), relief valve (V-5) and the hydrocyc-
lone separator.

was used in the experiments carried out in this study. A
laser light scattering facility (Horiba LA-950, 0.01-3000
um) with a 650 nm He-Ne laser and a 405 nm LED light
as the light source was used for size characterization of
the powder, and the average particle diameter was about
16.5um.

A suspension of desired mass concentration was pre-
pared prior to each experiment. The storage tank was
filled with 60 L of water, and a known mass of powder
was added to form a 0.3 wt% suspension. Fig. 4 shows
the configuration of the overall experimental setup used,
which includes various components such as a centrifugal
pump, storage tank, agitator, pressure gauges, valves, and
the hydrocyclone separator.

IV.RESULTSAND DISCUSSION

1. Separation efficiency curve and concentration

Fig. 5 shows the separation efficiency curve under
various pressures at a split ratio of 1.0. As shown in the
diagram, when the size of the overflow pipe entrance is
smaller (as with the type 12-9 and 9-9, solid symbals), it
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Fig.5 Experimental separation efficiency curves of the
four hydrocyclone separators (a) 0.9 bar (b) 1.2
bar (c) 1.5 bar. (Only the red symbol solid line is
from CFD)

does not facilitate particle flow through the overflow, so it
must flow out through the underflow instead. Therefore,
its curve efficiency is higher; when comparing 12-9 to
12-12 (Fig. 5(c)), the underflow flow rate of particles
through 12-9 increased by about 0.05. In other words,
under the same flow split ratio, type 12-9 and 9-9 overflow
pipes can obtain better supernatant liquids and more

0.8
e e——
067 e 9-9 overflow C%
051 o 9-9 underflow C%
’ v 9-12 overflow C%
X 041 a  9-12 underflow C%
o = 12-9 overflow C%
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02} ¢ 12-12 underflow C%
ol E‘::g\f‘
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Fig.6 Solid concentrations of underflow and overflow
under different operational pressures.

concentrated fluids. This is also described in a diagram
in Fig. 6 showing the overflow and underflow concentra-
tion as aresult of changing operating pressures. As seen,
when the operating pressure is greater, the overflow con-
centration is lower and the underflow concentration is
higher. Among various overflow pipes, type 12-9 and 9-9
overflow pipes can obtain better supernatant liquids and
more concentrated fluids. Simulation and experimental
results from type 12-9 overflow pipes, as represented by
the red solid circlein Fig. 5(a), are consistent.

Fig. 7 shows an efficiency increase of about 0.05 un-
der a fixed operating pressure during a higher flow split
rate, i.e., when the underflow islarge. The integration of
the results from these two diagrams indicates that if alarge
quantity of supernatant liquid is to be obtained, the first
task is to appropriately increase the flow split ratio and
then replace the overflow pipes with pipes of the convergent
type. Hashmi et al. [18] proposed an adjustable overflow
orifice. The overflow orifice's size in the CANMET hy-
drocyclone can be changed during operation to provide an
additional measure of performance control. Therefore, in
practice, a hydrocyclone with an adjustable overflow pipe
diameter can be designed to achieve separation.

2. Particle Tracks

To further understand the trgjectory of particles when
the overflow pipe changes shape, ten location points in the
hydrocyclone were selected for particle release so that
their trajectories could be observed, as shown in Fig. 8.
Using position 8 to serve as an example, Fig. 9 shows a
trajectory diagram for different sized particles. In type
9-9 and 12-9 overflow pipes, large particles are till af-
fected by centrifugal force, forcing them to move towards
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Fig. 8 Particlesrelease positions used in CFD.

the underflow. However, for type 9-12 and 12-12 over-
flow pipes, large particles are observed flowing out of the
overflow through the short circuit, resulting in poor sepa-
ration.

Reasons for this phenomenon can be determined by
Fig. 10, which shows the axial velocity distribution dia-
gram with a color map ranging from -7 m/s to 7 m/s,
where red represents upward moving velocity, and blue
represents the downward velocity. As shown in Fig. 10
(d), the periphery of the middle air core includes an up-
ward speed zone, which can easily carry particles towards
the overflow. The entrance to the overflow pipe aso
includes a large upward speed zone. With a larger area,
short-circuit flow can be created more easily. As shown
in Fig. 10(a) and 10(c), since the periphery of the middle
air core area covered by the upward speed zone is smaller
than Fig. 10(d), and the entrance of the overflow pipe has
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Fig. 11 Simulation efficiency curve of 15-15 type and

15-9 type hydrocyclone.

no upward speed zone, a short-circuit flow cannot be eas-
ily created. As shown in Fig. 10(b), although the upward
speed zone covering the periphery of the middle air core
has disappeared, thereis alarger forward speed zone at the
entrance of the overflow pipe that could easily lead to a
short-circuit flow.

The results showed that when the overflow pipe di-
ameter is smaller, in addition to creating difficulty in gen-
erating a short-circuit flow, it is also harder for particles to
flow out from the overflow exit, thus, obtaining a better
supernatant liquid. The drawback is that the relatively
small diameter can only allow the flow of a small amount
of supernatant liquid. As a result, if the primary objec-
tive of clarification requires a large amount of flow, then,
one feasible way is to use a convergent type of overflow
pipes. Therefore, this study simulated another overflow
pipe with a larger convergent angle of 15-9, i.e., a pipe
with an overflow entrance of 9 mm and an overflow exit of
15 mm. The separation efficiency is as shown in Fig. 11.
In the figure, a comparison with straight pipes 15-15 hav-
ing a similar exit diameter of 15 mm shows that the
amount of particles flowing towards the underflow can be
increased by 0.2, which is significantly greater than the
previous case at 0.05.

V. CONCLUSION

This study used simulation and experimental verifica-
tion to determine that a smaller overflow pipe diameter can
obtain much more supernatant liquid at the overflow.
However, the smaller the overflow pipe diameter, the
smaller the amount of supernatant liquid. The study fur-

ther proposed, through simulation, a convergent type 15-9
overflow pipe that can be used to obtain a relatively large
amount of supernatant from the overflow liquid. If the
objective is to obtain supernatant liquid or solutions with
great recycling value, then the appropriate use of a con-
vergent type of overflow pipe is recommended. The ad-
vantage is that even with little change in geometry and no
significant addition to cost, a much larger amount of su-
pernatant liquid can be obtained.

NOTATION

mass of arm

filtered variable

fluid domain

filter function that determines the scale of the re-
solved eddies

fluid density

fluid velocity
stress tensor
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