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Fluctuation formulas for the elastic constants of an arbitrary system
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We derive the general fluctuation expressions for both the isothermal and adiabatic elastic constants of
systems with arbitrary interparticle interactions and under arbitrary loading. We find that the expressions for
these two kinds of elastic constants have exactly the same form though in general their values would be
different. These formulas have the advantage that all elastic constants can be calculated in a single computer
simulation run without performing any deformation on the system.
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I. INTRODUCTION

Elastic constants yield valuable dynamical and mecha
cal information about materials. For example, they prov
information concerning their strength and stability.1–5 Fur-
thermore, the comparison between experimentally meas
and theoretically calculated elastic constants has been wi
used as an important means of probing the interato
forces.1,2 In cases where well established potentials are av
able one should be able to predict the behavior of the m
rial under various conditions of normal or extreme loadin

To compare experimental results with theory, it is nec
sary not only to have accurate experimental data, but als
have a reliable method of calculation. Recent advance
computer simulation techniques and formalism have m
this possible .1–21

On the other hand, a fluctuation formulation is very co
venient in computer simulation because it avoids numer
differentiation which may require long computational tim
and have low accuracy. A well-known example of a fluctu
tion formula is the expression for the specific heat as a fl
tuation of the energy instead of a derivative of the ene
with respect to temperature.

Squire, Holt, and Hoover were the first to derive t
‘‘equilibrium’’ fluctuation formulas for the isothermal elasti
constants9 in the stress-free state by noticing that the elas
constants are the second derivatives of the Helmholtz
energy. Their method was extended by many people to m
complex systems.12,15–21 The expressions so obtained ha
the obvious advantage that they converge rapidly for a s
material and all elastic constants can be calculated in a si
run without performing any deformation. However, the de
nition of elastic constants in most papers~see, for instance
Refs. 15–21! uses implicitly the natural~stress-free! refer-
ence~initial! configuration, thereforea priori the expressions
are only valid for systems up to moderate stress. They
do not provide the formulas for the stress-strain stiffnes
which govern stress-strain relations. Moreover, starting fr
the stress-free configurations makes the expressions com
and not easy to reproduce .15–21 It consequently discourage
attempts to use them. We must emphasize that there are
eral definitions, differing by some stress-related terms,
0163-1829/2002/66~5!/054101~7!/$20.00 66 0541
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the elastic constants for a system under loading, and e
physical situation may call for a different releva
quantity.5,7,11 Consequently, under loading, the tradition
elastic constants~we shall refer to them as thermodynam
stiffnesses to distinguish them from the stress-strain s
nesses! do not describe the elastic properties of a mate
directly, and in the fluctuation formulas the reference para
eters must be the ones of the current~stressed! state.3–5,7,11

These points must become more and more important with
rapid development of high pressure techniques and for
condensed matter in which the stress and elastic cons
have the same order of magnitude. We should also stress
though different definitions of strains can lead to differe
‘‘elastic constants,’’ the difference between the stress-str
stiffness and the thermodynamic stiffnesses is not comple
due to such a choice. The difference comes from the non
ear relationship between strains with different referen
states.7,11

We have recently developed the ‘‘equilibrium’’ fluctuatio
formulas to calculate the isothermal stress strain stiffness
a central force system under arbitrary stress and at
temperature.5 It has a relatively simple form and has bee
applied successfully to several systems, albeit care is
quired in the choice of algorithms to accurately reprodu
the desired ensemble when dealing with highly disorde
soft materials.22–25

The interatomic force, however, in a real material is
general noncentral. The appropriate expressions for non
tral forces would therefore have a more general applicabi
Expressions for the adiabatic stress-strain stiffnesses are
not yet available even for a stress-free state. So we de
both in this work.

We derive the correct fluctuation formulas for both is
thermal and adiabatic stress-strain stiffnesses with arbit
interparticle interactions and under arbitrary loading. Our
proach is similar, but much simpler, than the one used in R
21. We show that the expressions for these two sets of c
stants are exactly the same though in general their va
would be different.

The paper is organized as follows. We first present in S
II some fundamental expressions on which our discussio
based. Sec. III derives fluctuation formulas for theisother-
©2002 The American Physical Society01-1
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mal thermodynamic stiffnesses and stress-strain stiffnes
In Sec. IV we then develop the fluctuation formulas for t
adiabatic thermodynamic stiffnesses and stress-strain s
nesses. These sections are followed by a short presentati
their zero temperature static limit and a discussion of bou
ary conditions. A summary concludes the paper.

II. FUNDAMENTAL EXPRESSIONS

We first present some fundamental expressions on w
our discussion is based. Some of them have rarely appe
in the literature.

A. Thermodynamic stiffnesses and stress-strain stiffnesses

To derive the expressions for the thermodynamic st
nesses, following Ray and Rahman,15 we introduce the
scaled coordinatesqi and scaled momentap̃i defined by

xi5hqi or xia5habqib , and so qia5hab
21xib , ~1!

pi5p̃ih
21 or pia5hba

21p̃ib , and so p̃ia5hbapib , ~2!

wherex and p are the real coordinate and momenta of t
particle.h5(a,b,c), wherea, b, andc are the three vector
forming the simulation cell. Therefore for all atomsi, we
have20.5<qia,0.5. In these equations, and all subsequ
ones, the Einstein summation convention for repeated
fices is followed, except where clarity requires showing e
plicitly the summations. We also use the convention t
Greek indices refer to Cartesian components while Rom
indices to particle numbers. The volume of the system
given byV5det(h).

The strain tensor can then be defined by15

h5
1

2
@~h0

21!T
•hT

•h•h0
212I #, ~3!

whereh0 is the reference value ofh andhT the transpose o
h. h0 can be either stress-free or stressed.h is called the
Lagrangianfinite strain tensor, which can represent any d
formation, however large. We should recall here that in
present work we take eventually the limith→h0. We should
also point out that Eq.~3! is in fact valid for any simulation
cell, not only for rectangular parallelepipeds.

The Hamiltonian of an arbitrary system can be written

H5(
i 51

N pi
2

2mi
1U~$xi%!

5(
i 51

N
1

2mi
~ p̃i•h21!~ p̃i•h21!1U~$h•qi%!. ~4!

The thermodynamic stiffnesses are defined by

Cabnt[
1

V0
S ]2W

]hab]hnt
D

h50

, ~5!

whereW is the strain energy.W can refer either to the Helm
holtz free energyF in the derivation of isothermal thermo
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dynamic stiffnesses~the canonical ensemble! or to the inter-
nal energyE in the derivation of adiabatic thermodynam
stiffnesses~the microcanonical ensemble!. V0 is the refer-
ence value of the volume.h50 ~or h5h0) in Eq. ~5! means
that the elastic constants are calculated for virtual infinite
mal displacements from the reference configuration wh
could be a stressed state. Consequently, when using ‘‘e
librium’’ fluctuation formulas for the calculation of elasti
constants, the reference configuration~i.e., before virtual de-
formations are applied to the system! must be the curren
one. Note that the subscripth50 or h5h0 is often
neglected.15–21 This could lead to additional and incorre
reference parameters, and make the expressions unnec
ily complex. We also do not distinguish between the isoth
mal elastic constants and the adiabatic elastic constan
this paper because their expressions have exactly the s
form.

We must also emphasize that for a stressed system
Cabnt do not describe elasticity directly. Instead, we need
consider the stress-strain stiffnesses~also called elastic stiff-
ness coefficients! which govern stress-strain relations and a
given by3–5,7,11

cabnt[Cabnt2
1

2
~2sabdnt2sandbt

2satdbn2sbtdan2sbndat!. ~6!

In thermodynamics, a thermodynamic stress tensortab is
introduced:6

tab5
1

V0

]W

]hab
5sab~0!1Cabnthnt1•••, ~7!

where sab(0) is the reference value of the applied stre
sab ~often the opposite sign fortab is used as in Refs
15,18!. We then have

Cabnt5S ]tab

]hnt
D

h50

5Cntab . ~8!

tab should not be confused with the applied stresssab
which is formally equal to7,11

sab5
1

V~h! S ]W~hab ,hab8 !

]hab8
D

h
ab8 50

. ~9!

The reference configuration is the system deformed byh~or
hab). h8 or hab8 is the small deformation made on that sy
tem. So it is a different reference configuration than
Cabnt . A nonzero applied~Cauchy! stress of a configuration
is given byt when and only when that configuration is ch
sen as the reference configuration.7,11 Using Eq.~9!, one can
show that the difference between the stress-strain stiffne
and the traditional elastic constants comes from the nonlin
relationship between the strains with different referen
states.7
1-2
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B. Strain derivatives

From

hab
21hbt5dat ,

]hab
21

]hkz
52hak

21hzb
21 , ~10!

we obtain

]xa

]hnt
5htj

21xjdan ,and
]pa

]hnt
52hta

21pn . ~11!

So for an arbitrary scalarA(x,p), we have

]A~x,p!

]hab
5

]A

]xa
hbn

21xn2
]A

]pn
hbn

21pa , ~12!

if we use both the scaled coordinates and scaled mome
From Eq.~3! follows

dh5
1

2
@~h0

21!TdhThh0
211~h0

21!ThTdhh0
21#. ~13!

Note thatdh5h2h0 has nine independent components b
dh has only six. This is because some changes indh repre-
sent an infinitesimal rotation of the whole system. To d
scribe a rigid rotation we have to introduce the antisymm
ric rotation tensor6,7

dv5
1

2
@~h0

21!TdhThh0
212~h0

21!ThTdhh0
21#. ~14!

Note that only in the limit of infinitesimal deformation doe
the tensorv represent an infinitesimal rotation. It follow
that a finitev, with a finite h2h0, from Eq. ~14! does not
give a pure rotation, but includes some strain. Such fin
strain effects are often important in the theory of the elas
ity of stressed solids. However, since we will always take
limit of h→h0 in our final results, such effects are irreleva
in the present work.

From Eqs.~13! and ~14!, we obtain immediately

dv1dh5~h0
21!TdhThh0

21 ~15!

and

dA~h!5
]A

]hnt
dhnt5TrS ]A

]h
dhTD

5TrS h0h21
]A

]h
h0

T~dh1dw! D
5h0kzhzn

21 ]A

]hnt
h0tj

T ~dhjk1dwjk!.

~16!

Finally from Eqs.~12! and ~16!, one obtains
05410
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]A~x,p!

]hab
5

1

2 S ]A

]hab
1

]A

]hba
D

5
1

2 S h0bzhzn
21 ]A

]hnt
h0ta

T 1h0azhzn
21 ]A

]hnt
h0tb

T D
5

1

2
$h0h21@~D r1D p!A#~h21!Th0

T%ab , ~17!

where

D ab
r 5xa

]

]xb
1xb

]

]xa
,

D ab
p 52pa

]

]pb
2pb

]

]pa
. ~18!

III. FLUCTUATION FORMULAS FOR THE ISOTHERMAL
ELASTIC CONSTANTS

For the canonical ensemble, we followed Lutsko21 and
used both scaled coordinates and scaled momenta to d
the desired expressions. However, it is not necessary to
scaled momenta in this ensemble. It only makes the der
tion more complex so we did not follow this procedure
this paper. To exclude the use of the scaled moment
equivalent to set]p/]hab50 andD ab

p 50. In this ensemble,
the partition function is

Z5E dp3Ndx3Ne2H/kBT5CVNE dq3Ne2U/kBT, ~19!

whereC is the constant coming from the integral over 3N
momenta and is irrelevant in our derivation so we will om
it from now on. The Helmholtz free energyF is given by

F52kBT ln Z52kBT ln Z̄2NkBT ln V, ~20!

with Z̄5E dq3Ne2U/kBT. ~21!

For a scalarÂ(x) which is not explicitly dependent on th
size of the system, the ensemble average is

^Â&5
1

ZE dp3Ndx3NÂe2H/kBT

5
1

Z̄
E dq3NÂe2U/kBT. ~22!

It follows from Eqs.~17!, ~18!, and~22! that
1-3
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]^Â&
]hab

5K ]Â

]hab
L 2

1

kBT S K Â
]U

]hab
L 2^Â&K ]U

]hab
L D

5
1

2 Fh0h21S ^D r Â&2
1

kBT
~^ÂD rU&2^Â&^D rU&! D

3~h21!Th0
TG

ab

. ~23!

From Eqs.~7!, ~17!, ~20!, and~22!, it is easy to find that

V0tab5 K ]U

]hab
L 2nkBT

]V

]hab
5V0^tab

B &2nkBT
]V

]hab
,

~24!

wheren5N/V is the number density of the system and

V0tab
B 5

]U

]hab
5

1

2
@h0h21~D rU !~h21!Th0

T#ab . ~25!

From Eqs.~23!, ~24!, and~25!, we obtain

2V0

]tab

]hnt
5V0S ]tab

]hnt
1

]tnt

]hab
D

5FV0

2 S h0h21S ^D r tab
B &2

1

kBT
•~^tab

B D rU&

2^tab
B &^D rU&! D ~h21!Th0

TD
nt

1
1

2 S h0ak

]hkz
21

]hnt
^D zj

r U&~h21!jm
T h0mb

T

1h0akhkz
21^D zj

r U&
]~h21!jm

T

]hnt
h0mb

T D G
1$exchange of~a b! and~n t! in the above@ #%

22nkBTS ]2V

]hab]hnt
2

1

V

]V

]hab

]V

]hnt
D . ~26!

From Eqs.~10! and ~16!, we get

S ]hkz
21

]hnt
D

h5h0

52
1

2
~hkt

21dnz1hkn
21dtz!. ~27!

Combining the results from Eqs.~8!, ~25!, ~26!, and~27!,
the isothermal thermodynamic stiffnessesCabnt are then

Cabnt5S ]tab

]hnt
D

h50

5
1

4
^D nt

r ŝab
B 1D ab

r ŝnt
B &

2
V0

kBT
~^ŝab

B
•ŝnt

B &2^ŝab
B &^ŝnt

B &!
05410
2
1

2
~snb

B dat1sat
B dnb1stb

B dan1san
B dtb!

1nkBT~datdbn1dandbt!, ~28!

where we have used

1

V0
S ]V

]hab
D

h50

5dab ,
1

V0
S ]2V

]hab]hnt
D

h50

5dabdnt2datdbn2dandbt , ~29!

sB5^ŝB& is given by

ŝab
B 5tab

B uh5h0
5

1

2V
DabU5

1

2V S xib

]U

]xia
1xia

]U

]xib
D ,

~30!

and the applied stresss becomes

sab5sab
B 2nkBTdab . ~31!

With Eqs.~18! and ~30!, a direct calculation leads to

V0D ab
r snt

B 5
1

2
^D ab

r D nt
r U&

5
1

2 K xia

]U

]xi t
dbn1xia

]U

]xin
dbt1xib

]U

]xin
dat

1xib

]U

]xi t
dan1UabntL , ~32!

where

Uabnt5xiaxj n

]2U

]xib]xj t
1xiaxj t

]2U

]xib]xj n

1xibxj t

]2U

]xia]xj n
1xibxj n

]2U

]xia]xj t
. ~33!

Finally, combining Eqs.~28!, ~30!, and~32!, we obtain

Cabnt52
V0

kBT
~^ŝab

B
•ŝnt

B &2^ŝab
B &^ŝnt

B &!

2
1

4
~sbn

B dat1sat
B dbn1sbt

B dan1san
B dbt!

1
1

4
^Uabnt&1nkBT~dandbt1datdbn!. ~34!

The first term inCabnt is the ‘‘fluctuation term.’’ The second
arises from the effect of the stress. The third term is refer
to as the ‘‘Born term,’’ owing to Born and his collaborator
works on thermodynamic stiffnesses of a ‘‘static’’ system
zero temperature.1 And the last is sometimes called the ‘‘k
netic term.’’9 From Eqs.~6! and ~34!, the stress-strain stiff-
nesses are then
1-4
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cabnt52
V0

kBT
~^ŝab

B
•ŝnt

B &2^ŝab
B &^ŝnt

B &!

1
1

4
~sbn

B dat1sbt
B dan1sat

B dbn1san
B dbt

24sab
B dnt!1

1

4
^Uabnt&1nkBTdabdnt . ~35!

For a pairwise central-force system, it is not difficult to sho
that the expressions for the elastic constants reduce to
expressions given in Ref. 5.

IV. ADIABATIC ELASTIC CONSTANTS

To find the adiabatic elastic constants is a little more
volved because we have to use the scaled momenta in
first step of the derivation.

A. Formulation of the microcanonical ensemble

The microcanonical ensemble can be defined by using
phase volume via8,14,2

f~E,V,N!5E
H<E

dp3Ndx3N5E u~H2E!dt, ~36!

whereE is the energy,dt5dp3Ndx3N and the step function
u is

u~x!5H 1 x,0,

0 x.0.
~37!

The density of statesv(E,V,N) is defined by

v5
]f

]E
5E d~H2E!dt, ~38!

whered is the Dirac delta function. The normalized pro
ability densityW(x,p) is

W~x,p!5
d~H2E!

v
. ~39!

The average value of any quantityf (x,p) is determined from
^ f &5*W f dt. The entropy is equal to

S~E!5kB ln f~E! ~40!

whenN is large.2,8 We have omitted various constant facto
which would renderf dimensionless since these consta
factors would not appear in any of our final results. From E
~40!, we obtain for the temperature

T5S ]S
]E D

V,N

21

5
f

kBv
. ~41!

Assuming the Hamiltonian is dependent on an additional
ternal parameter, sayy, the adiabatic theorem gives8,14,15

]E

]y U
S,V

5 K ]H
]y L 5

1

vE ]H
]y

d~H2E!dt. ~42!
05410
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From the equipartition theorem,8,14,15we obtain

K pa

]H
]pb

L 5
f

v
dab5kBTdab . ~43!

B. Fluctuation formulas for the adiabatic elastic constants

From Eqs.~7!, ~17!, ~42! and ~43!, with both the scaled
coordinates and scaled momenta, we can show that

V0tab5
]E

]hab
U
S

5 K ]H
]hab

L
5

1

2
@h0h21^~D r1D p!H&~h21!Th0

T#ab

5
1

2
@h0h21^D rU&~h21!Th0

T#ab

2NkBTh0ajhjz
21hmz

21h0bm . ~44!

To continue the derivation, we do not need to use
scaled momenta, so we set again]p/]hab50 andD ab

p 50.
There is a small difference between the method we use
this paper and the method using the scaled momenta. We
discuss this difference at the end of this section. What
must stress here is that using the scaled quantities is on
mathematical trick and should have no effect on the fi
results, as has been confirmed for the isothermal elastic
stants.

Now we introduce a new function

X~E,h,N!5E tab
B u~H2E!dt

5VNE tab
B u~H2E!dt8, ~45!

wheredt85dp3N
•q3N. We have

S ]X

]hnt
D

S
5n

]V

]hnt
X1E ]tab

B

]hnt
u~H2E!dt

2E tab
B d~H2E!F ]U

]hnt
2S ]E

]hnt
D

S
Gdt

5n
]V

]hnt
X1E ]tab

B

]hnt
u~H2E!dt

2V0E tab
B tnt

B d~H2E!dt1V0^tab
B &^tnt

B &v

2NkBTh0njhjz
21hmz

21h0tm^tab
B &v. ~46!

For a system of many degrees of freedom, the approxima
X5^tab

B &f and
1-5
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E ]tab
B

]hnt
u~H2E!dt5K ]tab

B

]hnt
L f, ~47!

must be very accurate, therefore we have

fS ]^tab
B &

]hnt
D

S
5n

]V

]hnt
^tab

B &f1fK ]tab
B

]hnt
L

2vV0^tab
B tnt

B &1vV0^tab
B &^tnt

B &

2NkBTh0njhjz
21hmz

21h0tm^tab
B &v. ~48!

Using Eq.~27! again, it is easy to show that

2nkBTh0aj

]~hjz
21hmz

21!

]hnt
U

h50

h0bm

5nkBT~datdbn1dandbt!. ~49!

Using Eqs.~17! and ~25!, we can find that

V0K ]tab
B

]hnt
L 5

V0

2
$@h0h21^D r tab

B &~h21!Th0
T#nt

1@h0h21^D r tnt
B &~h21!Th0

T#ab%

1
1

2 Fh0ak

]hkz
21

]hnt
^D zj

r U&~h21!jm
T h0mb

T

1h0akhkz
21^D zj

r U&
]~h21!jm

T

]hnt
h0mb

T G . ~50!

Now we put together Eqs.~44!, ~48!, ~49!, and~50! ~with the
exchange of$a,b% and $n,t% in Eq. ~50! to keep the sym-
metry ofCabnt). And then lettingh50 or h5h0, and using
Eqs. ~17!, we recover Eq.~28! exactly, as well as Eqs.~34!
and~35!. Therefore, the fluctuation formulas for the adiaba
elastic constants have exactly the same form as those fo
isothermal elastic constants.

It is interesting to note, that if we insist on using th
scaled momenta to derive the final expressions, afte
lengthy calculation, we will find that there is an extra term

S 2
3NkBT

V
1

1

kBTVm2 K (
i

pia
4 L D dabdbndnt , ~51!

different from Eqs.~34! and ~35! for the adiabatic elastic
constants. This is the main reason why we do not use
scaled momenta in this paper, except for the derivation
Eq. ~44!. The equivalence of the two approaches theref
requires that the identity

K (
i

1

m2 pia
4 L 53N~kBT!2 ~52!

should also be valid for the microcanonical ensemble. In
canonical ensemble it is rather simple to get Eq.~52!. This
result provides one more evidence of the ensemble equ
lence for a large system,2 i.e., the velocities obey the Max
well distribution in both the canonical and microcanonic
05410
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ensembles, a criterion often used to determine whether a
tem is large enough in computer simulations.26,27

V. ZERO TEMPERATURE AND STRESS-FREE LIMIT

At T50, we have to pay some special attention to t
limit of the ‘‘fluctuation term.’’ We will not present a detailed
derivation for this case since it is done in Ref. 21. The stre
strain stiffnesses in this case are

cabnt52
1

4V0
S xiadbj

]2U

]xib]xi j
1xibdaj

]2U

]xia]xi j
D

3S ]2U

]xi j
2 D 21S xindjt

]2U

]xi j]xi t
1xi tdjn

]2U

]xi j]xin
D

1
1

4 S xiaxin

]2U

]xib
2

1xiaxi t

]2U

]xib
2

1xibxi t

]2U

]xia
2

1xibxin

]2U

]xia
2 D . ~53!

Note that in the above equation, the sums do not inclu
the first particle since we do not consider the motion of
center of mass.21

VI. BOUNDARY CONDITIONS

In the above derivation, all particles are confined in t
simulation cell, i.e., the cell formed by the three vectorsa, b,
and c, with h5(a,b,c). As usual, our expressions shou
work well for a large system or in the thermodynamic lim
i.e., with N→`, V0→`, but with n[N/V0 finite. In this
case, the boundary effects are irrelevant. However, in p
tice one has to deal with boundary conditions since the s
of a simulated system is in general quite limited. Perio
boundary conditions~PBC!27 are the most commonly used i
simulations, and it is not difficult to show that they are a
tomatically satisfied in our formulation. With PBC we have
continuous infinite system with no boundaries. The partic
in the primary cell given byxi5hqi , where i 51,N, and
20.5<qia,0.5 (a51,2,3) are repeated into image cells b
translationsRn5n1a1n2b1n3c, where na(a51,2,3) are
arbitrary positive and negative integers. Scalar functio
such as the potential energy can be viewed as funct
U($xi ,n%) where

xi ,n5hqi ,n5h~qi ,01Rn!, ~54!

and the components ofqi ,n are no longer constrained by th
limits @21/2,1/2) but extend over all real numbers. With th
extended zone scheme the basic relation given by Eq.~12!
still holds and there is no explicit dependence of physi
quantities onh. The integrals overdx3N or dq3N extend now
over (2`,`). By symmetry the average value of any qua
tity in an image cell is exactly the same as in the prima
cell.

In contrast, for a finite system without PBC, it is indee
necessary to introduce explicitly the dependence ofU on h,
1-6
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such asU($xi%,h), since the boundary conditions have to
realized by some extra terms, in addition to the interparti
interactions and the external fields. These terms would h
a complicated dependence on the size and shape of the
tem. The partials]U($x%,h)/]hab become much more com
plex. We do not present expressions for these partials in
work since there is no general way to calculate them.
should also note that in this case, the shape of the sys
may not even be a parallelepiped, so our derivation would
longer be valid. Finally, it is interesting to note that althou
the derivation seems to require that the deformations be
mogeneous, by taking the limit to infinitesimal strain, what
calculated is the linear response of the system valid also
inhomogeneous deformations.

VII. CONCLUSION

In summary, we have derived the most general fluctuat
formulas for both isothermal and adiabatic stress-strain s
nesses with arbitrary interparticle interactions and under
bitrary loading. We find that the expressions for these t
B
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n
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r-
o

kinds of coefficients are exactly the same, although, in g
eral, their values will be different. We should point out th
these expressions are also valid for a two-dimensional
tem though our derivation in this paper is based on the th
dimensional system. Moreover, they are valid for both Mo
Carlo and molecular dynamics computer simulations. Th
formulas have the advantage that all elastic constants
calculated in a single run without performing any deform
tion. They may be especially useful in molecular dynam
simulations because they require little additional compu
time. They may also permit the derivation of exact formu
for stress-strain stiffnesses at zero temperature for s
simple inter-particle interactions in a perfect lattice.
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