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Quantum phonons and the Peierls transition temperature
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The effect of quantum phonons on the Peierls transition temperature in a one-dimensional commensurate
system is studied. The nonadiabatic effect due to finite phonon frequepey0 are treated through an
energy-dependent electron-phonon scattering funcéigd k). By using the Green's-function perturbation
theory we have shown that our theory gives a good description of the effect of quantum ph@n@hsre
exists a critical electron-phonon couplirgﬁ. The Peierls transition temperatufg=0 when the coupling
gz<g§ and T, increases with increasing2>g§. (i) The ratio 22/T,, could be much larger than the BCS

value 3.527.
DOI: 10.1103/PhysRevB.65.014304 PACS nuni®er71.38—k, 71.30+h, 71.45.Lr
[. INTRODUCTION large  nonadiabaticity w,/A~1 and/or the low

dimensionality’ As was shown by previous authors, the

The Peierls instability and the related charge ordering oMigdal-Eliashberg theory cannot remove the inverse-square-
spin-Peierls phenomena in some quasi-one-dimensional syssot singularity ofa(w) at w=2A 1%
tems have attracted a growing interest in these y&drghe We proposed to study the problem starting from the fol-
Peierls instability leads to a lattice distortion at wave vectodowing Takayama-Lin-Liu-Maki (TLM) Hamiltonian for
2ke (ke is the Fermi wave vectorin their lower tempera-  spinless electron,
ture phases and the charge and/or spin degrees of freedom
are coupled with the lattice displacement. Although the adia- b= | dvet . i
batic approximation, that is, treating the lattice displacement e= | dy¥(y)| —lveos ay " e(y)o
as a static mean field, is usually used to deal with these
systems, there are several reasons that the nonadiabaticity of
the electron-lattice interaction may play an important role:

(i) For many Peierls-distorted systems the zero-point mo- . .
tion of the lattice,éu=#/2Mw, (w, is the phonon fre- Wh_'Ch d_escrlb_e_s t_he Iow-ent_argy properties of systems of

; . Pl D . : . Peierls instability(in the continuum limit. It may be the
qguency with mas$/), is comparable to the lattice distortion ' . . : : _
Uo (Ref. 4 (e.g., for polyacetyleney,~0.03 A and du s!mplest model but contains the ma|1n physics of Peierls 'tran-
~0.03 A). As the size of the gap/2is proportional tou,, ~ S'ton. Here o (@=123) ando.=3(o1%07) are Pauli
0

lattice fluctuations should have an important effect on thgnatrices.
electronic properties. The optical absorption coefficient Ui(y)
a(w) calculated in the adiabatic mean-field approximation \p(y):( 1y )
has an inverse-square-root singularitywat 2A and there is

ho(y)
no absorption inside the gap. The observed absorption is . . I
quite different. The singularity is absent and, instead of it,IS the spinor representation of Fermionic operatgity)

there is a peak around=2A with a significant tail below and y,,(y), which describe right and left movers, respec-
the peak tively. ¢(y) is the backscattering potential related to

(i) In some quasi-one-dimensional systems the phonoRhonons'
frequency may be of the same order of magnitude as the
characteristic energy of the electrons; for example, in the o(y)=
inorganic spin-Peierls system CuGgthe phonon frequency KN

~20-30 K and the spin gapj~23 K?° . .
“p Pin gap Nis the total number of unit cellgy, the phonon frequency

(i) How to describe the finite temperature properties ith Sori K he el h i
The adiabatic theory predicts a higher Peierls transition tem?/t SPring constank, « the electron-phonon coupling con-

peratureT, (2A/T,~3.527), but it does not agree with the SNt andb, (b" ) the annihilation(creation operator of _
experimentall, (2A/T,~6-10 in various experiments, or the phonon modeg. We assume the commensurate case with

even largex”® Moreover, as the temperature increases thé €@l backscattering potentialy) = ¢* (y). Instead of the
absorption spectrum broadens considerably. There is no aPackscattering potential used by Ref. 4 which is a static but
cepted quantitative theory of the shape of the spectrum an@ndom one, herg(y) has its own dynamics which can be
its temperature dependertte. described by

(iv) The main theoretical approach which can be used to
deal with the nonadiabat_icity is the Migdal-Eliashberg Hp:wa bgbq. (4)
theory, but, unfortunately, it may be broken down by the q

+@*(y)0—)‘1’()’). @

@

awp

% (b ;+bgexp(iqy). )
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the harmonic Hamiltonian of phonons. The total Hamiltonian  The total HamiltoniarH is divided asH =Hy+H 1, where

iSH=H¢+H,. H, is the last term in Eq(5). Then the transformation can
A spinless electron model is not so unphysical as ongroceed order by order, The first-order terms in the trans-

might consider at the beginning. It may be related to theformed HamiltonianH’ are

spin-Peierls transitioA*®> An XY spin chain with nearest-

neighbor exchange and spin-lattice interaction is equivalent, azwp UE

through a Jordan-Wigner transformation together with theH1=H1+[SHo]l=\/ 2 — o2kt q| Wi(k+q)
continuum approximation, to the spinless TLM model. Be- ka ©OpTUF

sides, both the strong correlatigfor example, the double x{[|2k+q|oy—i(2k+ q)g2]b‘r_q+[|2k+q|al
exchange modgland the strong magnetic field can lead to

the consideration of only one spin component. +i(2k+q)oz]bgt W (k), (8)

The theoretical analysis becomes difficult when the quan- . ,
tum phonons and the finite-temperature fluctuations are takeffhere we have already used the functional forms@i’ k).

into account. Various methods have been used for the prob-e Sécond-order terms k', which are diagonal in phonon
lem, such as the Monte Carlo simulatiitl perturbation ~ ©OP€rators, can be collected as follows:
calculation!® Green's-function techniqu¥;!* renorma- )
lization-group analysi&®~?! variational method of the L 1 _ a®  ve(2k+0)
. . . H2_[81H1]+ [SY[SYHO:I]_
squeezed-polaronic wave functiéhand a phenomenologi- 2 KN 3 wp
cal random potential with Gaussian correlatibi&eviously,

one of us developed an approach to treat the lattice fluctua- X(biq_bq)(bg_bfq) 8*(k+0,k) P (K)og¥ (k)
tions due to finite phonon frequency,>0 through an o?
energy-dependent electron-phonon scattering function ——— > [2-8(k'—q,k")]S(k+q, k)Wt

5(k’,k).2% In this work, we extend the approach to the study KN kk',q

of effect of quantum phonons on the Peierls transition tem- tour ,

perature and the ratio&T,. In our calculation some ap- X (kt o PO =q)oy ¥ (k). ©
proximation to the self-energy of the Green’s function will

be used, which may be good when the phonon frequency We make a displacement transformation to' to
is small:w,<ur. Throughout this paper we piit=1 and take into account the static phonon-staggered ordering,

Il. THEORETICAL ANALYSIS R= _Uo\/%(bg_bo)- (10

I P
In momentum space the Hamiltonian reads

exp[) is a displacement operator:
- t i
H= 2 ek (o5 (0+ 2, bibe exp(R)o(y)exp—R)=p(y) +atg, (1D
a2wp R and uy is a variational parameter to describe the static
VRN kE (bl +by)¥'(k+q)o¥(k). (5)  phonon-staggered ordering. This transformation is to intro-
4 duce a phonon-staggered potentigf( k) for electrons,
The last term in Eq(5) describes the electron-phonon inter-
action: at the electron-phonon vertex an incoming electron , + +
with momentunk is scattered by the phonon into an outgo- H0:2k vekW¥ (k)‘fﬂr(k)“"p% bgbq
ing one with momentunk+q. The momentunk is mea-
sured from the Fermi poirk= 0. A unitary transformation is N o
used to take into account the electron-phonon correlation, "'; Aok (k)(fl‘l’(k)"‘T’\" (12)

H’' =exp@H exp(-9),

2

o2 Ag(k)=aug[1—-8(k,Kk)]. (13
S= b ,—bg) 8(k+q,K) T (k+0q)o, ¥ (k).
wpKNqu( a” Po) Akt QW kr o ¥ () The equation to determing, is
(6)
; Py e ; ; 2a?
Here a functions(k’,k) is introduced inS which depends __== 1— Sk KUY T (K)o W (K 14
on the energies of incoming and outgoing electrons in the @l KN ; [ (kI (ko P (), (14

electron-phonon scattering process. It is defined as )
where(- - -} means the thermodynamical average.

All terms of orderO(«?) in H’ will be neglected in what
a(K' k)= —————, (7)  follows becauseH'=H,+H;+H, becomes the exact
wptUr[k' K| Hamiltonian in bothw,=0 and w,— limits. When w,,
and the reason for this definition will become clear later. =0, §(k’,k)=0, and therH;=0, H,=0,
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H'(mp=0):2k vk ¥ T (k) ora W (K)

Ku?
+> aug¥ (kK)o W (k)+ TON. (15)
k

This is equivalent to the original Hamiltoniadt in adiabatic
mean-field approximation. Whea,— =, 5(k’,k)=1, and
thenuy=0, H;=0,

H' (wp—) =2, vek¥ (k) o3 (k) +w, >, blbg
k q

2

- T
N kg WT(k+a)oy¥ (k)

XUk =)o P(K'). (16)

This is the exact Hamiltonian fab,—c limit, which can be
obtained through the functional mtegratlon metHbd.

The purpose of our transformation is to find a better way
to divide the Hamiltonian into the unperturbed part and the
perturbation. For the smadl,<mv case we tredtl as the
unperturbed part an#i;+H, the perturbation, becaug®
Hi+H,;—0 asw,—0, and(ii) by choosing the functional
form of 8(k',k) in Eq. (7) the contribution ofH; to the
self-energy whem =0 is nearly zergsee below

The perturbation treatment is through the conventional
Green’s-function theory.  Gg(k,iky)=[ikn—vekos
—Aq(k)o,] "1 is the Green's function foH{ and that for
H', G(k,ik), is related toGy(k,ik,,) via the Dyson equa-
tion. The second-ord¢O(a?)] self-energy can be written as

S (K, iK ) = iKS o(K,ik ) +[E(K) —vek+ S a(K,ik ) Jos
+[A(K)=Aq(k)]oy. 17

Here[ E(k) —vgk]oz+[A(k) —Ay(K) Joy is the contribution
of Hj

2 UF(k’

+k
E(k)=vek— 1y Z )

@p

o 221

N kZ [2—8(K' k)]
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ikm2o(k,iky) and35(k,ik,) o3 are contributions of 7,

20 Z(k+k")?
Solkikn) = ey’ 2 v )
KN % (wptuplkrk'])?

X

1—sgnk+k’

on )Wo(k )]
W, (k'

cotk( (20_? +tan|‘( ;(T ))

X

(ikm)z_[wp+wo(k/)]2

11+ sgrikt k') — ]
J ok

» k")
cot)'( 2_?) tank( )
X

(ikm)z—[wp—Wo(k')]2

(22

a’w v2(K+K")?2
Sokiky = L0 PRI
KN %7 (wpt+velk+k'])

vk l wp+Wo(k')
Wo(K') | (ikm) [ wp+Wo(k')]?

cot){ ;)T) + tam—( W;(Tk )) }

!

2Hsgr{l<+k’)

Up
+|sgnk+k’)+
Wo(k")

—Wo(k")
(ikm)?—[wp—Wo(k")]?

cot){ ;)T) ta )‘(W;(.:_(,))H, (23
Wo(K) = o Zk2+A2(K). (24)

We note that the contribution ¢1; to the nondiagonal term
[the prefactor ofo; in 2 (k,ik.,)] is zero and this is one of
the reasons of choosing the form &fk’,k) in Eq. (7). Be-

sides, forup=0 and going to the Fermi poirkt=0,

;o vk [W(k')
xB(k,k)Wo(k,)LanI‘( >T ) (18
A(K)= aug[c—das(k,k)], (19)
o? Ao(k) [ Wo(K)

°:1+m2k 6(k,k)auowo(k)Lanl‘( T ) (20)

o L Ag(k)(Wo(K)

d=1—m2k [1—5(k,k)Jau0W0(k)Lanr( o )
(21)
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. _ 2g(k,iky) [1d .
U(lkm)—lgT— ;d—kzg(k-lkm)
_azwp d 2vp(k+k’)?

KN % dk(a)p-i-v,:|k-|—k'|)2

k—0

wp—Wo(k")
(ikm)?—[wp—Wo(k")]?

oo ] )|

xXsgr(k’)

(26)

=

PHYSICAL REVIEW B65 014304

It is easy to check thaty(0,ik,,)=0 ando(ik,)=0 when
T=0. This is another reason to choose the formsgt’ k)
in Eq. (7).

The thermodynamical averagel'(k)o, ¥ (k)) can be
expressed as

+ _1 ,
(W (K)o W (K)) BkETr[olak,ukm)], (27)

and then the equation to determine,, Eq. (14), is

2A(K)

az
N ; [1-58(k,K)]

au0=

Note thatk,=(2m+1)#T and the summation ovek,, is
over the whole set of integers.

Ill. T=0 CASE

Let us discuss th& =0 case first. We make the approxi-

mation of taking the k—0 limit (at Fermi poink
S o(k,ikm) =20(0,ikyn)~0 andX;(K,ik ) /vek~a(ik,)~0

[Egs. (25 and (26)], which may be a good approximation

whenw,<mve. Then the equation to determing is

A(k)

E [1- ok 0T Wi (29

= JEX(K) + A%(K).

whereW(k)

The density of state6DOS) N(w) can be expressed by

the retarded Green'’s function as follo
N(w)=—i2 Im Tr GR(K, w) (30)
’ﬂ'N " ’ ’

where GR(k,w)=G(k,ik,=w+i0") is the Green’s func-
tion for the original HamiltoniarH,

~ B
G(k,iky)=— fo dr(T, ¥k, 7)¥'(k,0))exp(i k)

B
—j drexpliky,)
0

X T T,e” PHu(k,71)¥'(k,0)]/Tr(e #™). (31)

Bt KE[1—3o(K,ikm) 12+ [E(K) + 2 5(k,ikm) 12+ A2%(k)

(28)

T T,e AW (k, )W (k,00]/Tr(e #1)
=T T,e P exp rH")eSW (k)e~S

xexp(—7H")eSWT(k)e S)/Tr(e ). (32

The transformation of a single fermion operator can proceed

as

eSW(k)e S=W(K) +[S,¥(K)]+ = [s [S,W(K)]]+O0(a®)

2
=W (k)~ w:KN% (b! 4—bg) 8(k,k—q)

2

w,KN

X o Wl (k— q)+

Z (bT 4—bg)

g~ bg)o(k—a,k—q—q")o(k,k—q)
(33

x(b"
XW¥(k—q—q’).

Then the Green’s function read® the second order ir)

2

G(k,iky)=G(K,iky) — > 5%(k,k")G(K,iKy)

a
wpKN ¢
a? 5 2wy
KN 2 Ok D

p

B iay, (Icun)2 wg

(39

X G(k—q,ik

m— o).

¥ (k,7) =exp@@H)¥(k)exp(— ) is in the Heisenberg repre- Here we can calculate the spectral functidifk,w) for

sentation. After the unitary transformation we have

electronsg
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FIG. 1. The calculated DOSI(w) for three different sets of FIG. 2. The phonon-staggered ordering as functions of the
parameters. The adiabatic res(dashed-line withw,=0) is also  coupling constang? for wf/WUFZO, 0.01, and 0.1g2=0.0921
shown. whenw,/mve=0.01 andg;=0.1573 wherw,/7v=0.1.

1 - . One can see that when,>0 there is a peak ab= wpeax
Alk,0)=——ImTr G(k,w+i0") with a significant tail below the peak. The height of peak

decreases but the width of it increases with increasing
2

a 5 ) N(w) can be measured by the optical absorptievhich
=11 oN 2 5°(kk') H{olw—W(K)] measures the joint DQSand in the observed absorption
P k spectra of Peierls-distorted systems there is a peak with a
2 significant tail below itt*® Usually, the position of peak
+ 8 w+W(K) ]} + E 5%(k,k") wpeakiS assigned as the gap, which is larger than the real gap
wpKN? 7 A(k=0)=augy(c—d) in our calculation.

o , , When the frequency,, is small (w,/7ve=0.01 in Fig.

X{dlw—wp—W(K") ]+ w+ wp+W(K') ]} 1), the peak in DOS is quite sharp with a tail going down to

(385 a small value:N[o=A(k=0)]~wp/au,. For w<A(k
=0) we haveN(w)=0. The physical meaning of this result

One can easily check that . : . -
is that, because of the quantum lattice fluctuations, a finite

o gap still exists but its magnitude is reduced compared with
J doA(k,0)=2, (36)  the adiabatic mean-field value. For larger frequency
o ] (wp/mve=0.05 and 0.}, the main peak is broadened and
the sum rule for the spectral function. there is a small discontinuity ai=A(k=0)+ w,. This dis-
Whenw>0, continuity comes from the single-phonon sideband and if the
1 a? finite lifetime of the phonon mode is taken into account the
N(w)= > l1- N > (kK [ w—W(K)] discontinuity would become a small peak.
k @p k' Sinceuy is related to the static phonon-staggered order-
B ing, we should define the phonon-staggered order parameter
LS (kK)o w— wp— WK')]. Up.
wpKN? (i 1 5
_ Wpd t -
(37) aup—EJ' dy< KN Eq: (bq+bq)exp(|qy)>,
The 6 functions in integrationsél o —W(K) | and 6l o — w, (39)

~WI(k)], result in the fact thal(w)=0 when o<A(k which can be measured by experiments or by Monte Carlo

=0)= aug(c—d), which is the real gap. But what is the gap _. X ) ; .
Whizzh i:zag(be nzeasured through sga;/) the optical abso?ptri)o%lmmatlons' After performing the unitary transformatid6s
' ' and (10) we have =0)

spectra?
Figure 1 shows the DOSI(w) for fixed g?=0.25 with 242 )
w,/mE=0.01, 0.05, and 0.1, respectively, wheg? aup=alo~ ; (K KW (K)o W (K))

=a?/mveK is the dimensionless coupling constant. For

comparison, the adiabatic mean-field result is also shown a? R 242 A(K)
where an inverse-square-root singularity exists at the gap =T KN Ek (VK)o W (k)= KN EK WK
edge[note that because of the lindadependencegk of the

free fermion energy, the DOBy(w) for g?=0 is 1/rvg]. (39

014304-5
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FIG. 3. Theg? vs w,/mvg phase diagram.

Figure 2 shows the calculatedu, as a function ofg? for
wp/mve=0, 0.01, and 0.1, respectively. Whex,=0, the
solution of Eq.(39) is

1
aU,= aly=mve/Sin ,
P r(Zgz)

But when w,>0 the gap

(40)

and the gapA=au,=

Wpeak:

A(k=0), the order parameteru,, and the peak position
wpeak are generally different from each other. However,

whenw, is small au,~ @peak-
When w,>0, there is a critical coupling constagﬁ

A(k=0)= up—O when g2<gC Figure 3 shows the phase

d|agramgC as a function ofw, whenT=0.

IV. CALCULATION OF T,

PHYSICAL REVIEW B65 014304

0'25 T L} T L}
------- o /nv_=0
0.20 | F
—— o /nv,=0.01
St 05 E e (op/nVF=O.1 :
50.
o} i
005 i
0.00 = L
0.0 0.1 0.2 ) 0.3 0.4 05
g

FIG. 4. The calculated Peierls transition temperaiyyas func-
tions of g2 for frequencyw,/mve=0, 0.01, and 0.1g¢’s are the
same as those in Fig. 2.

— (k= —1- a2’ Y
pO_p(k_O)|wp~>0_1 g wpcon—(z-l—p)y (44)
Zo(0jiky) =2Z(0,ik,y) |w 0
=1+2 cot?‘( wp)fl dx
g 2Tp) Jo (k! 7o g)?+x2
_ & TUE [ TUF
=1+2¢%w cot?‘(z_rp) _km tan _km ,
(45

T =T,/mve and o] —wE/ﬂ'v,:. Let w,/mve—0 and ap-
proxmate (ﬂvF/km)tan (mvelky)~vy (yis aconstant of

For finite temperature, we also make the approximation obrder 1, we havepg=1— 292T,’J and Z,= 1+492yT”) and

taking the k—0 limit (at Fermi point 3y(k,ikpy)
~3(0jiky); besides, o(iky)=23(k,0)/vek| o is ap-
proximated asr(ik,,)~0 becauser(ik,)=0 whenw,=0.
These approximations should be good whgp< v .

The Peierls transition temperatuf, is determined by
ug=0 in Eq.(28),

2[c—da(k,k)]

=

a2
= %N Zk [1-8(Kk,K)]

B o K2Z2(0,ikm) + p2(K)v2k?’
(41

where
p(K)=E(K)/vek, (42)

Z(0,iky)=1—24(0,ky,).

When going to the adiabatic limib,— 0, the gap afl
=0 is A=~27veexd —1/2g%] if the coupllng is weak. The
equation for Peierls transition temperatdigis

202 o 1 2
1= , 43
KN ; B kz k2Z3(0,ikm) + pv 2k? “3

where

the solution of Eq(43) is

Z
1 13% F{ Poto (46
Thus the ratio /T, can be calculated as
2A Z 1-poZ
3527 %exg — — P90
Tp Po 292
~3.5273.5272y—1+29%(2y+ 1)]T’ (47)

Now we can see that&/T,—3.527 at weak-coupling limit
9°—~0 (T,—0).

We note that whenw,—0 the lattice fluctuations are
purely thermal fluctuations and their effect in our calcula-
tions is mainly contained iZy(0,ik,,) [Eq. (45)]. From Eq.
(45) one can see that the effect of thermal fluctuations is
proportional towcothw,/2Ty), which is the same as what
was assumed in Ref. 4,

The numerical results fan,=0 are shown in Figs. 4 and
5. For the weak-coupling limifJ ,= 1.134mvcexd —1/297],
which is the typical BCS weak-coupling resultAZT, starts
from the BCS value 3.527 and increases with increasing cou-

014304-6
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tions due to the thermal lattice motion can destroy the Peierls
distortion at a temperature well below the mean-field transi-
tion temperature even if the phonon frequency is quite small.

V. SUMMARY AND DISCUSSION

The effect of quantum phonons on the Peierls transition
temperature in a one-dimensional commensurate system is
studied. The nonadiabatic effect due to finite phonon fre-
2-0)p/7tVF=O-O1 quency w,>0 are treated through an energy-dependent
2t 3.0 /rv_=0.1 1 glectron—phonon scattering funct|0§(k’,k) and the func-.
p " F tional dependence of it is determined by the perturbation

o . . . . theory, that is, the contribution ¢f; to the self-energy when
0.0 01 oz, 08 04 05 T=0 is nearly zero. By using the Green’s-function perturba-
g tion theory we have shown that our theory gives a good

description of the effect of quantum phonofig:There exists

FIG. 5. The ratio 2wu,/T, as functions ofg? for frequency  a critical electron-phonon couplirgf . The Peierls transition
wp/mvg=0, 0.01, and 0.1. temperatureT,=0 when the couplingg?<gZ and T, in-

creases with increasir@2>g§. (i) The ratio 22/T, could
pling g2. The behaviors of , and 2A/T, are similar to those  pe much larger than the BCS value 3.527.
of the dynamical mean-field Study of Blawid and Mll[l:hey Fina”y’ we give a note on the physica| meaning of
used the half filled spinless Holstein mogél 5(k’,k) [Eq. (7)], which was introduced in the unitary trans-

For generalw,>0 case, we have to solve E¢#1) nu-  formation and plays an important role in our treatment. One
merically. The results are also shown in Figs. 4 and 5 folcan see thad(k,k) = w,/(w,+ 2ve|k|) has a peak at=0,
wp/mve=0.01 and 0.1 ,<mwvg). T, vanishes forg”  the Fermi point in our model system, and whep/ve<1
<gZ. In Fig. 5, instead of A/T,, we show the ratio the peak is very sharp. This peak means that only those elec-
2au,/T, because the real gap(k=0)=aug(c—d) is trons near the Fermi point within a range of abdlf
much smaller than both the peak positieg. ., and the or- <w,/vg can participate in the electron-phonon scattering
dering parametewu,, but wpeq=au, when w,<7ve. and contribute to the reduction of the energy gap and the
The ratio 2vu,/T, goes to infinity wheng? goes to Peierls transition temperature compared with the adiabatic
g§ (gz—>g§) from above. This is becausk, goes to zero mean-field valug¢see Eq(14)]. This fact is similar to that in
faster thanau, does wheng2—>g§. One can see that the the BCS theor$ for superconductivity: only those electrons
ratio is in the range around 5-10, larger than the BCS valugear the Fermi surface form Cooper pairs via a phonon-
3.527. These results are in qualitative agreement with thénduced effective attraction.
dynamical mean-field study of Blawid and Millis for quan-
tum phonon$, but they did not show the result forA2T,, .

We note that a larger ratioai, /T, comes from the fol-
lowing two points:(i) The zero-temperature Peierls distor-  This work was supported by the FRG of Hong Kong Bap-
tion and gap parameter are only slightly reduced below the¢ist University and the NSFC of ChingGrant No.
mean-field prediction whew,<mve; (i) but the fluctua- 10074044.

1 .cop/nVF=0
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