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Quantum phonons and the Peierls transition temperature
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The effect of quantum phonons on the Peierls transition temperature in a one-dimensional commensurate
system is studied. The nonadiabatic effect due to finite phonon frequencyvp.0 are treated through an
energy-dependent electron-phonon scattering functiond(k8,k). By using the Green’s-function perturbation
theory we have shown that our theory gives a good description of the effect of quantum phonons:~i! There
exists a critical electron-phonon couplinggc

2 . The Peierls transition temperatureTp50 when the coupling
g2,gc

2 and Tp increases with increasingg2.gc
2 . ~ii ! The ratio 2D/Tp could be much larger than the BCS

value 3.527.

DOI: 10.1103/PhysRevB.65.014304 PACS number~s!: 71.38.2k, 71.30.1h, 71.45.Lr
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I. INTRODUCTION

The Peierls instability and the related charge ordering
spin-Peierls phenomena in some quasi-one-dimensional
tems have attracted a growing interest in these years.1–3 The
Peierls instability leads to a lattice distortion at wave vec
2kF (kF is the Fermi wave vector! in their lower tempera-
ture phases and the charge and/or spin degrees of free
are coupled with the lattice displacement. Although the ad
batic approximation, that is, treating the lattice displacem
as a static mean field, is usually used to deal with th
systems,1 there are several reasons that the nonadiabaticit
the electron-lattice interaction may play an important role

~i! For many Peierls-distorted systems the zero-point m
tion of the lattice,du5A\/2Mvp (vp is the phonon fre-
quency with massM ), is comparable to the lattice distortio
u0 ~Ref. 4! ~e.g., for polyacetylene,u0'0.03 Å anddu
'0.03 Å ). As the size of the gap 2D is proportional tou0,
lattice fluctuations should have an important effect on
electronic properties. The optical absorption coefficie
a(v) calculated in the adiabatic mean-field approximat
has an inverse-square-root singularity atv52D and there is
no absorption inside the gap. The observed absorptio
quite different. The singularity is absent and, instead of
there is a peak aroundv52D with a significant tail below
the peak.5

~ii ! In some quasi-one-dimensional systems the pho
frequency may be of the same order of magnitude as
characteristic energy of the electrons; for example, in
inorganic spin-Peierls system CuGeO3 the phonon frequency
vp'20–30 K and the spin gapD;23 K.6

~iii ! How to describe the finite temperature propertie
The adiabatic theory predicts a higher Peierls transition t
peratureTp (2D/Tp;3.527), but it does not agree with th
experimentalTp (2D/Tp;6 –10 in various experiments, o
even larger!.7,8 Moreover, as the temperature increases
absorption spectrum broadens considerably. There is no
cepted quantitative theory of the shape of the spectrum
its temperature dependence.4

~iv! The main theoretical approach which can be used
deal with the nonadiabaticity is the Migdal-Eliashbe
theory, but, unfortunately, it may be broken down by t
0163-1829/2001/65~1!/014304~8!/$20.00 65 0143
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large nonadiabaticity vp /D;1 and/or the low
dimensionality.9 As was shown by previous authors, th
Migdal-Eliashberg theory cannot remove the inverse-squ
root singularity ofa(v) at v52D.10,11

We proposed to study the problem starting from the f
lowing Takayama-Lin-Liu-Maki ~TLM ! Hamiltonian for
spinless electrons,12

He5E dyC†~y!S 2 ivFs3

]

]y
1w~y!s1

1w* ~y!s2DC~y!, ~1!

which describes the low-energy properties of systems
Peierls instability~in the continuum limit!. It may be the
simplest model but contains the main physics of Peierls tr
sition. Heresa(a51,2,3) ands65 1

2 (s16s2) are Pauli
matrices.

C~y!5S c1~y!

c2~y!
D ~2!

is the spinor representation of Fermionic operatorsc1(y)
and c2(y), which describe right and left movers, respe
tively. w(y) is the backscattering potential related
phonons,

w~y!5Aa2vp

KN (
q

~b2q
† 1bq!exp~ iqy!. ~3!

N is the total number of unit cells,vp the phonon frequency
with spring constantK, a the electron-phonon coupling con
stant, andbq (b2q

† ) the annihilation~creation! operator of
the phonon modeq. We assume the commensurate case w
a real backscattering potentialw(y)5w* (y). Instead of the
backscattering potential used by Ref. 4 which is a static
random one, herew(y) has its own dynamics which can b
described by

Hp5vp(
q

bq
†bq , ~4!
©2001 The American Physical Society04-1
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the harmonic Hamiltonian of phonons. The total Hamiltoni
is H5He1Hp .

A spinless electron model is not so unphysical as o
might consider at the beginning. It may be related to
spin-Peierls transition.2,13 An XY spin chain with nearest
neighbor exchange and spin-lattice interaction is equival
through a Jordan-Wigner transformation together with
continuum approximation, to the spinless TLM model. B
sides, both the strong correlation~for example, the double
exchange model! and the strong magnetic field can lead
the consideration of only one spin component.

The theoretical analysis becomes difficult when the qu
tum phonons and the finite-temperature fluctuations are ta
into account. Various methods have been used for the p
lem, such as the Monte Carlo simulation,14–17 perturbation
calculation,18 Green’s-function technique,10,11 renorma-
lization-group analysis,19–21 variational method of the
squeezed-polaronic wave function,22 and a phenomenologi
cal random potential with Gaussian correlations.4 Previously,
one of us developed an approach to treat the lattice fluc
tions due to finite phonon frequencyvp.0 through an
energy-dependent electron-phonon scattering func
d(k8,k).23 In this work, we extend the approach to the stu
of effect of quantum phonons on the Peierls transition te
perature and the ratio 2D/Tp . In our calculation some ap
proximation to the self-energy of the Green’s function w
be used, which may be good when the phonon frequencyvp
is small:vp!pvF . Throughout this paper we put\51 and
kB51.

II. THEORETICAL ANALYSIS

In momentum space the Hamiltonian reads

H5(
k

vFkC†~k!s3C~k!1vp(
q

bq
†bq

1Aa2vp

KN (
k,q

~b2q
† 1bq!C†~k1q!s1C~k!. ~5!

The last term in Eq.~5! describes the electron-phonon inte
action: at the electron-phonon vertex an incoming elect
with momentumk is scattered by the phonon into an outg
ing one with momentumk1q. The momentumk is mea-
sured from the Fermi pointk50. A unitary transformation is
used to take into account the electron-phonon correlat
H85exp(S)H exp(2S),

S5A a2

vpKN(
k,q

~b2q
† 2bq!d~k1q,k!C†~k1q!s1C~k!.

~6!

Here a functiond(k8,k) is introduced inS, which depends
on the energies of incoming and outgoing electrons in
electron-phonon scattering process. It is defined as

d~k8,k!5
vp

vp1vFuk81ku
, ~7!

and the reason for this definition will become clear later.
01430
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The total HamiltonianH is divided asH5H01H1, where
H1 is the last term in Eq.~5!. Then the transformation ca
proceed order by order, The first-order terms in the tra
formed HamiltonianH8 are

H185H11@S,H0#5Aa2vp

KN (
k,q

vF

vp1vFu2k1qu
C†~k1q!

3$@ u2k1qus12 i ~2k1q!s2#b2q
† 1@ u2k1qus1

1 i ~2k1q!s2#bq%C~k!, ~8!

where we have already used the functional form ofd(k8,k).
The second-order terms inH8, which are diagonal in phonon
operators, can be collected as follows:

H285@S,H1#1
1

2
†S,@S,H0#‡5

a2

KN (
k,q

vF~2k1q!

vp

3~b2q
† 2bq!~bq

†2b2q!d2~k1q,k!C†~k!s3C~k!

2
a2

KN (
k,k8,q

@22d~k82q,k8!#d~k1q,k!C†

3~k1q!s1C~k!C†~k82q!s1C~k8!. ~9!

We make a displacement transformation toH8 to
take into account the static phonon-staggered order
exp(R)H8exp(2R),

R52u0AKN

4vp
~b0

†2b0!. ~10!

exp(R) is a displacement operator:

exp~R!w~y!exp~2R!5w~y!1au0 , ~11!

and u0 is a variational parameter to describe the sta
phonon-staggered ordering. This transformation is to int
duce a phonon-staggered potentialD0(k) for electrons,

H085(
k

vFkC†~k!s3C~k!1vp(
q

bq
†bq

1(
k

D0~k!C†~k!s1C~k!1
Ku0

2

4
N, ~12!

D0~k!5au0@12d~k,k!#. ~13!

The equation to determineu0 is

au052
2a2

KN (
k

@12d~k,k!#^C†~k!s1C~k!&, ~14!

where^•••& means the thermodynamical average.
All terms of orderO(a3) in H8 will be neglected in what

follows becauseH85H081H181H28 becomes the exac
Hamiltonian in bothvp50 and vp→` limits. When vp

50, d(k8,k)50, and thenH1850, H2850,
4-2
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H8~vp50!5(
k

vFkC†~k!s3C~k!

1(
k

au0C†~k!s1C~k!1
Ku0

2

4
N. ~15!

This is equivalent to the original HamiltonianH in adiabatic
mean-field approximation. Whenvp→`, d(k8,k)51, and
thenu050, H1850,

H8~vp→`!5(
k

vFkC†~k!s3C~k!1vp(
q

bq
†bq

2
a2

KN (
k,k8,q

C†~k1q!s1C~k!

3C†~k82q!s1C~k8!. ~16!

This is the exact Hamiltonian forvp→` limit, which can be
obtained through the functional integration method.16

The purpose of our transformation is to find a better w
to divide the Hamiltonian into the unperturbed part and
perturbation. For the smallvp!pvF case we treatH08 as the
unperturbed part andH181H28 the perturbation, because~i!
H181H28→0 asvp→0, and~ii ! by choosing the functiona
form of d(k8,k) in Eq. ~7! the contribution ofH18 to the
self-energy whenT50 is nearly zero~see below!.

The perturbation treatment is through the conventio
Green’s-function theory. G0(k,ikm)5@ ikm2vFks3

2D0(k)s1#21 is the Green’s function forH08 and that for
H8, G(k,ikm), is related toG0(k,ikm) via the Dyson equa-
tion. The second-order@O(a2)# self-energy can be written a

S~k,ikm!5 ikmS0~k,ikm!1@E~k!2vFk1S3~k,ikm!#s3

1@D~k!2D0~k!#s1 . ~17!

Here@E(k)2vFk#s31@D(k)2D0(k)#s1 is the contribution
of H28

E~k!5vFk2
a2

KN (
k8

vF~k81k!

vp
cothS vp

2TD d2~k8,k!

1
a2

KN (
k8

@22d~k8,k!#

3d~k8,k!
vFk8

W0~k8!
tanhS W0~k8!

2T D , ~18!

D~k!5au0@c2dd~k,k!#, ~19!

c511
a2

KN (
k

d~k,k!
D0~k!

au0W0~k!
tanhS W0~k!

2T D , ~20!

d512
a2

KN (
k

@12d~k,k!#
D0~k!

au0W0~k!
tanhS W0~k!

2T D .

~21!
01430
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ikmS0(k,ikm) andS3(k,ikm)s3 are contributions ofH18 ,

S0~k,ikm!5
a2vp

KN (
k8

vF
2~k1k8!2

~vp1vFuk1k8u!2

3H F12sgn~k1k8!
vFk8

W0~k8!
G

3

cothS vp

2TD1tanhS W0~k8!

2T D
~ ikm!22@vp1W0~k8!#2

1F11sgn~k1k8!
vFk8

W0~k8!
G

3

cothS vp

2TD2tanhS W0~k8!

2T D
~ ikm!22@vp2W0~k8!#2

J , ~22!

S3~k,ikm!5
a2vp

KN (
k8

vF
2~k1k8!2

~vp1vFuk1k8u!2 H Fsgn~k1k8!

2
vFk8

W0~k8!
G vp1W0~k8!

~ ikm!22@vp1W0~k8!#2

3FcothS vp

2TD1tanhS W0~k8!

2T D G
1Fsgn~k1k8!1

vFk8

W0~k8!
G

3
vp2W0~k8!

~ ikm!22@vp2W0~k8!#2

3FcothS vp

2TD2tanhS W0~k8!

2T D G J , ~23!

W0~k!5AvF
2k21D0

2~k!. ~24!

We note that the contribution ofH18 to the nondiagonal term
@the prefactor ofs1 in S(k,ikm)] is zero and this is one o
the reasons of choosing the form ofd(k8,k) in Eq. ~7!. Be-
sides, foru050 and going to the Fermi pointk50,

S0~0,ikm!5
a2vp

KN (
k8

2vF
2k82

~vp1vFuk8u!2

3

cothS vp

2TD2tanhS vFuk8u)
2T D

~ ikm!22~vp2vFuk8u!2
, ~25!
4-3
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s~ ikm!5 lim
k→0

S3~k,ikm!

vFk
5H 1

vF

d

dk
S3~k,ikm!J

k→0

5
a2vp

KN (
k8

F d

dk

2vF~k1k8!2

~vp1vFuk1k8u!2G
k→0

3sgn~k8!
vp2W0~k8!

~ ikm!22@vp2W0~k8!#2

3FcothS vp

2TD2tanhS W0~k8!

2T D G . ~26!
i-

n

y

-

01430
It is easy to check thatS0(0,ikm)50 ands( ikm)50 when
T50. This is another reason to choose the form ofd(k8,k)
in Eq. ~7!.

The thermodynamical averagêC†(k)s1C(k)& can be
expressed as

^C†~k!s1C~k!&5
1

b (
km

Tr@s1G~k,ikm!#, ~27!

and then the equation to determineau0, Eq. ~14!, is
au05
2a2

KN (
k

@12d~k,k!#
1

b (
km

2D~k!

km
2 @12S0~k,ikm!#21@E~k!1S3~k,ikm!#21D2~k!

. ~28!
eed
Note thatkm5(2m11)pT and the summation overkm is
over the whole set of integers.

III. TÄ0 CASE

Let us discuss theT50 case first. We make the approx
mation of taking the k→0 limit ~at Fermi point!:
S0(k,ikm)'S0(0,ikm)'0 andS3(k,ikm)/vFk's( ikm)'0
@Eqs. ~25! and ~26!#, which may be a good approximatio
whenvp!pvF . Then the equation to determineu0 is

15
2a2

KN (
k

@12d~k,k!#
D~k!

au0W~k!
, ~29!

whereW(k)5AE2(k)1D2(k).
The density of states~DOS! N(v) can be expressed b

the retarded Green’s function as follows:24

N~v!52
1

pN (
k

Im Tr G̃R~k,v!, ~30!

where G̃R(k,v)5G̃(k,ikm5v1 i01) is the Green’s func-
tion for the original HamiltonianH,

G̃~k,ikm!52E
0

b

dt^TtC~k,t!C†~k,0!&exp~ i tkm!

52E
0

b

dt exp~ i tkm!

3Tr@Tte
2bHC~k,t!C†~k,0!#/Tr~e2bH!. ~31!

C(k,t)5exp(tH)C(k)exp(2tH) is in the Heisenberg repre
sentation. After the unitary transformation we have
Tr@Tte
2bHC~k,t!C†~k,0!#/Tr~e2bH!

5Tr@Tte
2bH8exp~tH8!eSC~k!e2S

3exp~2tH8!eSC†~k!e2S#/Tr~e2bH8!. ~32!

The transformation of a single fermion operator can proc
as

eSC~k!e2S5C~k!1@S,C~k!#1
1

2
†S,@S,C~k!#‡1O~a3!

5C~k!2A a2

vpKN(
q

~b2q
† 2bq!d~k,k2q!

3s1C†~k2q!1
a2

2vpKN (
q,q8

~b2q
† 2bq!

3~b2q8
†

2bq8!d~k2q,k2q2q8!d~k,k2q!

3C~k2q2q8!. ~33!

Then the Green’s function reads~to the second order ina)

G̃~k,ikm!5G~k,ikm!2
a2

vpKN (
k8

d2~k,k8!G~k,ikm!

2
a2

vpKN (
q

d2~k,k2q!
1

b (
ivn

2vp

~ ivn!22vp
2

3G~k2q,ikm2 ivn!. ~34!

Here we can calculate the spectral functionA(k,v) for
electrons,24
4-4
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A~k,v!52
1

p
Im Tr G̃~k,v1 i01!

5H 12
a2

vpKN (
k8

d2~k,k8!J $d@v2W~k!#

1d@v1W~k!#%1
a2

vpKN2 (
k8

d2~k,k8!

3$d@v2vp2W~k8!#1d@v1vp1W~k8!#%.

~35!

One can easily check that

E
2`

`

dvA~k,v!52, ~36!

the sum rule for the spectral function.
Whenv.0,

N~v!5
1

N (
k

F12
a2

vpKN (
k8

d2~k,k8!Gd@v2W~k!#

1
a2

vpKN2 (
k,k8

d2~k,k8!d@v2vp2W~k8!#.

~37!

The d functions in integrations,d@v2W(k)# andd@v2vp
2W(k)#, result in the fact thatN(v)50 when v,D(k
50)5au0(c2d), which is the real gap. But what is the ga
which can be measured through, say, the optical absorp
spectra?

Figure 1 shows the DOSN(v) for fixed g250.25 with
vp /pvF50.01, 0.05, and 0.1, respectively, whereg2

5a2/pvFK is the dimensionless coupling constant. F
comparison, the adiabatic mean-field result is also sho
where an inverse-square-root singularity exists at the
edge@note that because of the lineark dependencevFk of the
free fermion energy, the DOSN0(v) for g250 is 1/pvF].

FIG. 1. The calculated DOSN(v) for three different sets of
parameters. The adiabatic result~dashed-line withvp50) is also
shown.
01430
on

r
n
p

One can see that whenvp.0 there is a peak atv5vpeak
with a significant tail below the peak. The height of pe
decreases but the width of it increases with increasingvp .
N(v) can be measured by the optical absorption~which
measures the joint DOS! and in the observed absorptio
spectra of Peierls-distorted systems there is a peak wi
significant tail below it.1,4,5 Usually, the position of peak
vpeak is assigned as the gap, which is larger than the real
D(k50)5au0(c2d) in our calculation.

When the frequencyvp is small (vp /pvF50.01 in Fig.
1!, the peak in DOS is quite sharp with a tail going down
a small value: N@v5D(k50)#;vp /aup . For v,D(k
50) we haveN(v)50. The physical meaning of this resu
is that, because of the quantum lattice fluctuations, a fi
gap still exists but its magnitude is reduced compared w
the adiabatic mean-field value. For larger frequen
(vp /pvF50.05 and 0.1!, the main peak is broadened an
there is a small discontinuity atv5D(k50)1vp . This dis-
continuity comes from the single-phonon sideband and if
finite lifetime of the phonon mode is taken into account t
discontinuity would become a small peak.

Sinceu0 is related to the static phonon-staggered ord
ing, we should define the phonon-staggered order param
up ,

aup5
1

LE dyKAvpa2

KN (
q

~b2q
† 1bq!exp~ iqy!L ,

~38!

which can be measured by experiments or by Monte Ca
simulations. After performing the unitary transformations~6!
and ~10! we have (T50)

aup5au02
2a2

KN (
k

d~k,k!^C†~k!s1C~k!&

52
2a2

KN (
k

^C†~k!s1C~k!&5
2a2

KN (
k

D~k!

W~k!
.

~39!

FIG. 2. The phonon-staggered orderingup as functions of the
coupling constantg2 for vp /pvF50, 0.01, and 0.1.gc

250.0921
whenvp /pvF50.01 andgc

250.1573 whenvp /pvF50.1.
4-5
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Figure 2 shows the calculatedaup as a function ofg2 for
vp /pvF50, 0.01, and 0.1, respectively. Whenvp50, the
solution of Eq.~39! is

aup5au05pvF /sinhS 1

2g2D , ~40!

and the gapD5aup5vpeak. But when vp.0 the gap
D(k50), the order parameteraup , and the peak position
vpeak are generally different from each other. Howev
whenvp is smallaup'vpeak.

When vp.0, there is a critical coupling constantgc
2 ;

D(k50)5up50 when g2<gc
2 . Figure 3 shows the phas

diagramgc
2 as a function ofvp whenT50.

IV. CALCULATION OF Tp

For finite temperature, we also make the approximation
taking the k→0 limit ~at Fermi point!: S0(k,ikm)
'S0(0,ikm); besides, s( ikm)5S3(k,v)/vFkuk→0 is ap-
proximated ass( ikm)'0 becauses( ikm)50 whenvp50.
These approximations should be good whenvp!pvF .

The Peierls transition temperatureTp is determined by
u050 in Eq. ~28!,

15
2a2

KN (
k

@12d~k,k!#
1

b (
km

2@c2dd~k,k!#

km
2 Z2~0,ikm!1r2~k!vF

2k2
,

~41!

where

r~k!5E~k!/vFk, ~42!

Z~0,ikm!512S0~0,ikm!.

When going to the adiabatic limitvp→0, the gap atT
50 is D'2pvFexp@21/2g2# if the coupling is weak. The
equation for Peierls transition temperatureTp is

15
2a2

KN (
k

1

b (
km

2

km
2 Z0

2~0,ikm!1r0
2vF

2k2
, ~43!

where

FIG. 3. Theg2 vs vp /pvF phase diagram.
01430
,

f

r05r~k50!uvp→0512g2vp8cothS vp

2Tp
D , ~44!

Z0~0,ikm!5Z~0,ikm!uvp→0

5112g2vp8cothS vp

2Tp
D E

0

1 dx

~km /pvF!21x2

5112g2vp8cothS vp

2Tp
D pvF

km
tan21S pvF

km
D ,

~45!

Tp85Tp /pvF and vp85vp /pvF . Let vp /pvF→0 and ap-
proximate (pvF /km)tan21(pvF /km)'g (g is a constant of
order 1!, we haver05122g2Tp8 and Z05114g2gTp8 and
the solution of Eq.~43! is

Tp851.134
r0

Z0
expF2

r0Z0

2g2 G . ~46!

Thus the ratio 2D/Tp can be calculated as

2D

Tp
53.527

Z0

r0
expF2

12r0Z0

2g2 G
'3.52713.527@2g2112g2~2g11!#Tp8 . ~47!

Now we can see that 2D/Tp→3.527 at weak-coupling limit
g2→0 (Tp8→0).

We note that whenvp→0 the lattice fluctuations are
purely thermal fluctuations and their effect in our calcu
tions is mainly contained inZ0(0,ikm) @Eq. ~45!#. From Eq.
~45! one can see that the effect of thermal fluctuations
proportional tovpcoth(vp/2Tp), which is the same as wha
was assumed in Ref. 4.

The numerical results forvp50 are shown in Figs. 4 and
5. For the weak-coupling limit,Tp51.134pvFexp@21/2g2#,
which is the typical BCS weak-coupling result. 2D/Tp starts
from the BCS value 3.527 and increases with increasing c

FIG. 4. The calculated Peierls transition temperatureTp as func-
tions of g2 for frequencyvp /pvF50, 0.01, and 0.1.gc

2’s are the
same as those in Fig. 2.
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pling g2. The behaviors ofTp and 2D/Tp are similar to those
of the dynamical mean-field study of Blawid and Millis~they
used the half filled spinless Holstein model!.7

For generalvp.0 case, we have to solve Eq.~41! nu-
merically. The results are also shown in Figs. 4 and 5
vp /pvF50.01 and 0.1 (vp!pvF). Tp vanishes forg2

,gc
2 . In Fig. 5, instead of 2D/Tp , we show the ratio

2aup /Tp because the real gapD(k50)5au0(c2d) is
much smaller than both the peak positionvpeak and the or-
dering parameteraup , but vpeak'aup when vp!pvF .
The ratio 2aup /Tp goes to infinity wheng2 goes to
gc

2 (g2→gc
2) from above. This is becauseTp goes to zero

faster thanaup does wheng2→gc
2 . One can see that th

ratio is in the range around 5–10, larger than the BCS va
3.527. These results are in qualitative agreement with
dynamical mean-field study of Blawid and Millis for quan
tum phonons,8 but they did not show the result for 2D/Tp .

We note that a larger ratio 2aup /Tp comes from the fol-
lowing two points:~i! The zero-temperature Peierls disto
tion and gap parameter are only slightly reduced below
mean-field prediction whenvp!pvF ; ~ii ! but the fluctua-

FIG. 5. The ratio 2aup /Tp as functions ofg2 for frequency
vp /pvF50, 0.01, and 0.1.
,

J.
a,

an

01430
r

e
e

e

tions due to the thermal lattice motion can destroy the Pei
distortion at a temperature well below the mean-field tran
tion temperature even if the phonon frequency is quite sm

V. SUMMARY AND DISCUSSION

The effect of quantum phonons on the Peierls transit
temperature in a one-dimensional commensurate syste
studied. The nonadiabatic effect due to finite phonon f
quency vp.0 are treated through an energy-depend
electron-phonon scattering functiond(k8,k) and the func-
tional dependence of it is determined by the perturbat
theory, that is, the contribution ofH18 to the self-energy when
T50 is nearly zero. By using the Green’s-function perturb
tion theory we have shown that our theory gives a go
description of the effect of quantum phonons:~i! There exists
a critical electron-phonon couplinggc

2 . The Peierls transition
temperatureTp50 when the couplingg2,gc

2 and Tp in-
creases with increasingg2.gc

2 . ~ii ! The ratio 2D/Tp could
be much larger than the BCS value 3.527.

Finally, we give a note on the physical meaning
d(k8,k) @Eq. ~7!#, which was introduced in the unitary trans
formation and plays an important role in our treatment. O
can see thatd(k,k)5vp /(vp12vFuku) has a peak atk50,
the Fermi point in our model system, and whenvp /vF!1
the peak is very sharp. This peak means that only those e
trons near the Fermi point within a range of aboutuku
<vp /vF can participate in the electron-phonon scatter
and contribute to the reduction of the energy gap and
Peierls transition temperature compared with the adiab
mean-field value@see Eq.~14!#. This fact is similar to that in
the BCS theory25 for superconductivity: only those electron
near the Fermi surface form Cooper pairs via a phon
induced effective attraction.
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