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Systematic low-temperature expansion in the Ginzburg-Landau model
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Consistent perturbation theory for thermodynamical quantities in strongly type-II superconductors in a
magnetic field at low temperatures is developed. It is complementary to the existing expansion valid at high
temperatures. Magnetization and specific heat are calculated to two-loop order and compare well with existing
Monte Carlo simulations, other theories, and experiments.
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I. INTRODUCTION

Thermal fluctuations play a much larger role in high-Tc

superconductors than in the low-temperature ones bec
the Ginzburg parameterGi characterizing fluctuations i
much larger. In the presence of a magnetic field the imp
tance of fluctuations in high-Tc superconductors is furthe
enhanced. First of all, a strong magnetic field effectiv
confines long-wavelength fluctuations in a direction perp
dicular to the field so that the dimensionality of the fluctu
tions is reduced by two.1 Moreover highly anisotropic
Bi-Sr-Ca-Cu-O-type layered superconductors are basic
two dimensional and one expects a further increase in
importance of fluctuations. Under these circumstances fl
tuations influence various physical properties and even
to new observable qualitative phenomenalike vortex lat
melting into vortex liquid far below the mean-field pha
transition line. It is quite straightforward to systematica
account for the fluctuation effect on magnetization, spec
heat, or conductivity perturbatively above the mean-fi
transition line using the Ginzburg-Landau~GL! description.2

However it proved to be extremely difficult to develop
quantitative theory in the most interesting region below t
line, even neglecting fluctuation of the magnetic field a
within the lowest Landau level~LLL ! approximation.

To approach the region below the mean-field transit
line T,Tm f(H) Thouless3 proposed a perturbative approa
around a homogeneous~liquid! state in which all the
‘‘bubble’’ diagrams are resummed. The series provides
curate results at high temperatures, but becomes inapplic
for LLL dimensionless temperature aT;@T
2Tm f(H)#/(TH)1/2 is smaller than 2. See the lines H4–H
on Fig. 3 for the two-dimensional case, which represent s
cessive approximants~the corresponding three-dimension
plots appear in Ref. 4!. Generally, attempts to
PRB 610163-1829/2000/61~18!/12352~9!/$15.00
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extend the theory to lower temperature by Pade´ extrapolation
were not successful.5

Alternatively, a more direct approach to low-temperatu
fluctuation physics would be to start from the Abrikoso
solution at zero temperature and then take into account
turbatively deviations from this inhomogeneous solution. E
perimentally it is reasonable since, for example, specific h
at low temperatures is a smooth function and the fluctua
contribution is quite small. This contrasts sharply with the
retical expectations. A long time ago Eilenberger calcula
the spectrum of harmonic excitations of the triangular vor
lattice.6 Subsequently Maki and Takayama7 noted that the
gapless mode is softer than the usual Goldstone mode
pected as a result of spontaneous breaking of translati
invariance. The propagator for the phase excitations beha
as 1/(k2)2 in two dimensions~2D!. This unexpected addi
tional softness not only enhances the contribution of fluct
tions at leading order but also leads to disastrous infra
divergencies apparently at higher orders. As a result, whe
the perturbation theory around the vortex state is relia
becomes doubtful. For example the contributions to free
ergy depicted in Figs. 2~a! and 2~d! are, respectively,L4 and
ln2(L) divergent@L being an infrared~IR! cutoff# in 3D and
the divergencies get worse at higher orders. In 2D, the s
ation is aggravated: the diagrams diverge asL8 andL4. Also
qualitatively the lower critical dimensionality for melting o
the Abrikosov lattice isDc53 and consequently an infinit
range vortex lattice in clean materials exists only atT50.
One, therefore, tends to think that nonperturbative effects
so important that such a perturbation theory should
abandoned.8 However, a closer look at the diagrams like Fi
2~a! ~see details below! reveals that in fact one encounte
actually only milder divergencies in both 2D and 3D. Th
makes the divergencies similar to the so-called spurious
vergencies in the theory of critical phenomena with brok
continuous symmetry. In such a case one can prove9 that
12 352 ©2000 The American Physical Society
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they exactly cancel at each order provided we are calcula
a symmetric quantity.

In this paper we show that all the IR divergencies in fr
energy or other quantities invariant under translations ca
to the two-loop order. The three-dimensional case w
briefly reported in Ref. 4, here we present in detail the m
complicated two-dimensional case. We calculate magnet
tion and specific heat to this order and compare the res
with existing high-temperature expansion, Monte Ca
~MC! simulation10 of the same system, and experimen
Qualitatively the physics of a fluctuating three-dimensio
GL model in a magnetic field turns out to be similar to th
of two-dimensional spin systems~or scalar fields! possessing
a continuous symmetry. In particular, although within pert
bation theory the ordered phase~solid! exists only atT50,
in the thermodynamic limit, at low temperatures, solid w
powerwise decay of the translational order or liquid~expo-
nential decay! differs very little from the solid in most as
pects. Therefore, one can effectively use properly modi
perturbation theory to study quantitatively various propert
of the vortex liquid phase. Similarly physics of the tw
dimensional GL model is analogous to that of the on
dimensional scalar theory with, sayO(2) symmetry. This is
equivalent to the anharmonic oscillator in quantum mech
ics or theXY spin chain in statistical physics.

This paper is organized as follows. In Sec. II the mode
introduced and the Feynman rules for the loop~low tempera-
ture! expansion within the LLL approximation are set u
The free energy to two loops is calculated using diagra
matic expansion in Sec. III. It is shown how all the infrar
divergencies cancel exactly at least up to two-loop order
Sec. IV we compare the present expansion with the hi
temperature series, theory of Tesanovicet al.,11 available
MC simulations, and experiments. In Sec. V we discu
qualitatively nonperturbative effects using the analogy w
magnetic systems mentioned above. We exemplify this
calculating perturbatively the ground-state energy of
O(2) invariant one-dimensional chain~equivalent to the
quantum-mechanical anharmonic oscillator! that exhibits
similar IR divergencies. We argue that although the infin
range translational order is not present in this system, loc
the system looks like a lattice and the perturbative results
valid up to exponential corrections. Finally, we briefly sum
marize the results and discuss the melting transition obse
in experiments and some MC simulations, contributions
higher LL, and fluctuations of the magnetic field in Sec. V

II. MODEL, MEAN-FIELD SOLUTION, AND THE
PERTURBATION THEORY

A. Two-dimensional Ginzburg-Landau model

Our starting point is the GL free energy

F5LzE d2x
\2

2mUS ¹2
ie*

\c
ADcU2

1aucu21
b8

2
ucu4. ~1!

HereA5(2By,0) describes a nonfluctuating constant ma
netic field in Landau gauge and its energy density is drop
for convenience. In strongly type-II superconductorsk
;100), far from Hc1 ~this is the range of interest in thi
paper! the magnetic field is homogeneous to a high deg
g
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due to superposition from many vortices. For simplicity w
assumea52a8Tc(12t), t[T/Tc although this depen-
dence can be easily modified to better describe the exp
mental coherence length.

Throughout most of the paper the following units will b
used. Unit of length isj5A\2/(2maba8Tc) and unit of
magnetic field isHc2, so that the dimensionless magne
field is b[B/Hc2. The dimensionless free energy in the
units is @the order parameter field is rescaled asc2

→(2a8Tc /b8)c2#

F

T
5

1

vE d2xF1

2
uDcu22

12t

2
ucu21

1

2
ucu4G , ~2!

with D5¹2( ie* /\c)A. The dimensionless coefficient is

v5A2Gip2t, ~3!

where the Ginzburg number is defined byGi
[ 1

2 (32pe2k2j2Tc /Lzc
2h2)2. The coefficientv determines

the strength of fluctuations, but is irrelevant as far as me
field solutions are concerned.

B. Mean-field solution nearH c2

Defining the operatorH[ 1
2 (2D22b), the free energy

becomes

F

T
5

1

vE d2xFc* Hc2ahucu21
1

2
ucu4G . ~4!

Here,

ah[
12t2b

2
~5!

is the second expansion parameter. Ifah is sufficiently small,
GL equations can be solved perturbatively~see Refs. 12 and
13 for details!:

F5Aah

bA
w~x!1O~ah

3/2!, ~6!

wherebA51.16 and

w~x!5S 2pb

Apan

D 1/2

(
l 52`

`

expH i Fp l ~ l 21!

2
1

2p

an

lAbxG
2

1

2 SAby2
2p

an

l D 2J . ~7!

The lattice spacing is given byan /Ab, with an5A4p/A3
and 1/Ab the magnetic length in our units. It is normalized
the unit averagêuwu2&51.

C. Fluctuations and Feynman rules

Within the LLL approximation, which will be used here
the above solution becomes exact so higher orders inah do
not appear andc can be expanded in a basis of quasimom
tum k eigenfunctions
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wk5S 2pb

Apan

D 1/2

(
l 52`

`

expH i Fp l ~ l 21!

2
1

2p

an

l S Abx1
ky

Ab
D

1xkxG2
1

2 S Aby2
kx

Ab
2

2p

an

l D 2J ,

around the mean field solution

c~x!5vw~x!1E
BZ

d2k

~2p!2
wk~x!ck~Ok1 iAk!. ~8!

The shiftv of the fluctuating field will be generally differen
from its mean-field value. The integration is over a Brillou
zone of the hexagonal lattice that has an area 2p. Ok andAk
are ‘‘real’’ fields satisfyingOk* 5OÀk , Ak* 5AÀk . They
are somewhat analogous to the acoustic and optical pho
in usual solids with some peculiarities due to a strong m
netic field.5 For example, theA mode corresponds to shear
the two-dimensional lattice. After we substitute Eq.~8! into
the free energy, the quadratic terms in the fields de
propagators, while the cubic and quartic terms give rise
interactions. The phase factorsck[Agk/2ugku with gk
[*xwk* (x)w2k* (x)w(x)w(x) are introduced in order to diag
onalize the resulting quadratic part of the free energy

Fquad5
1

2EBZ

d2k

~2p!2
@PO

21~k!Ok* Ok1PA
21~k!Ak* Ak#.

~9!

Here,PO,A(k) are the propagators entering the Feynman d
grams in Figs. 1~a! and 1~b! and are given by

PO,A~k!5MO,A
22 ~k!, MO,A

22 ~k!52ah1v2~2bk6ugku!,
~10!

with bk[*xwk* (x)w* (x)wk(x)w(x).
For convenience, let us introduce the functionl(k1 ,k2):

l~k1 ,k2!5SA3

2 D 1/2

expH 2
~k1

x!21~k2
x!2

2 J ~11!

FIG. 1. All the relevant propagators and vertices in the theo
Here, dashed and solid lines represent theA and O fields, respec-
tively.
ns
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(
l ,m

~2 ! lm expH i
2p

an

@ lk1
y1mk2

y#

2
1

2 F S k2
x1

2p

an

l D 2

1S k1
x1

2p

an

mD 2G J . ~12!

Now, the various functions encountered so far, as well as
the three- and four-leg vertices, can be expressed in term
it: for example,gk5l(2k,k), bk5l(0,k). The vertices
are depicted in Figs. 1~c!–1~i! with the following expres-
sions. Three leg vertices:

~c! Ak1
Ak2

A2k12k2
522v Im@l~k2 ,k1

1k2!ck1
* ck2

ck11k2
#, ~13!

~d! Ak1
Ak2

O2k12k2
52v Re@2l~k1 ,2k2!ck1

ck2
ck11k2
*

12l~2k12k2 ,

2k2!ck1
* ck2

ck11k2
#, ~14!

~e! Ok1
Ok2

A2k12k2
522v Im@2l~k1,2k1

1k2!ck1
* ck2

ck11k2
12l~k1 ,

2k2!ck1
ck2

ck11k2
* #, ~15!

~ f! Ok1
Ok2

O2k12k2
52v Re@l~k2 ,k11k2!ck1

* ck2
ck11k2

#.

~16!

Four leg vertices:

~g! Ak1
Ak2

Ak3
A2k12k22k3

5
1

2
Re@l~k11k3 ,k21k3!ck1

* ck2
* ck3

ck11k21k3
#,

~17!

~h! Ak1
Ak2

Ok3
O2k12k22k3

5Re@2l~k11k3 ,k21k3!ck1
* ck2

* ck3
ck11k21k3

~18!

12l~k11k3 ,k11k2!ck1
ck2
* ck3

* ck11k21k3
], ~19!

~ i! Ok1
Ok2

Ok3
O2k12k22k3

5
1

2
Re@l~k11k3 ,k2

1k3!ck1
* ck2

* ck3
ck11k21k3

#.

~20!

III. CANCELLATION OF INFRARED DIVERGENCIES IN
LOOP EXPANSION

A. One loop free energy, ‘‘field shift,’’ and destruction of the
infinite range translation order by fluctuations

If the fluctuations were absent the expectation valuev0
2

5ah /bA would minimize G052ahv21 1
2 bAv4. The one-

loop contribution to the free energy is

.
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G15
1

2

1

~2p!2 Ek
$ ln@MO

2 ~k!#1 ln@MA
2~k!#%. ~21!

To this order the free energy that is a symmetric quantity
convergent. However the expectation value of the field t
is not a symmetric quantity is divergent. MinimizingG0
1G1 with respect tov would lead to the following correc
tion to the vacuum expectation value:

v1
25

1

2

1

~2p!2 Ek
H @2bk1ugku#

MO
2 ~k!

1
@2bk2ugku#

MA
2~k!

J . ~22!

Due to additional softness of theA mode, the above inte
gral diverges in the infrared region. This means that the fl
tuations destroy the inhomogeneous ground state, nam
the state with lowest energy is a homogeneous liquid in
cord with the fact that the lower critical dimension for th
present model isD53.4 It, however, does not necessari
mean that perturbation theory starting from an orde
ground state is inapplicable. The way to proceed in s
situations has been found while considering simpler mod

like the one-dimensional w4 model F5 1
2 (,wa)2

1V(wa
2), a51,2 discussed in detail in Sec. V~see also

Ref. 14!.

B. Two-loop contributions to the free energy

To the two-loop order one gets several clas
of diagrams ~see Fig. 2!: the setting sun
(AAA,AAO,AOO,OOO), double bubble (AA,AO,OO),
and the ‘‘correction term’’ (AA,AA,OO), which arises due
to a correction in the value ofv from Eq. ~22! . All of them
can be expressed explicitly in terms of the functionl(k1 ,k2)
anddk[2ck

2 .

1. Setting-sun diagrams

The setting-sun diagrams are shown in Figs. 2~a!–2~d!.
The AAA diagram is naively the most divergent one amo
them.

~a! AAA5
2v2

8~2p!2 Ep
E

q

I ssAAA~p,q!

MA
2~p!MA

2~q!MA
2~p1q!

; ~23!

FIG. 2. Setting-sun and double-bubble diagrams that contrib
to the free energy at the two-loop level.
s
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-
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I ssAAA~p,q![ul~p,2q!u22l2~p,2q!dpdqdp1q* 12l~p,

2q!l~p,2p2q!dqdp1q* 22l~p,2q!l* ~p,

2p2q!dp1c.c.

~b! AAO5
2v2

8~2p!2 Eq
E

p

I ssAAO~p,q!

MA
2~p!MA

2~q!MO
2 ~p1q!

; ~24!

I ssAAO~p,q![ul~p,2q!u21l~p,2q!2dpdqdp1q* 12ul~p

1q,p!u212l~p1q,p!2dpdqdp1q24l~p,

2q!l~p1q,p!dp24l~p,2q!l* ~p

1q,p!dqdp1q* 14l~p1q,p!l* ~p1q,q!dpdq

14l~p1q,p!l~p1q,q!dp1q1c.c.

~c! AOO5
2v2

8~2p!2 Eq
E

p

I ssAOO~q,p!

MO
2 ~p!MO

2 ~q!MA
2~p1q!

; ~25!

I ssAOO~p,q![ul~p,2q!u22l~p,2q!2dpdqdp1q* 12ul~p

1q,p!u222l~p1q,p!2dpdqdp1q14l~p,

2q!l~p1q,p!dp24l~p,2q!l* ~p

1q,p!dqdp1q* 14l~p1q,p!l* ~p

1q,q!dpdq24l~p1q,p!l~p1q,q!dp1q

1c.c.

~d! OOO5
2v2

8~2p!2 Eq
E

p

I ssOOO~p,q!

MO
2 ~p!MO

2 ~q!MO
2 ~p1q!

; ~26!

I ssOOO~p,q![ul~p,2q!u21l~p,2q!2dpdqdp1q* 12l~p,

2q!l~p,ÀpÀq!dqdp1q* 12l~p,

2q!l* ~p,ÀpÀq!dp1c.c.

2. Double-bubble diagrams

The bubble diagrams are shown in Figs. 2~e!–2~g!.

~e! AA5
1

8~2p!2 Ep
E

q

I bbAA~p,q!

MA
2~p!MA

2~q!
; ~27!

I bbAA~p,q![l~2p1q,p1q!dpdq12bpÀq1c.c.

~ f! AO5
2

8~2p!2 Eq
E

p

I bbAO~p,q!

MA
2~p!MO

2 ~q!
; ~28!

I bbAO~p,q![2l~2p1q,p1q!dpdq12bpÀq1c.c.

~g! OO5
1

8~2p!2 Eq
E

p

I bbOO~p,q!

MO
2 ~p!MO

2 ~q!
; ~29!

I bbOO~p,q![l~2p1q,p1q!dpdq12bpÀq1c.c.

te
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3. Shift-correction terms

The shift-correction terms are given by

AA5
21

8~2p!2 Ep
E

q

I crAA~p,q!

MA
2~p!MA

2~q!
; ~30!

I crAA~p,q![~2bp2ugpu!~2bq2ugqu!.

AO5
22

8~2p!2 Eq
E

p

I ccAO~p,q!

MA
2~p!MO

2 ~q!
; ~31!

I crAO~p,q![~2bp2ugpu!~2bq1ugqu!.

OO5
21

8~2p!2 Eq
E

p

I crOO~p,q!

MO
2 ~p!MO

2 ~q!
; ~32!

I crOO~p,q![~2bp1ugpu!~2bq1ugqu!.

C. Cancellations of IR divergence within diagrams

To analyze the IR divergence, one needs to expand
propagators and vertices around small quasimomentum.
ing the explicit expansion forl(k1 ,k2) given in the Appen-
dix, one can in turn find those forgk , bk , anddk . It turns
out that the constant andk2 terms inMA

2(k) vanish, so that
the ~only! leading quartic term is2 1

4 ah(b22/bA)uku4 and

MO
2 (k)5ah@22uku21( 1

4 2 1
4 b22/bA)uku4#. Here,

bst[SA3

2 D 1/2S 2p

an
D s1t

(
l ,m

~2 ! lml smt

3expF2
~2p!2

2an
2 ~ l 21m2!G . ~33!

As a result, the leading divergenc
;*p*qI ssAAA(p,q)/upu4uqu4uq1pu4 is determined by the as
ymptotics ofI ssAAA(p,q) as bothp andq approach zero. If
I ssAAA;1, it would diverge asL8. However the vertex is
‘‘supersoft’’ at small quasimomenta so that the divergenc
milder than expected. For example, theAk1

Ak2
A2k12k2

ver-

tex expansion at small momenta starts with (k1
xk2

y1k1
yk2

x).
Therefore, the leading divergence is ‘‘just’’L4. Expanding
I ssAAA(p,q) around p5q50, we see that actually
I ssAAA(p,q)}O(p8):

I ssAAA~p,q!5S 1

4
b002b22D 2

@p2q22~pq!2#~p22q2!~p2

1q214pq!.

As a matter of fact, it even becomesO(p10) after we sym-
metrize it with respect top↔q, and the diagram is actuall
finite. Similarly an apparent logarithmic divergence in s
ting sun AOO is nonexistent.

D. Cancellation between different diagrams

After thea priori most divergent diagram turned out to b
convergent we look for milder IR divergencies in other d
grams. The remaining most divergent terms appear in co
he
s-

is

-

-
ri-

butionsssAAO , bbAA, andcrAA , and come from the quasi
momentum independent terms in the numerator of
integrands:

I ssAAO54b00
2 , I bbAA53b00, I crAA5b00,

respectively. Although they areL4 divergent by themselves
their sum with appropriate coefficients2(2b00)

21,1, and
21 cancels. The orderL2 divergencies come from the fol
lowing integrands:

I ssAAO524b00
2 ~p21q212pq!,

I bbAA5b00~2p22q21pq!.

ExpandingMO
2 (p1q) in the denominator to the second o

der in quasimomenta, we see they cancel each other
symmetrization with respect top↔q and p↔2p. Finally,
there are five ln(L) divergent terms:

I ssAAO5
1

4
b00

2 @9p417q41~pq!~36p2128q2!112p2q2

136~pq!2#22b00b22@2~pq!~p21q2!2p2q2

16~pq!2#,

I bbAA5
1

4
b00@p41q42~2pq!~p21q2!16~pq!2#

2
1

4
b22@p41q424~pq!~p21q2!26p2q2

120~pq!2#,

I bbAO5b00,

I crAA52
1

4
b22@p41q4#,

I crAO53b00.

By symmetrizing the sum of all five terms, we see the fin
result is indeed free of IR divergence.

IV. COMPARISON OF RESULTS WITH OTHER
THEORIES AND EXPERIMENTS

A. Comparison with high-temperature expansion

The same theory has been studied by various analy
and numerical methods. To compare our results with th
obtained using other methods, let us restore the orig
units. The Gibbs-free energy to two loops~finite parts of the
integrals were calculated numerically! is

G5
eBkBT

Lzp\c
g,

g52
1

2bA
aT

21
1

2p
ln~ uaTu!1c

1

aT
2

, ~34!

where numerical values of the coefficient isc525.2. The
dimensionless entropy~the LLL scaled magnetization! is
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s52
dg

daT
5S Lzpc3mab

2 b8

\e5kB
D 1/3

M

~TB!1/2

5
1

bA
aT2

1

2p

1

aT
12c

1

aT
3

, ~35!

and the specific heat normalized to the mean-field value

1

bA

C

DC
52

d2g

daT
2

5
1

bA
1

1

2p

1

aT
2

26c
1

aT
4

. ~36!

We first compare the results with those of the hig
temperature expansion.3 These series are known now to th
12th order inx.15 Successive partial sums for specific heat
low temperature are plotted on Fig. 3~dashed lines! together
with several orders of the high-temperature expansion. L
temperature expansion indicates that the specific heat
grows withaT . On the other hand, the high-temperature e
pansion clearly shows that it drops out quickly aboveaT
50. This means that there is a maximum in between tha
consistent with most experiments and Monte Carlo simu
tions, see Fig. 4. Whether there is a melting phase trans
either first order or continuous~in 2D it is necessarily of the
Kosterlitz-Thouless variety! cannot be determined from se
ries alone. Both series expansions have a finite radiu
convergence, but this fact alone is not enough to decide

FIG. 3. Comparison between low-temperature and hi
temperature expansion of the scaled specific heat defined in
~36!.

FIG. 4. Comparison between theoretical, experimental,
Monte Carlo results of the scaled specific heat.
-
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-
tio
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n

of
at

the singularity is at real temperature~it can be located in the
complex plane as, for example, in the one-dimensional Is
model!. The low-temperature series are too short to estim
the radius of convergence. Naively comparing the sec
coefficient in specific heat@Eq. ~36!# to the third one obtains
an estimateaT52A12pc3528. Phenomenologically first-
order melting occurs aroundaT5210. Extensive analysis o
the high-temperature series has been made in Refs. 15
16.

B. Comparison with MC, experiments, and other theoretical
results

Low-temperature results for free energy and magnet
tion agree well with available numerical simulations and e
periments. However specific heat comparison is the m
sensitive ~second derivative!. We, therefore, present her
only the specific heat comparison. ForaT,25 the specific
heat results on Fig. 4 are in accord qualitatively with expe
ments of Ref. 17, and MC simulations of Ref. 10. The sa
data were fitted by the theory of Tesanovic and co-worker11

We can calculate the coefficients of the low-energy exp
sions from their theory and we get

1

bA

C

DC
5

1

bA
22

1

aT
2

112bA

1

aT
4

compared to our Eq.~36!. Even the sign of the 1/aT
2 contri-

bution is different. This theory is only an approximate o
and perhaps some modifications are required in the l
temperature limit.

V. UNDERSTANDING CANCELLATIONS OF INFRARED
DIVERGENCIES IN A SIMPLE MODEL.

NONPERTURBATIVE EFFECTS

A. Toy model

The dramatic cancellation of all the severe IR diverge
cies in the GL LLL model up toL8 at the two-loop level
looks a bit mysterious. Although in critical phenomena t
phenomenon of cancellation of ‘‘spurious’’ divergencies d
to Goldstone bosons is well known,18 here it occurs under
rather extreme circumstances. The theory is below its lo
critical dimensionality. To better understand what is i
volved in these cancellations we investigated a model
has similar symmetry properties, but is much simpler.
was mentioned in the introduction the physics of t
D-dimensional GL theory is very reminiscent of that of th
~D-1!-dimensional scalar theory with two fields possessin
continuousO(2) symmetry, see Fig. 5,

F5
1

2
~ ẇa!21aTwa

21
1

2
~wa

2!2,

where the overdot denotes the derivative in the only dim
sion considered as ‘‘time’’ and we are interested in the sp
taneously broken symmetry caseaT,0.

This model is equivalent to quantum mechanics of
two dimensional anharmonic oscillator. Of course one c
solve this model nonperturbatively~albeit using numerical
solution of the differential equation, we are not aware of t
closed form of the ground-state energy!. Obviously the result

-
q.

d
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is IR finite ~bounded from below by the classical energy a
from above by variational Gaussian energy!.19

B. Perturbation theory

It is important to trace the origin of the IR divergencies
the intermediate steps of the perturbative calculation.
though the calculation has been done using Feynman
grams~steepest descent approximation of the path integr!,
like in the GL model above, it is useful to start from th
standard time-independent perturbation theory. Here we
have to decide what is the main partK and what will be a
perturbation V. The perturbative vacuum in whicĥwa&
5va is degenerate and we have many choices of the ‘‘
perturbed’’ part. One of them corresponding to the choic

va5~A2aT,0![~v,0!,

O[w12v, A[w2

is

H52
aT

2

2
1K1V,

K5
1

2
~pO

21pA
2 !12v2O21

1

2L2
A2,

V52v~O31OA2!1
1

2
~O21A2!2,

wherepO andpA are conjugate momenta of the fieldsO and
A, respectively. The constant inH is the classical energy
Since any of these ground states are non-normalizable,
Fig. 5, the IR cutoffL was introduced intoK. It also removes
the vacuum degeneracy. With this cutoff the unperturb
wave function is

C0,0~w1 ,w2!5S 2v

p2L
D 1/4

expF2
1

2L
w2

22v~w12v !2G .
Zero-point energŷC0,0uVuC0,0& corresponds in the time

dependent perturbation theory to

FIG. 5. Potential of the anharmonic oscillator. The classi
ground state indicated by the circle is degenerate.
l-
ia-
l

st

-

ee

d

F15
1

2
~Tr ln GO1Tr ln GA!5v1OS 1

L D
in the time-dependent formalism. The leading correction
the ground-state energy is

F2
bb5^C0,0uVuC0,0&5

3L2

8
1

L

8

1

v
1

3

32

1

v2
1OS 1

L D .

It is equal to three ‘‘double-bubble diagrams of Fig. 2. T
second order in theV correction is

F2
ss5 (

(n1,n2)Þ(0,0)

z^C0,0uVuCn1,n2& z2

E0,02En1,n2

5
z^C0,0uVuC1,0& z2

22v
1

z^C0,0uVuC3,0& z2

26v
1

z^C0,0uVuC1,2& z2

22v2
2

L

52
3L2

8
2

L

8

1

v
2

19

32

1

v2
1OS 1

L D .

This contribution is the sum of the ‘‘setting-sun diagram
and correction terms~some terms that contain higher orde
in 1/aT were dropped!. Unlike the GL theory there is no
AAA setting-sun diagram and therefore noL4 divergence is
expected. The leading divergenceL2 and the subleadingL
cancel betweenF2

bb andF2
ss.

C. Absence of long-range order

As is well known even discrete symmetry cannot be b
ken spontaneously in 1D. This means that when we calcu
the perturbatively vacuum expectation value~VEV! of a
quantity that is not invariant under the symmetry gro
O(2), it should be IR divergent.14 As an example we calcu
late the expectation value ofw1. The first-order correction to
^Cuw1uC& arises from the corrected ground state

C5C0,01 (
(n1,n2)Þ(0,0)

cn1,n2Cn1,n2 ,

cn1,n25
^C0,0uVuCn1,n2&

E0,02En1,n2
,

c1,052
2vL13

8v3/2
.

The result is

^Cuw1uC&5v12c1,0̂ C0,0uOuC1,0&5A2aT2
1

A2aT

L

4
.

It diverges linearly indicating ‘‘dynamical restoration’’ o
the symmetry. The sign of the correction indicates that
VEV is reduced. The exact finite size expression is nona
lytic ~like A2aT exp@L/4A2aT#) and approaches zero.

This model clearly teaches us that although theO(2)
symmetry is unbroken, the perturbation theory starting fr
the ‘‘broken’’ symmetry ground state not only cures its ow
IR divergency problems, but provides an accurate appro

l
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mation to anyO(2) symmetric quantity. Perturbation theo
actually ‘‘knows’’ about restoration of the symmetry missin
only corrections of the essential singularity variety.

VI. CONCLUSION

To summarize, it is established up to order of two loo
that the perturbation theory around the Abrikosov lattice
consistent. All the IR divergencies cancel due to soft int
actions of the soft mode. Perturbative results as well as
terpolation with the high-temperature expansion agree v
well with the direct MC simulation and experiments. In th
theory of Tesˇanovićet al.,11, all the thermodynamic quanti
ties are expressed in terms of the variableg and the function
U(g). More specifically,g5aT /A2, andU(g) is chosen to
be

U~g!5
1

2S 1

AbA

1
1

A2
D 2

1

2 S 1

AbA

2
1

A2
D tanhFg1A2

2A2
G ,

so that it is monotonic and approaches the desired asymp
values in the low- and high-temperature limits. To comp
their result in Eq.~7! with ours, let us note that the scale
magnetization defined there differs from ours by a factorA2.
Their results have a different low-temperature limit fro
ours and can be modified easily. For example, we can ad
rational function such as (a01a2g2)/(b01g4) to U(g). By
choosinga051.5 anda2520.23, we can make the two low
temperature expansions consistent. Sinceb0 has no effect in
the expansion to this order, we can choose it as large as
want ~e.g., 1000! so that the functionU(g) remains mono-
tonic.

Consistency of the perturbation theory rules out a po
bility of an infinite lattice at anyT.0. Let us briefly sum-
marize what it physically means and under what conditio
this result is valid. The fact thatv is IR divergent in both 2D
~power! and 3D ~logarithm! means that order parameter
translational symmetry breaking vanishes. Its correlato
very large distances approaches zero. This does not nece
ily mean that the state is liquid, namely, the correlator dec
exponentially with certain correlation length. It might dec
only as a power like in the two-dimensionalXY model20 and
melt into liquid via either first-order or continuous transitio
The assumptions are no disorder, infinite sample, LLL
proximations, and no fluctuations of the magnetic field. T
s
s
-

n-
ry

tic
e

an

we

i-

s

at
sar-
s

-
e

third assumption can be relaxed since one obtains a supe
1/k4 spectrum also after including higher Landau levels, s
Refs. 12 and 13; however, including fluctuations of the m
netic field will probably stabilize the lattice in 3D since th
spectrum becomes the usual Goldstone boson 1/k2.
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APPENDIX: SMALL MOMENTUM EXPANSION OF
FEYNMAN DIAGRAMS

In this appendix we give formulas for expansion of int
grands in powers of quasimomenta, which is needed
eighth order. The basic quantity that enter the Feynman
grams is the functionl. Using identities between the coeffi
cients b defined in Eq. ~33!, b025

1
2 b00, b045

3
2 b00

23b22, we have

l~k1 ,k2!5expH 2
~k1

x!21~k2
x!2

2 J b001
1

4
b00@~k2

x2 ik1
y!2

1~k1
x2 ik2

y!2#1
1

16
b00@~k2

x2 ik1
y!41~k1

x2 ik2
y!4#

2
1

8
b22@2~k2

x2 ik1
y!21~k1

x2 ik2
y!2#2

1
1

720
b06@~k2

x2 ik1
y!61~k1

x2 ik2
y!6#1

1

48
b24~k2

x

2 ik1
y!2~k1

x2 ik2
y!2@~k2

x2 ik1
y!21~k1

x2 ik2
y!2#

1
1

40320
b08@~k2

x2 ik1
y!81~k1

x2 ik2
y!8#

1
1

1440
b26~k2

x2 ik1
y!2~k1

x2 ik2
y!2@~k2

x2 ik1
y!4

1~k1
x2 ik2

y!4#1
1

576
b44~k2

x2 ik1
y!4~k1

x2 ik2
y!4.
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