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Systematic low-temperature expansion in the Ginzburg-Landau model
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Consistent perturbation theory for thermodynamical quantities in strongly type-ll superconductors in a
magnetic field at low temperatures is developed. It is complementary to the existing expansion valid at high
temperatures. Magnetization and specific heat are calculated to two-loop order and compare well with existing
Monte Carlo simulations, other theories, and experiments.

[. INTRODUCTION extend the theory to lower temperature by Pagfgapolation
were not successfdl.
Thermal fluctuations play a much larger role in high- Alternatively, a more direct approach to low-temperature

superconductors than in the low-temperature ones becauflectuation physics would be to start from the Abrikosov
the Ginzburg parameteGi characterizing fluctuations is solution at zero temperature and then take into account per-
much larger. In the presence of a magnetic field the importurbatively deviations from this inhomogeneous solution. Ex-
tance of fluctuations in higiz superconductors is further perimentally it is reasonable since, for example, specific heat
enhanced. First of all, a strong magnetic field effectivelyat low temperatures is a smooth function and the fluctuation
confines long-wavelength fluctuations in a direction perpencontribution is quite small. This contrasts sharply with theo-
dicular to the field so that the dimensionality of the fluctua-retical expectations. A long time ago Eilenberger calculated
tions is reduced by twd. Moreover highly anisotropic the spectrum of harmonic excitations of the triangular vortex
Bi ; ttice® Subsequently Maki and Takayammoted that the
i-Sr-Ca-Cu-O-type layered superconductors are basmalliﬂ !

two dimensional and one expects a further increase in th§2PIess mode is softer than the usual Goldstone mode ex-
importance of fluctuations. Under these circumstances flud©Cted as a result of spontaneous breaking of translational

tuations influence various physical properties and even |ea@va1r/|agcze._nT?V(\e/Opr(;)_Enagnat% rnfs(ogltjf;e _Fr)Ef”‘se :;C't:é'g:js :deg_(::lves
to new observable qualitative phenomenalike vortex lattic s 1) i : S| - [NIS unexp ;

melting into vortex liquid far below the mean-field phase ional softness not only enhances the contribution of fluctua-

» . . . . . tions at leading order but also leads to disastrous infrared
transition line. It is quite straightforward to systematically 9

) T .2 divergencies apparently at higher orders. As a result, whether
account for the fluctuation effect on magnetization, specmc[he perturbation theory around the vortex state is reliable

heat, or conductivity perturbatively above the mean-fieldyecomes doubtful. For example the contributions to free en-
transition line using the Ginzburg-Land&BL) descriptior? ergy depicted in Figs.(2) and 2d) are, respectively,* and
However it proved to be extremely difficult to develop a In2(L) divergent[L being an infraredIR) cutoff] in 3D and
quantitative theory in the most interesting region below thisihe divergencies get worse at higher orders. In 2D, the situ-
line, even neglecting fluctuation of the magnetic field andytion is aggravated: the diagrams diverge.&sindL?. Also
within the lowest Landau levelLL ) approximation. qualitatively the lower critical dimensionality for melting of
To approach the region below the mean-field transitionthe Abrikosov lattice iD,=3 and consequently an infinite

line T<T,,«(H) Thoules$ proposed a perturbative approach range vortex lattice in clean materials exists onlyTat0.
around a homogeneoufiquid) state in which all the One, therefore, tends to think that nonperturbative effects are
“bubble” diagrams are resummed. The series provides acso important that such a perturbation theory should be
curate results at high temperatures, but becomes inapplicabéandoned.However, a closer look at the diagrams like Fig.
for LLL dimensionless temperature a;~[T  2(a) (see details belowreveals that in fact one encounters
—Tmi(H)1/(TH)Y? is smaller than 2. See the lines H4—H6 actually only milder divergencies in both 2D and 3D. This
on Fig. 3 for the two-dimensional case, which represent sucmakes the divergencies similar to the so-called spurious di-
cessive approximant&he corresponding three-dimensional vergencies in the theory of critical phenomena with broken
plots appear in Ref. )4 Generally, attempts to continuous symmetry. In such a case one can prokat
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they exactly cancel at each order provided we are calculatindue to superposition from many vortices. For simplicity we
a symmetric quantity. assumea=—a'T (1—-t), t=T/T, although this depen-

In this paper we show that all the IR divergencies in freedence can be easily modified to better describe the experi-
energy or other quantities invariant under translations cancehental coherence length.
to the two-loop order. The three-dimensional case was Throughout most of the paper the following units will be
briefly reported in Ref. 4, here we present in detail the moreused. Unit of length isé=%%/(2mypa’T,) and unit of
complicated two-dimensional case. We calculate magnetizanagnetic field isH.,, so that the dimensionless magnetic
tion and specific heat to this order and compare the resulteld is b=B/H,. The dimensionless free energy in these
with existing high-temperature expansion, Monte Carlounits is [the order parameter field is rescaled &8
(MC) simulatiort® of the same system, and experiments.— (2a'T./b") §?]
Qualitatively the physics of a fluctuating three-dimensional
GL model in a magnetic field turns out to be similar to that F 1

. . . . . e 2

of two-dimensional spin systentisr scalar fieldspossessing T~ wj d“x
a continuous symmetry. In particular, although within pertur-
bation theory the ordered phagolid) exists only afT=0,  with D=V — (ie*/&c)A. The dimensionless coefficient is
in the thermodynamic limit, at low temperatures, solid with
powerwise decay of the translational order or liqGékpo- w=2Gi7, (3)
nential decay differs very little from the solid in most as-
pects. Therefore, one can effectively use properly modifiedvhere the Ginzburg number is defined byGi
perturbation theory to study quantitatively various properties= 3 (32me?«x?&2T./L,c%h?)2. The coefficientw determines
of the vortex liquid phase. Similarly physics of the two- the strength of fluctuations, but is irrelevant as far as mean-
dimensional GL model is analogous to that of the one-field solutions are concerned.
dimensional scalar theory with, s&(2) symmetry. This is
equivalent to the anharmonic oscillator in quantum mechan- B. Mean-field solution nearH
ics or theXY spin chain in statistical physics. . . )

This paper is organized as follows. In Sec. Il the model is D€fining the operatof{=3(—D"—b), the free energy
introduced and the Feynman rules for the Igtgw tempera-  P&comes
ture) expansion within the LLL approximation are set up.
The free energy to two loops is calculated using diagram- F if d2x

w

1 1-t 1
- 2_ " 24 4
SIDuP= =L+ 510l @

matic expansion in Sec. lll. It is shown how all the infrared T
divergencies cancel exactly at least up to two-loop order. In

Sec. IV we compare the present expansion with the highHere,
temperature series, theory of Tesanoeical,!! available

MC simulations, and experiments. In Sec. V we discuss a = 1-t-b (5)
qualitatively nonperturbative effects using the analogy with o2

magnetic systems mentioned above. We exemplify this by

calculating perturbatively the ground-state energy of thdS the second expansion parametegyfs sufficiently small,
O(2) invariant one-dimensional chaifequivalent to the GL equations can be solved perturbativédge Refs. 12 and
quantum-mechanical anharmonic oscillatdhat exhibits 13 for detailg:

similar IR divergencies. We argue that although the infinite

range translational order is not present in this system, locally b /ﬁ +O(a3? 6
the system looks like a lattice and the perturbative results are - BAQD(X) (ap), ©®)
valid up to exponential corrections. Finally, we briefly sum-

marize the results and discuss the melting transition observethere 8,=1.16 and

in experiments and some MC simulations, contributions of

1
G-yl S @

higher LL, and fluctuations of the magnetic field in Sec. VII. omb \ Y2 al(l1-1) 2=
o(X)= expl i| ——=——+ —I\bx
\/;aA |=—0o0 2 a.A
Il. MODEL, MEAN-FIELD SOLUTION, AND THE
PERTURBATION THEORY 2 \?
=S| Voy——1] | 7
A. Two-dimensional Ginzburg-Landau model an

Our starting point is the GL free energy The lattice spacing is given b, /b, with a, = 4=/\3
- and 14/b the magnetic length in our units. It is normalized to
ie

the unit averagé|¢|?)=1.
Here A=(—By,0) describes a nonfluctuating constant mag-
netic field in Landau gauge and its energy density is dropped Within the LLL approximation, which will be used here,
for convenience. In strongly type-ll superconductors ( the above solution becomes exact so higher ordees, ido
~100), far fromH.; (this is the range of interest in this not appear angr can be expanded in a basis of quasimomen-
papej the magnetic field is homogeneous to a high degre¢um k eigenfunctions

2

b/
o] +alulP+ vl @

h?
= 29
F LZJ d X5

C. Fluctuations and Feynman rules
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(a) (b)
% ki+ 27TI 2+ KX+ 27\ (12
% LLLLITTTTT] < LLLLLILTT] - A - - m .
::‘ ::_ 2 2 aA 1 aA )
s § 4 . Now, the various functions encountered so far, as well as all
te) () te) (£) the three- and four-leg vertices, can be expressed in terms of
“, ¢ it: for example, y,=N(—k,k), Bx=A(0Kk). The vertices

e’ f“‘ are depicted in Figs. (&)—1(i) with the following expres-
o, sions. Three leg vertices:

@ " W (© AAA -k, i, = = 20 Im[A(kz Ky
FIG. 1. All the relevant propagators and vertices in the theory. L Ko)Ck 13
Here, dashed and solid lines represent Ahand O fields, respec- 2)Cklc"zckﬁkz]’ (13
tively.
(d) A A0k, —k,= 2v R =N (Ky, —K2)Cy Ck,CF 1k,
1/2 =
2wb wl(1-1) 2= k
o= ) > exp{i %+—| Jox+ —~ +2N(—ki—ky,
Vma) 12 aA Vb —k,)ck 14
) Z)Cklckzck1+kz]1 (14)
‘ 1 b Ky 27T|
T YT A | (8 O OKA ik, —k,= —2v Im[ (ks 2k,

*
around the mean field solution +K2) €k, Ci,C +k, T 2N (K1,

S —K2)Ci, C,Ci, +1, ) (15

YO =ve(x)+ fBZWw(x)ck(owAk). ®

() Ok, 0k, 0k, -k, =20 REN(Kz, kq+Kp)CF Ck Ck, 1k, -
(16)

The shiftv of the fluctuating field will be generally different

from its mean-field value. The integration is over a Brillouin ~ Four leg vertices:

zone of the hexagonal lattice that has an area@, andAy

are “real” fields satisfyingOg =0_,, A{=A_,. They (@ A AkAkA-ky—k, kg

are somewhat analogous to the acoustic and optical phonons L

in usual solids with some peculiarities due to a strong mag- * %

netic field® For example, thg,& mode corresponds to shgar ofg = 5 ReM(kyFKg, Ko Ka) i, Cic,Crey Cicy iy i

the two-dimensional lattice. After we substitute E§) into a7

the free energy, the quadratic terms in the fields define

propagators, while the cubic and quartic terms give rise tdh) AklAkzokso_kl_kZ_ks

interactions. The phase factorg= 7y /2|y with 7y,

= [,or (X) o™ (X) e(X) ¢(x) are introduced in order to diag- =Re —A(Ky+Kkg,Ko+Kka)CF cf C.Ch ok, (18)

onalize the resulting quadratic part of the free energy vz e

+2N (K1 kg, ki +Ko) G, Ck Ck Chy+kprkgs  (19)

1 dzk -1 * -1 *
Fquadzszz(zw)z[Po (K)Oy Ok + Pa (K) AL Ag]. . 1
9) (1) Ok Ok, 0k,0 kK, k= ERGD\(kPL ks, Ko

Here,P a(K) are the propagators entering the Feynman dia- +Ka) CF CY,CieyChy + kit kg -
grams in Figs. (@ and ib) and are given by 20

Poa(k)=Mga(k), Mgi(k)=—an+0v2(2B8,= ,
0.4(K)=Mo/a(k) o.ak) nt o728y |7k|()10) IIl. CANCELLATION OF INFRARED DIVERGENCIES IN

LOOP EXPANSION

with ﬂkEfx¢:(X) o (X)<Pk(>f)<P(X)- A. One loop free energy, “field shift,” and destruction of the
For convenience, let us introduce the functiofk, ,k»): infinite range translation order by fluctuations

e 2 xen If the fluctuations were absent the expectation valge
N(ky K ):(E) ox (k) +(ka) (11) =ap/B, would minimize Gy=—anv?+ 3Bv*. The one-
12 2 2 loop contribution to the free energy is
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FIG. 2. Setting-sun and double-bubble diagrams that contribute
to the free energy at the two-loop level.

1
61:2

o(I+IN[MA(KT}. (2D

To this order the free energy that is a symmetric quantity i c)

convergent. However the expectation value of the field that
is not a symmetric quantity is divergent. Minimizing,

+ G, with respect taw would lead to the following correc-
tion to the vacuum expectation value:

)

Due to additional softness of tlemode, the above inte-
gral diverges in the infrared region. This means that the fluc-
tuations destroy the inhomogeneous ground state, namely,
the state with lowest energy is a homogeneous liquid in ac-

1
(2m)?

|7k|]
MA(K)

[2,8k+|7k|]
M&(k)

[2Bk—

2
U1

1
> (22

cord with the fact that the lower critical dimension for the (d)

present model i© =34 It, however, does not necessarily
mean that perturbation theory starting from an ordered

ground state is inapplicable. The way to proceed in such lssood P.Q)=|\(p,—q)|?+ )\(p,—q)zd dqds

situations has been found while considering simpler models
like the one-dimensional ¢* model F=3(Ve,)?

+V(<p§), a=1,2 discussed in detail in Sec. ee also
Ref. 19.

B. Two-loop contributions to the free energy

To the two-loop order one gets several classes
of diagrams (see Fig. 2 the setting sun
(AAA,AAQ,A00,000), double bubble AA,AO,00),
and the “correction term” AA,AA,00), which arises due
to a correction in the value af from Eq.(22) . All of them
can be expressed explicitly in terms of the functiqik,,k»)

andd,=2c?.

(f)

1. Setting-sun diagrams

The setting-sun diagrams are shown in Fig&)-22(d).
The AAA diagram is naively the most divergent one among
them.

(9)

—v? JJ lssand P.Q) .
8(2m)2 JpJaMA(P)MA(Q)MA(P+Q)

(8 AAA= (23
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lssand P.Q)=|\(p,—q)|*—

IssAAdpaQ)ED\(p,

(e)

12 355

N(p,—a)dpdqdy. o+ 2) (P,
— NP, —p—a)dgd5, = 2N (P, — QA" (p,
—p—q)dp+c.c.

lssand P,Q)

U
b AAO= ;
(®) 8(2m)? UpMi(p)Mi(q)Mémq) 9

—a)|?+\(p,—a)?dydody

p+q+2|)\(p

+0,p)| %+ 2\ (p+0,p) *dydqdps g = 4N (P,
—N(p+0a,p)dp—4N(p, —q)A* (P

+0,p)dgdp s g+ 4N(p+a,p)N* (p+0,q)dydg
+4N(p+q,p)N(p+q,q)dpiqFC.C.

AOO= f j ssAOC(q p )
8(2m)? pMo(p)Mo(q)MA(p+q)

lssaod P @) =|\(p,—a)|[*=\(p,—q)2dpdady. o+ 2|\ (p

+0,p)|?= 2\ (p+,p)*dpdqdp s g+ 4N(P,
— @A (p+a,p)dp—4N(p,— Q)N (p
+0,p)dqdg. g+ 4N(p+a,p)N* (P

+0,9)dpdg—4N(p+g,p)A(P+d,9)dy g
+cC.C.

000= f f ssOOdp q ; )
8(2m)? PME(PIME(Q)ME(p+Q)

p+q+2)\(py
— QN (p,—p—aq)dqdy 4+ 2)(p,
—N*(p,—p—q)dy+c.c.
2. Double-bubble diagrams

The bubble diagrams are shown in Figée)22(g).

lbbaa(P,Q)
; 2
8(2w>2”qMA<p>MA<q @0
Ibbaa(P, ) =N(—p+q,p+q)dydq+28,_q+c.C
lhbao(P,Q)
28
" 8(2m)? fprA(p)M (28)

lbbac(P,d)=—N(=p+0,p+q)dydy+28,—q+cC.C
lbbod(P,9)
29
8(277)2ffp LI 29

Ibboo(P, ) =N(=p+d,p+q)dydq+28,_+c.C
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3. Shift-correction terms butionsssaag, bbaa, andcraa, and come from the quasi-
The shift-correction terms are given by momentum independent terms in the numerator of the
integrands:
5 f f lerna(P.A) . (30 lssaa=4B%.  Ibbaa=3Boo, lcran=Boo,
~82m?2 JoJamMi(pMA(a)’ . i
respectively. Although they are® divergent by themselves,
. . . . . 71
I 0,0 =(280—|v0)) (2B4— | vdl)- their sum with appropriate coefficients(28q9) -, 1, and
oA P | p| a | q| —1 cancels. The orddr? divergencies come from the fol-
ff lecncP@) - lowing integrands:
“82m? JoJoMi(pME(@)’ | ssaag=—4B5(P*+ 4+ 2pq),
|cer(paQ)E(25p_|7p|)(2/3q+|7q|)- I bbaa= Boo —P*— 0>+ pq).
(p.q) ExpandingMé(p+ g) in the denominator to the second or-
> f f croo : (32)  der in quasimomenta, we see they cancel each other after
8(277) PME(PIME(Q) symmetrization with respect tp—q and p— —p. Finally,

there are five In() divergent terms:
IcrOO(pvq)E(ZIBp+ | 7p|)(2:8q+ | 7q|)-

1
T 02104 7ot 2 2 2,2
C. Cancellations of IR divergence within diagrams lssanc=7 Bod 9P+ 707+ (pq)(36p™+289%) + 12p7q

To analyze the IR divergence, one needs to expand the +36(pa) 2]~ 2BoaB24 2(p9) (P2 +q?) — p2q?
propagators and vertices around small quasimomentum. Us-
ing the explicit expansion fok (k;,k,) given in the Appen- +6(pg)?],

dix, one can in turn find those foy,, B¢, andd,. It turns
out that the constant arid terms inM3(k) vanish, so that
the (only) leading quartic term is—3a,(B.,/8,)|k|* and

M&(K)=an[2—|K|?+ (5 —  B22/ Ba) [K|*]. Here,

1
lopan=7 Bod P*+0* = (2pa)(p?+ %) +6(pa)?]

1
121 o\ st — 2 BAP*+a*=4(pa)(p*+q?) —6p*g?

\/§ 2m Im
= — _ _ |Smt
&‘<2 a &) +20(pa)?],
27)? -
% ex _@2m (124 m2) |, (33) lbba0= Boo:
2aA 1
| | leran=— 7 B2Ap*+0]
As a result, the leading divergence CrAA 2 P22P T4,
~ IS gl ssaadP.@)/|pl*la*|a+pl|® is determined by the as-
ymptotics oflsaa{P,q) as bothp andq approach zero. If lerno=3B0o-

lsanx~1, it would diverge ad 8. However the vertex is
“supersoft” at small quasimomenta so that the divergence i8Y symmetrizing the sum of all five terms, we see the final
milder than expected. For example, thg A, A_, i ver-  fesultis indeed free of IR divergence.

tex expansion at small momenta starts witt{k¥+kyk3).

Therefore, the leading divergence is “just™. Expandlng
lssandP,g) around p=q=0, we see that actually

IV. COMPARISON OF RESULTS WITH OTHER
THEORIES AND EXPERIMENTS

lssandP,0) = O(p®): A. Comparison with high-temperature expansion
1 2 The same theory has been studied by various analytical
|ssandP.Q) = 7 Boo~ ﬁzz) [p%9?— (p)?](p?>—g?)(p? and numerical methods. To compare our results with those
obtained using other methods, let us restore the original
+0%+4pQ). units. The Gibbs-free energy to two loofimite parts of the

_ N integrals were calculated numericallg
As a matter of fact, it even becomé&yp!? after we sym-

metrize it with respect tp—(q, and the diagram is actually eBlgT
finite. Similarly an apparent logarithmic divergence in set- G= Loahcd
ting sun AOO is nonexistent. ‘

1 1 1
D. Cancellation between different diagrams g=—s—ar+ — In(|as])+c—, (34)

. . . 2Ba 2 ag
After thea priori most divergent diagram turned out to be
convergent we look for milder IR divergencies in other dia-where numerical values of the coefficientdss —5.2. The
grams. The remaining most divergent terms appear in contrdimensionless entropfthe LLL scaled magnetizatigns
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the singularity is at real temperatu(ié can be located in the
complex plane as, for example, in the one-dimensional Ising
mode). The low-temperature series are too short to estimate
the radius of convergence. Naively comparing the second
coefficient in specific hedEq. (36)] to the third one obtains

an estimatexr= — J12wc3= —8. Phenomenologically first-
order melting occurs aroura= —10. Extensive analysis of

the high-temperature series has been made in Refs. 15 and

0.5 . \HS 16.
0.25 H4
H5 B. Comparison with MC, experiments, and other theoretical
-6 -4 -2 0 2 4 6 8 results
ar

Low-temperature results for free energy and magnetiza-
FIG. 3. Comparison between low-temperature and high-tion agree well with available numerical simulations and ex-
temperature expansion of the scaled specific heat defined in Egeriments. However specific heat comparison is the most

(36). sensitive (second derivative We, therefore, present here
only the specific heat comparison. Fay<—5 the specific
dg ( szce’mgbb’ ) 3 M heat results on Fig. 4 are in _accorq qualitatively with experi-
S=——F—= ments of Ref. 17, and MC simulations of Ref. 10. The same
dar fe’keg (TB)Y data were fitted by the theory of Tesanovic and co-workers.

We can calculate the coefficients of the low-energy expan-

- iaT— 1 + ZC%, (35)  Sions from their theory and we get
Ba 27 ar ag
dth ific h lized to th field value i e 1 21+12,81
and the specific heat normalized to the mean-field value is AT 25 —
P BaAC  Ba a2 Pal
1c dg_ .1 i—6 1 3g  Compared to our EG36). Even the sign of the a% contri-
Ba AC dai_ Ba 27 a2 CaéTt' (36 bution is different. This theory is only an approximate one

and perhaps some modifications are required in the low-
We first compare the results with those of the high-temperature limit.
temperature expansionThese series are known now to the
12th order inx.*® Successive partial sums for specific heat at V. UNDERSTANDING CANCELLATIONS OF INFRARED
low temperature are plotted on Fig(@ashed linestogether DIVERGENCIES IN A SIMPLE MODEL.
with several orders of the high-temperature expansion. Low- NONPERTURBATIVE EFFECTS
temperature expansion indicates that the specific heat ratio
grows withat. On the other hand, the high-temperature ex-
pansion clearly shows that it drops out quickly abae The dramatic cancellation of all the severe IR divergen-
=0. This means that there is a maximum in between that igies in the GL LLL model up td_8 at the two-loop level
consistent with most experiments and Monte Carlo simulatooks a bit mysterious. Although in critical phenomena the
tions, see Fig. 4. Whether there is a melting phase transitiophenomenon of cancellation of “spurious” divergencies due
either first order or continuou@n 2D it is necessarily of the to Goldstone bosons is well knowf here it occurs under
Kosterlitz-Thouless variejycannot be determined from se- rather extreme circumstances. The theory is below its lower
ries alone. Both series expansions have a finite radius dfritical dimensionality. To better understand what is in-
convergence, but this fact alone is not enough to decide thatlved in these cancellations we investigated a model that
has similar symmetry properties, but is much simpler. As
was mentioned in the introduction the physics of the
D-dimensional GL theory is very reminiscent of that of the
(D-1)-dimensional scalar theory with two fields possessing a
continuousO(2) symmetry, see Fig. 5,

A. Toy model

1. 1
F= §(<Pa)2+ arei+ 5(@3)2,

where the overdot denotes the derivative in the only dimen-
sion considered as “time” and we are interested in the spon-
taneously broken symmetry cagae<O0.

This model is equivalent to quantum mechanics of the
two dimensional anharmonic oscillator. Of course one can
solve this model nonperturbativelalbeit using numerical

FIG. 4. Comparison between theoretical, experimental, andsolution of the differential equation, we are not aware of the
Monte Carlo results of the scaled specific heat. closed form of the ground-state energ@bviously the result
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1 1
F1=E(Trln Go+TrinGy)=v +O(E)

in the time-dependent formalism. The leading correction to
the ground-state energy is

3L L1 31 1
— oL.

F5°=(WodV|¥o0 = B T80 32,

It is equal to three “double-bubble diagrams of Fig. 2. The
second order in th¥ correction is

FSS: |<\P0,0|V|q,n1,n2>|2
2 (n1,n2)#(0,0) EO,O_ En1,n2
FIG. 5. Potential of the anharmonic oscillator. The classical KWodVIVi0P KPodVIVspl? K¥odVI¥i
ground state indicated by the circle is degenerate. = o0 + 60 + >
is IR finite (bounded from below by the classical energy and L

from above by variational Gaussian enerdy

3L2 L1 191 1
- _OE'

B. Perturbation theory

It is important to trace the origin of the IR divergencies in This contribution is the sum of the “setting-sun diagrams”
the intermediate steps of the perturbative calculation. Al-and correction termgsome terms that contain higher orders
though the calculation has been done using Feynman diad 1/ar were droppefl Unlike the GL theory there is no
grams(steepest descent approximation of the path intggral AAA setting-sun diagram and therefore b divergence is
like in the GL model above, it is useful to start from the expected. The leading divergenté and the subleading
standard time-independent perturbation theory. Here we firstancel be'f\Neell”Fgb andF3°.
have to decide what is the main p&ttand what will be a
perturbationV. The perturbative vacuum in whicke,) C. Absence of long-range order
=v, IS degenerate and we have many choices of the “un-

perturbed” part. One of them corresponding to the choice As is well known even discrete symmetry cannot be bro-

ken spontaneously in 1D. This means that when we calculate
T the perturbatively vacuum expectation val(¢EV) of a

va=(V=an0=(,0), quantity that is not invariant under the symmetry group

0(2), it should be IR divergerlf: As an example we calcu-

O=¢17v, A=¢r late the expectation value @f;. The first-order correction to

is (¥|@,| W) arises from the corrected ground state
at V=1 > v
_ = —+ c ,
H=— 7 + K _|_V, 0,0 (n1n3)%(0.0) nln2 * nln2
1 1 c :<\I,0,0|V|\Ijn1,n2>
K= (mo?+mp) +20°0%+ EAZ, M2 Eoo—Enipe
2vL+3
3 NPT Clo™~ (S am -
V=20(0%+O0A%) + (0% +A%)?, ’ 8v3
. ' The result is
whererq andr, are conjugate momenta of the fiel@dsand
A, respectively. The constant iH is the classical energy. 1 L
S_ince any of these ground states are non-normalizable, SeQW |, |W)y=v+2¢; (W O| ¥y =—ar— I
Fig. 5, the IR cutoffL was introduced int. It also removes v—ar

the vacuum degeneracy. With this cutoff the unperturbe

o qt diverges linearly indicating “dynamical restoration” of
wave function is

the symmetry. The sign of the correction indicates that the
1/4 VEV is reduced. The exact finite size expression is honana-
q,oo(gol’%):(z_v) ex;{ _ igog_v(%_v)z _ lytic (_Iike V—arexdgL/4y—ar]) and approaches zero.
’ L 2L This model clearly teaches us that although BE2)
symmetry is unbroken, the perturbation theory starting from
Zero-point energy Wy o V| W o) corresponds in the time- the “broken” symmetry ground state not only cures its own
dependent perturbation theory to IR divergency problems, but provides an accurate approxi-
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mation to anyO(2) symmetric quantity. Perturbation theory third assumption can be relaxed since one obtains a supersoft
actually “knows” about restoration of the symmetry missing 1/k* spectrum also after including higher Landau levels, see

only corrections of the essential singularity variety. Refs. 12 and 13; however, including fluctuations of the mag-
netic field will probably stabilize the lattice in 3D since the
VI. CONCLUSION spectrum becomes the usual Goldstone boskfi 1/
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ties are expressed in terms of the variafplend the function
U(g). More specifically,g=as/+/2, andU(g) is chosen to

be APPENDIX: SMALL MOMENTUM EXPANSION OF

FEYNMAN DIAGRAMS

1/ 1 1, 1/ 1 1 g+ V2 In this appendix we give formulas for expansion of inte-
U(g)=5(—+—) 5 (———) tam‘{— ) grands in powers of quasimomenta, which is needed to
\/E \/E \/E \/E 2\/5 eighth order. The basic quantity that enter the Feynman dia-
so that it is monotonic and approaches the desired asymptotfifams is the function. Using identities between the coeffi-
values in the low- and high-temperature limits. To comparecients B defined in Eq. (33), Bo;=3Bo0, Bosa=5Boo
their result in Eq.(7) with ours, let us note that the scaled —3822, We have
magnetization defined there differs from ours by a fagt@r p{

(kD)*+ (k3)?

. . . 1 _
Their results have a different low-temperature limit from ) (k. k.,)=ex T] Boo+ Z,Boo[(k)z(—lki')z

ours and can be modified easily. For example, we can add an
rational function such asag+a,g?)/(bo+g*) to U(g). By 1
choosingay=1.5 andg2= - 0.23, we can make the two Iqw- +(KS—ik%)?]+ Eﬁ’oo[(ké— ik)*+ (K =ik))*]
temperature expansions consistent. Singéas no effect in

the expansion to this order, we can choose it as large as we

1
¥vant (e.g., 1000 so that the functiorJ(g) remains mono- —gﬁzi—(k;‘—ik{)zﬂk}—ik%)z]z
onic.
Consistency of the perturbation theory rules out a possi- 1 1
bility of an infinite lattice at anyr>0. Let us briefly sum- ﬂtﬁ),eoe[(ké—ik{)‘sﬂt(k’l‘—ik%)G]JrEﬁm(k)Z<
marize what it physically means and under what conditions
this result is valid. The fact that is IR divergent in both 2D —ik))2(K =ik} (KS—ik)Z+ (KX —ik¥)?]

(powen and 3D (logarithm means that order parameter of

translational symmetry breaking vanishes. Its correlator at X Lyr8 X iLyr8
very large distances approaches zero. This does not necessar- + 20320P0d (Ko~ k)" + (ki —ik3)"]

ily mean that the state is liquid, namely, the correlator decays

exponentially with certain correlation length. It might decay 1 X LYNZOLX i LYAZE (WX LY 4
only as a power like in the two-dimensionél modef® and + Tag0Peeka k) (ke —ika) (ke —iky)

melt into liquid via either first-order or continuous transition.

The assumptions are no disorder, infinite sample, LLL ap-

1
X__iLY\4 I X__iLY\4 X__ i Y\4
proximations, and no fluctuations of the magnetic field. The (ki ike) 1+ ggfadke ke (ky —ika)™
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