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Self-consistent and exact studies of pairing correlations and crossover
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Ground-state properties of the attractive Hubbard model in one dimension are studied by means of both the
exact Bethe-ansatz formalism and the self-consistent field~SCF! approach with renormalized chemical poten-
tial for general band fillingsn and a wide range of coupling strengthU/t. The energy, the concentration of
double occupied sites, the kinetic energy and the chemical potential of the ground state are in a good numerical
agreement with the exact results over a wide range of parametersU/t andn. The concentration of local pairs
or double occupied sites in the Bethe-ansatz solution serves as a suitable parameter measuring the electron
pairing correlations. The SCF theory provides a simple analytical relationship between the concentration of
double occupied sites, the band filling and the BCS order parameter, valid for arbitraryU/t and n. The
calculated energy gap, the BCS order parameter, the phase diagram and the compressibility are also discussed.
The SCF theory in one dimension distinguishes the order parameter from the excitation gap and suggests a
smooth crossover away from half-filling~at nÞ1) from the BCS pairing to the Bose condensation regime
under the variation ofU/t andn. @S0163-1829~99!04911-5#
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I. INTRODUCTION

The attractive Hubbard model~see, e.g., Ref. 1! exhibits
the simplest Hamiltonian that incorporates the basic ingre
ents of electron pairing correlations in lattices, and beca
of its controllable coupling strengthU/t, is frequently ap-
plied in a weak-coupling~BCS theory2,3! and a strong-
coupling ~model of local pairs4–6! regimes to explain the
appearance of the superconductivity and the charge-de
waves in conventional and new high-temperatu
superconductors.7,8 The exact solution of this model in on
dimension9–12 provides reliable information on the gener
features of electron pairing and can serve as a benchmar
approximate theories for the intermediate region ofU/t. It is
interesting to compare the predictions of the self-consis
field ~SCF! approach~or modified BCS approach where th
variation of particles is included and the weak coupling
gime is not assumed! with the exact Bethe-ansatz results in
wide range of the coupling strength and for all ba
fillings.13,14

The gas of electrons in continuum model interacting
attractive potential displays a crossover from the stro
coupling extreme of tightly bound weakly interacting loc
Bose pairs~composite bosons! to the weak-coupling limit of
relatively large overlapping Cooper pairs.15,16 The crossover
between the BCS pairing and the Bose condensation reg
has been a subject of many recent works.17–19In Ref. 15, this
intriguing question for the continuum model of a Fermi g
with a fictitious separable attractive potential has been a
lyzed. As far as we know, the existence of the crosso
PRB 590163-1829/99/59~11!/7458~15!/$15.00
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from the BCS superconductivity to superfluidity of loc
pairs in a lattice driven by band filling and interactio
strength is an open question. It is interesting to study
crossover in a discrete model under the variation of the nu
ber of electrons~or chemical potential! and to understand the
peculiarity of one-dimensional system exactly at half-fillin

The purpose of this paper is to investigate the effect of
variation of band fillingn and coupling strength2U/t on the
ground-state properties in an attractive Hubbard model.
final goal is to develop a reliable self-consistent field theo
over a wide range of2U/t. The lack of the exact results fo
many physical quantities even in one dimension leads to
ficulties for systematic studies of approximate theories.
this paper we derive the exact integral Bethe-ansatz eq
tions for the concentration of double occupied sites, the
netic energy, the chemical potential, and the compressib
~the inverse of the charge susceptibility20!, extending in this
way previous exact results.9,10,12,21,22We test the SCF theory
by numerically calculating the ground-state characteristics
functions of 2U/t or n and comparing with our exact re
sults.

Our investigations show that in two extremes~weak and
strong coupling! the exact and self-consistent results a
identical and they are also moderately close one to anoth
the intermediate coupling strength. We found that the S
theory with renormalized chemical potential provides
simple and reasonable interpolation scheme between
weak and strong interaction limit for all band fillings. Eve
in one-dimensional case the SCF approach displays
crossover and the main ground-state features of very gen
7458 ©1999 The American Physical Society
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relevance. We expect that this theory will be even more
curate in higher dimensions, where the quantum fluctuati
become significantly suppressed.

Although the attractive Hubbard model is similar to t
one-dimensional electron gas with pairwise attract
d-function interaction in the continuum model,13,23 there are
some specific features related with a lattice model exactl
half-filled band. The crossover from a weak- to a stron
coupling superconductivity for different concentrations
electrons within the SCF theory is studied by comparis
with the exact results. There is extensive evidence, dire24

and indirect,25 for the local quasi-one-dimensional charac
of electronic structure in high temperature superconduct
Unlike the conventional superconductors in which the ph
coherence and pairing occur at once and at same temp
ture, in the underdoped cuprates there exists a separ
between the pair binding and superconductivity as dopin
decreased below the optimal value.26 It is also well estab-
lished that the pseudogap in a normal state has essentiall
same magnitude and momentum dependence as in the s
conducting state.27 The evolution of the energy gap~Fermi
surface in the momentum space! with the band filling and the
coupling strength in the SCF approach are also examin
The interplay between the Bose condensation and loca
tion of electrons with purely attractive interaction are d
cussed in the context of the existence of a pseudogap in
insulating state of underdoped cuprates at vanishing car
concentration.28 In general separation between the bindi
and phase coherence can be accomplished either by inc
ing the coupling strength or by decreasing the density
electrons. We study the pair formation associated with
distinct change in the band structure driven by bothU/t and
n. Our simplified model with local attraction which does n
have all the features of real superconductors, neverthe
provides a reasonable testing ground for approximate
proaches intended for the full problem.

The paper is organized as following: After an introducti
~Sec. I! we review the model and the basic formalism for t
SCF approach~Sec. II! and the solution of the Bethe-ansa
equations~Sec. III!. Section IV presents the numerical ca
culations of the ground-state properties and a compar
between the exact and the SCF results, using both the Be
ansatz and the SCF approach. Section V constitutes a s
mary. The Appendixes deal with the exact calculati
schemes~integration equations! for the concentration of loca
pairs, the kinetic energy, the chemical potential, the ene
gap, the compressibility, and the SCF calculation sche
~self-consistent equations! for the compressibility.

II. ATTRACTIVE ELECTRONS IN LATTICE AND THE
SCF APPROACH

The model under consideration is the Hubbard model
fined by the Hamiltonian

H52t (
^ i , j &,s

cis
1 cj s1U(

i
ci↑

1ci↓
1ci↓ci↑ , ~1!

where t.0 corresponds to the kinetic energy of electr
hopping between two nearest neighborsi andj, s561 ~↑ or
c-
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↓! is the spin index,U is the coupling strength (U,0), and
cis

1 (cis) is the Fermi creation~destruction! operator of an
electron at sitei with spin s.

After Fourier transformation the Hamiltonian takes t
form

H5(
k,s

«kcks
1 cks1

U

Nlatt
(

k,k8,Q
ck1Q↑

1 ck82Q↓
1 ck↓ck8↑ ,

~2!

whereNlatt is the total number of lattice sites,

«k52t(
R

exp~ ik•R!, ~3!

R[r i2r j is the nearest-neighbor vector. In one dimens
(R51) «k522t cosk.

The average number of electrons~or band filling! n, the
average spins, and the BCS order parameterD are defined as

n5
1

Nlatt
(
k,s

^cks
1 cks&, s561~↑ or ↓ !, ~4!

s5
1

2Nlatt
(
k,s

s^cks
1 cks&, ~5!

D5
2U

Nlatt
(

k
^ck↑c2k↓&. ~6!

In the SCF approach we introduce the consistent chem
potentialm, which must be adjusted to fix the band fillingn,
and use the canonical transformation method~see, e.g., Refs
29 and 30! to diagonalize the Hamiltonian by means of th
new operators

bk↑5ukck↑2vkc2k↓
1 ,

b2k↓5ukc2k↓1vkck↑
1 , ~7!

whereuk andvk are real coefficients that satisfy the norma
ization condition

uk
21vk

251. ~8!

Minimization of the total energy with respect touk andvk
gives the following results~see, e.g., Refs. 29 and 30!:

uk
25

1

2 S 11
«k2m̄

Ek
D , ~9!

vk
25

1

2 S 12
«k2m̄

Ek
D , ~10!

Ek5A~«k2m̄ !21
D2

4
, ~11!

we have the SCF Hamiltonian for quasiparticles

HSCF5(
k,s

Ekbks
1 bks1Nlatt~EGS2mn!, ~12!

where
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EGS2mn5
2

Nlatt
(

k
~«k2m̄ !vk

2

2
D

Nlatt
(

k
ukvk2

D2

4U
2

n2

4
U ~13!

is the ground-state average value^HSCF& per one lattice site,
and

m̄[m2
nU

2
~14!

is the renormalized chemical potential in the SCF approa
In the SCF approach the number of electronsn and the

BCS order parameterD are included on an equal footing, an
by minimization ofEGS2mn over these parameters, one c
obtain a set of self-consistent equations14 determiningn and
D at a givenm ~or m andD at a givenn!:16

1

Nlatt
(

k

«k2m̄

Ek
512n, ~15!

U

Nlatt
(

k

1

2Ek
521. ~16!

Note that at half-filling (n51) m̄50, and we restore the
usual BCS result forD. After simple algebraic transforma
tions, the ground-state energy in Eq.~13! can be written in a
more convenient form

EGS52
1

Nlatt
(

k
Ek1

n2U

4
2

D2

4U
2m̄~12n!. ~17!

In the thermodynamic limitNlatt@1, the sum overk can
be replaced by an integral over the first Brillouin zone.

III. LIEB-WU EQUATIONS

The Bethe-ansatz technique9,12,14 gives an exact solution
of the Hubbard model~1! in one dimension. In the limit
Nlatt@1, the energy of the system per one lattice site is

E5US n

2
2sD22tE

2Q

Q

dkr~k!cosk, ~18!

where 0<n<1, 0<s<n/2 andr(k) is determined from the
Fredholm integral equations

r~k!5
1

2p
2

U cosk

4tp E
2B

B

dls~l! f 1~k,l!, ~19!

s~l!52
U

4tp E
2Q

Q

dkr~k! f 1~k,l!

1
U

2tp E
2B

B

dl8s~l8! f 2~l,l8!, ~20!

f 1~k,l![
1

~U/4t !21~l2sink!2 , ~21!
h.

f 2~l,l8![
1

~U/2t !21~l2l8!2 , ~22!

with normalization conditions determiningQ andB,

E
2Q

Q

r~k!dk5122s, ~23!

E
2B

B

s~l!dl5
n

2
2s. ~24!

The parametersQ andB generally depend onn, s, U, andt.
The solution of Eqs.~18!–~24! at s50 determines the exac
ground-state energy

EGS5Eus50 . ~25!

In this caseQ5p for all values ofU, t, andn.

IV. COMPARISON OF SCF AND EXACT GROUND-STATE
RESULTS

A. Energy

First we calculated the ground-state energyEGS for the
one-dimensional case in the SCF approach and in the e
theory according to the formulas~17! and ~25!, correspond-
ingly. For this purpose we solved numerically the se
consistent equations~15! and ~16! for given values of cou-
pling strength2U/t and band fillingn using an iteration
algorithm. We also solved the integral equations~19! and
~20! with the conditions~23! and~24! for the same values o
2U/t andn using the subroutinefred2 ~see Ref. 31, §18.1!.
In Fig. 1, both results are shown as functions of2U/t for
different n. Similar results for the ground-state energy
2U/t<10 have been reported previously in Ref. 14. In bo

FIG. 1. The ground-state energyEGS as a function of coupling
strength2U/t in the exact theory~solid curves! and the SCF ap-
proach ~dots!. Curve indexes 1–5 correspond to the valuesn
50.2,0.4,0.6,0.8,1. The bold curve indicates the smooth cross
from the BCS regime into the local pair behavior~see Sec. IV E!.
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extreme cases of strong and weak interaction the agree
between the exact and the SCF results is excellent, an
small deviation from the exact result occurs only near h
filled band (n51) for intermediate values of2U/t. Note
that the SCF approach gives a good numerical agreem
with the exact result for variousn. This conclusion is justi-
fied in Fig. 2, where the ground-state energy is shown a
function ofn for various values of2U/t. One can see from
Fig. 2 that the ground-state energy in the SCF and the e
results both depend onn linearly. Analytical calculations
performed at a small concentration of electronsn→0 show
that the SCF result coincides with the exact ground-s
energy

EGS52nAU2

4
14t2 ~26!

for all values ofU/t. This result in SCF approach is consi
tent with predictions of crossover and Bose condensatio
the dilute regime~see Secs. IV E and IV G!. The bold curves
in Figs. 1 and 2 show the crossover from the BCS-like
havior into the Bose-Einstein condensation of local pairs~for
an explanation see Sec. IV G!. Note that in Fig. 2 the bold
curve at smalln shows the crossover from linear dependen
to a quadratic behavior. The system is in the BCS reg
above and below the bold curve on Figs. 1 and 3, resp
tively. The bold curve in Fig. 1 does not intersect the cu
for n51, showing the stability of the half-filling case again
the crossover into the Bose condensation regime.

B. Concentration of double occupied sites

The concentration of the local pairs~or the double occu-
pied sites! D is a much more sensitive measure of pairi
correlations than the ground-state energy. We define the
centration of the double occupied sitesD as

FIG. 2. The ground-state energyEGS as a function of band fill-
ing n in the exact theory~solid curves! and the SCF approac
~dots!. Curve indexes 1–4 correspond to the values2U/t
50.5,2.0,6.0,10.0. The bold curve indicates the crossover, as in
1.
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D[
1

Nlatt
(

i
^ci↑

1ci↑ci↓
1ci↓&. ~27!

Obviously@see Eq.~1!#, this quantity measures the derivativ
of energy with respect toU,

D5
]^H&

Nlatt]U
5

]E

]U
, ~28!

whereE[^H&/Nlatt .
In the exact theory we can calculateD from Eq. ~18! ~see

Appendix A!. For the SCF approach, the parameterD can be
derived from Eq.~17!. It is not difficult to find out that at
U50 we have

D5D0[
n2

4
. ~29!

From Eqs.~28!, ~17!, and ~15! we find that the SCF ap
proach gives the common relationship between the conc
tration of double occupied sitesD, the BCS order paramete
D, and the filling factorn,

D5D01
D2

4U2 , ~30!

valid for arbitraryU,0 and alln values. The order param
eter D in Eq. ~30! is found self-consistently from the Eqs
~15! and ~16! depending onn and 2U/t. The coupling
strength and the band filling favors the formation of loc
pairs and double occupancy of sites. For general band fil
0<n<2 the parameterD is changed in the range 0<D
<1. The termD2/4U2 in Eq. ~30! shows the probability for a
pair of electrons to be found in a local bound state and
average quantity~27! has a meaning of total probability fo
electrons to be in a form of local pairs~both bound and
unbound!.

ig.

FIG. 3. The ground-state concentration of double occupied s
D as a function of2U/t in the exact theory~solid curves! and the
SCF approach~dots!. The indexes 1–5 and the bold curve mean t
same as in Fig. 1.
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In Fig. 3 we compare the exact Bethe ansatz and the S
results forD values in the ground state as functions of2U/t
for different n. One can see that the SCF data follow t
exact result much more closely at large values of2U/t,
while the maximum deviation occurs at small values
2U/t near the half-filled band. The SCF result forD barely
changes at weak coupling2U/t!1, while the exact resul
gives a linear dependence. We see from Fig. 3 that the
results forD underestimate the local pairing correlations
small 2U/t. Hence the derivative ofD with respect to2U
~positive slope! measures the degree to which pairing cor
lations are included in the SCF approach at the we
coupling limit. Thus, the correlation effect in the SCF a
proach becomes ineffective for relatively small valuesU/4t
!1. In contrast, at large2U/t values the SCF approac
suppresses the fluctuations and therefore slightly over
mates the exactD values.

For comparison in Fig. 4 we show the concentration
double occupied sites as a function ofn for various values of
2U/t. Again we see the parameterD increases monotoni
cally with 2U/t increasing at a givenn and withn increas-
ing at a given2U/t. In the SCF approachD is exponentially
small at weak coupling andD'D0 . At strong coupling,D
5uUuAn(22n) ~Ref. 32! and the concentration of doubl
occupied sites becomes equal to the number of local p
D'n/2. Thus the SCF result for the parameterD interpolates
between the number of itinerant (n2/4) and local pairs (n/2)
by increasing the coupling strength2U/t. In Figs. 3 and 4
the bold curves show the smooth crossover from BCS-
superconductivity to a strong-coupling Bose condensation
increasing uUu/t>uUuc /t and decreasingn<nc , respec-
tively. The exact results forD are remarkably well repro
duced within the SCF approach with renormalized chem
potential, especially at large and small2U/t. Based on the
common SCF relationship~30! and a reasonable agreeme
with the exact results we conclude that the parameterD may

FIG. 4. The ground-state concentration of double occupied s
D as a function ofn in the exact theory~solid curves! and the SCF
approach~dots!. The indexes 1–4 and the bold curve mean the sa
as in Fig. 2.
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serve as a reliable measure of pairing correlations for gen
band filling and over wide range of2U/t.

C. Kinetic energy

The kinetic energy,

Ekin[2
t

Nlatt
(

^ i , j &,s
^cis

1 cj s&, ~31!

also serves as a measure for estimation of electron pa
correlations. From Eqs.~1! and ~27! we have an exact rela
tion betweenEkin andD,

Ekin5E2UD. ~32!

Otherwise, we may calculate the kinetic energy by differe
tiating the total energy with respect tot,

Ekin5t
]E

]t
. ~33!

We can calculateEkin in the exact theory resolving corre
sponding integral equations~Appendix B!. For the SCF ap-
proach, using Eq.~17!, we have in the ground state

Ekin5
1

Nlatt
(

k

~«k2m̄ !«k

A~«k2m̄ !21D2/4
. ~34!

Figure 5 presents ground stateEkin /t as a function of the
coupling strength2U/t for various n. The SCF result for
Ekin is more accurate at weak coupling comparing with t
corresponding result for parameterD shown in Fig. 3. The
exact and the SCF results show significant narrowing of
effective bandwidth by increasingU/t. The SCF approach
overestimates the effect of pairing correlation in the kine
energy at weak coupling and underestimates it at strong c

s

e

FIG. 5. The ground-state kinetic energyEkin as a function of
2U/t in the exact theory~solid curves! and the SCF approach
~dots!. The indexes 1–5 and the bold curve mean the same a
Fig. 1.
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pling. The SCF approach becomes ineffective at smallU/t
values and the maximum deviation from the exact res
occurs at the half-filling case for intermediate coupli
strength. In Fig. 6 we plotEkin /t as a function of the band
filling n for various2U/t values. We notice that the effec
tive bandwidth gradually diminishes with decreasing ba
filling n and it is significantly suppressed~narrowed! at
strong-coupling limit near zero filling (n→0). The suppres-
sion of the bandwidth at vanishing carrier concentration
minds the trivial metal-insulator transition. A good agre
ment with the exact results is obtained at smalln and large
2U/t. The bold curve in Figs. 5 and 6 indicates the p
formation vs condensation in kinetic energy. The smo
crossover from the BCS into the Bose condensation reg
occurs below the bold curve in Fig. 5 and above it in Fig
at the cross points with corresponding curves.

To better illustrate the correlations in behavior betwe
the concentration of double occupied sitesD and the kinetic
energyEkin , we present the dependence ofEkin /t versusD
for the exact and the SCF results when the coupling stren
changes at different given values of2U/t ~Fig. 7! and when
the band filling changes at different given values ofn ~Fig.
8!. In Figs. 7 and 8 the intersections of the SCF results w
the bold curve show the crossover from the BCS regi
~above the curve! into the Bose condensation phase~below
the curve!. The agreement between the results is quite we
weak and strong couplings. Note that the agreement is g
at n<0.2 also for intermediate coupling~Fig. 7! and at
2U/t<0.5 for all values ofn ~Fig. 8!. The area below the
bold curve presents the BCS-like behavior in Fig. 7 and
Bose condensation regime in Fig. 8.

D. Chemical potential

The chemical potential is also an important characteri
for the evaluation of the SCF theory. From Bethe-ans
equations one can calculate the exact chemical potentia

FIG. 6. The ground-state kinetic energyEkin as a function ofn
in the exact theory~solid curves! and the SCF approach~dots!. The
indexes 1–4 and the bold curve mean the same as in Fig. 2.
ts
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m5
]E

]n
~35!

~see Appendix C!. From SCF Eqs.~15! and ~16! one can
numerically determine the SCF chemical potential. In Fig
the ground-state chemical potential values are plotted for
values of2U/t and different band fillingsn. At half-filling
(n51) m52uUu/2 for all values ofU. In an empty band~at
zero filling, n50)

m5mzero[2AU2

4
14t2 ~36!

FIG. 7. The ground-state kinetic energyEkin as a function ofD,
when 2U/t is changed, in the exact theory~solid curves! and the
SCF approach~dots!. The indexes 1–5 and the bold curve mean t
same as in Fig. 1.

FIG. 8. The ground-state kinetic energyEkin as a function ofD,
whenn is changed, in the exact theory~solid curves! and the SCF
approach~dots!. The indexes 1–4 and the bold curve mean the sa
as in Fig. 2.
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~Ref. 33! and the SCF results form coincide with the exact
ones. We have a good agreement also for intermediate va
of n and for various2U/t values. Forn!1 and uUu/t!1
the chemical potentialm decreases~algebraically! approxi-
mately as2U2. This result is consistent with the corre
sponding exact result for continuum model of exciton
insulator.34 In another limit (n.nc anduUu/t!1) the depen-
dence of m on U/t in the SCF approach is linearm
5(nU/2)22t cos(np/2). The bold curve in Fig. 9 indicate
the transition from the BCS regime~below the curve! into
the Bose condensation~above the curve! under variation of
the parameter2U/t ~see Secs. IV E and IV G!. Note that the
SCF curve ofm for n51 in Fig. 9 everywhere is below th
bold curve, showing that the system at half-filling remains
the BCS regime even at large2U/t values.

Figure 10 shows the variation of ground-statem/t as a
function ofn for various2U/t. Note thatm increases~alge-
braically! monotonically with the band filling (dm/dn.0)
providing the stability of the pairing phase15 ~the compress-
ibility is positive!. The SCF chemical potential coincide
with the exact one in the two extreme cases of strong
weak coupling and is moderately close to the exact solu
for intermediate values of2U/t. At U50 we have a simple
relationship between the chemical potential and band filli
m522t cos(np/2) and a metal-insulator transition occu
when m approaches the bottom of the bandm522t. This
gives the simple relation betweenm andn near the band edg
n5p21A412m/t. The SCF result nicely follows the exac
one for all2U/t and we find a smooth transition from qu
dratic behaviorm}n2 at weak coupling to a linear depen
dencem}n at the strong-coupling limit. At largeuUu/t it
readily follows from Eqs.~15! and ~16! that to the order of
t2/uUu we have approximately a linear dependence,

m5
U

2
1

4t2~12n!

U
. ~37!

FIG. 9. The ground-state chemical potentialm as a function of
2U/t for variousn in the exact theory~solid curves! and the SCF
approach~dots!. The indexes 1–5 and the bold curve mean the sa
as in Fig. 1.
es

d
n

,

In Fig. 10 the bold curve displays the crossover under
variation ofn from the BCS-like~below the curve! into the
Bose-Einstein behavior~above the curve!. Finally we should
stress that the numerical agreement between the exact
approximate results form in a discrete lattice is much mor
accurate than for the corresponding result form in a con-
tinuum model.13

E. Energy gap

For further corroboration of the validity of the SCF a
proach we compare the results for the energy gap. In the S
approach the order parameterD and the single-particle exci
tation energy gapEgap[2 min Ek are determined by Eq.~11!
and both vary withn. At half-filling ( n51) we find from
Eqs. ~15! and ~16! that the minimum excitation gap, whic
occurs atk5k05p/2, is equal to the order parameterEgap
5D. At n,1 the minimum excitation gap occurs atk5k0
where

k05H arccosS 2
m̄

2t D , if um̄u,2t,

0, if um̄u>2t.

~38!

In the first caseEgap5D. In the second case, possible on
away from half-filling, the energy gap to break a pair is

Egap5A4~m̄12t !21D2 ~39!

andEgap is generally greater thanD. Thus the equality

m̄12t50 ~40!

determines the critical valuenc of the band filling at a given
U/t ~or the critical valueUc /t of the coupling strength at a
given n! showing that the energy gap and the SCF or
parameterD are different whenevern,nc at fixed2U/t ~or
wheneveruUu/t.uUcu/t at givenn!. In spectrum nearm̄5

e

FIG. 10. The ground-state chemical potentialm as a function of
n for various2U/t in the exact theory~solid curves! and the SCF
approach~dots!. The indexes 1–4 and the bold curve mean the sa
as in Fig. 2.
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22t there exists a weak singularity, which describes
smooth crossover by changing the parametersU/t or n from
the BCS regime into a Bose condensate of structureless
bosonic pairs with total momentumk50.15 Note that at the
crossover the renormalized chemical potentialm̄ driven by
the couping strength or band filling approaches the bottom
the band22t and leads to the transition from the BCS-lik
into the Bose condensation behavior. This crossover clo
resembles the onset of the localization of pairs at
insulator-metal transition in the case of vanishing carr
concentrationn→0.

In Fig. 11 we show a quasiparticle energy spectrum
fixed 2U/t54 for three different values ofn. The minimum
excitation gap in the spectrum atn50.5 occurs at the Ferm
energy (k050.23p). Below the critical valuenc50.32, the
minimum excitation gap occurs atk050 and according to
Eq. ~39! the corresponding energy gap is greater than
order parameterD.

Note that according to the generalized Luttinger theor
the position of singularity in the density-density correlati
function is unrenormalized by the interaction strength a
the corresponding parameterkF in a non-Fermi-liquid is the
same as the Fermi momentum forU50.35,36 In contrast, the
SCF result for the parameterk0 , which plays the similar role
in single-particle spectrum for spin degrees of freedom
renormalized by the interaction strength2U/t, only when
nÞ1.

In the exact solution the energy gap is determined as

Egap5
]E

]~2s!
U

s510

2
]E

]~2s!
U

s520

~41!

and can be calculated from Eqs.~18!–~24! ~see Appendix D!.
The energy gap~or binding energy! in the exact and the

SCF approaches has tendency to grow monotonously
increasing2U/t. In Fig. 12 we plot the dependence

FIG. 11. The one-quasiparticle excitation energy spectrum in
SCF approach at2U/t54.0. Curve indexes 1–3 correspond ton
50.25,0.5,1.0. The minimum excitation gap in momentum sp
with k50 occurs atn,nc50.32 ~see Fig. 16!.
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Egap/t versus2U/t for differentn. The variation of SCF gap
Egap/t with n for variousU/t along with the exact result ar
given in Fig. 13. Near zero filling the exact gap increas
slowly with the decreasingn, whereas the SCF gap slowl
decreases withn. The bold curve in Figs. 12 and 13 indicate
a smooth evolution of the SCF gap from the BCS regime i
the Bose condensation regime by increasing ofU/t and n,
respectively.

The exact and the SCF approaches at weak coupling
gives Egap}t exp(22pt/uUu) at n51, and Egap}U2/t at n
50. In a strong coupling within the SCF approach we ha
Egap5uUu24t2/uUu at n51 and Egap5uUu24t at n50,
while the exact solution givesEgap5uUu24t for all band
fillings. The energy gap in weak coupling is reproduc

e

e

FIG. 12. The SCF energy gapEgap as a function of2U/t for
variousn. The indexes 1–5 and the bold curve mean the same a
Fig. 1.

FIG. 13. The SCF energy gap as a function ofn. The indexes
2–4 and the bold curve mean the same as in Fig. 2.
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rather well within the SCF approach and we expect to
even better agreement with the exact solution in higher
mensions for wider range of2U/t values.

F. Order parameter

The order parameterD significantly imitates the behavio
of parameterD under the variation of2U/t andn. From Eq.
~30! we obtain a simple relationship:

D52uUuAD2D0. ~42!

Nonvanishing order parameterD in one dimension is an
artifact of the SCF approach. Due to strong fluctuations o
algebraically decaying correlations~Kosterlitz-Thouless
type37! are expected, rather than true long-range order in
dimension. Thus the SCF order parameterD does not have
corresponding analogue in the exact theory. Neverthele
is interesting to compare the SCF result forD with the simi-
lar parameter,Dex[2uUuAD2D0 defined in the exact theor
to see how these two quantities are related to each anothe
Fig. 14 we plot the variation of the order parameterD, using
the Eq.~42! along with the exact result for parameterDex as
a function of2U/t for variousn. We notice that the exac
parameterDex and the order parameterD show the perfect
matching for variousn in wide range ofU/t. In Fig. 14, both
D and Dex depend onn and have a tendency to grow mo
notonously with increasing coupling strength2U/t. We can
compare also the SCF results forEgap andD in Figs. 12 and
14 to see that these parameters nicely follow each othe
small U/t till the crossover~intersection with the bold curve
2Uc /t), showing the onset of separation and difference
tween gap and order parameter. Note that at zero fillingn
50, the order parameter vanishesD50, whereas the SCF
gap is equal to the exact gapEgap5AU2116t224t.38,14

Thus the coupling strengthU/tÞ0 preserves the gap~elec-
tron binding!, even though the pairing parameterD vanishes
at zero band filling. The relationship in Eq.~30! along with

FIG. 14. The order parameterD as a function of2U/t in the
exact theory~solid curves! and the SCF approach~dots!. The in-
dexes 1–5 and the bold curve mean the same as in Fig. 1.
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the obtained results forDex and D show that parametersD
and D2/4U2 have many common features in wide range
coupling strength2U/t.

Under the decreasing ofn the parameterD andDex both
change as it is shown in Fig. 15. Here again we hav
perfect agreement betweenD andDex for all band fillingsn
and differentU/t values. In SCF approach there is an exa
correspondence in behavior betweenEgap and D under the
variation of band filling for largen till the critical concentra-
tion nc shown in Figs. 13 and 15 by the bold curve.
generalD is not a monotonous function ofn. However, for
uUu/4t>1 the parameterD smoothly increases withn, and at
relatively large 2U/t we have D5uUuAn(22n).32 For
small uUu/4t<1, the parameterD primary increases passin
through maximum and then gradually decreases. Note
when the band fillingn→0, the order parameter vanishes a
the system with the empty band becomes insulator with
chemical potential disposed below the bottom of the cond
tion band,mzero,22t. The SCF theory with renormalize
chemical potential provides a simple gap~or pseudogap a
finite temperatures! in the absence of pair coherence betwe
the pairsD50. Near this threshold the system behaves as
insulator with preformed bound pairs similar to what w
found recently in high-Tc cuprates in underdoped regimen
→0.28 The superconductivity occurs only when initiall
formed pairs become coherentDÞ0. Note that the order pa
rameter is significantly suppressed (D→0) nearn50, while
Egap is relatively large. The SCF theory overestimates
value of the exact gap for all values of2U/t and n, but it
correctly describes the difference in behavior between
order parameter and excitation gap under the variation on
and2U/t.

G. Phase diagram

The crossover from Cooper pairing phase to Bose cond
sation phase as a function of2U/t and n within SCF ap-

FIG. 15. The order parameterD as a function ofn in the exact
theory~solid curves! and the SCF approach~dots!. The indexes 2–4
and the bold curve mean the same as in Fig. 2.
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proach in one dimension is smooth~i.e., there is no sharp
distinction between these phases!. The minimum gap at mo-
mentumk50 serves as a measure to distinguish differ
regimes on the phase diagram, where either BCS-like
Bose condensation behavior take place. Figure 16 show
ground-state phase diagram inn-U plane using our SCF re
sults in one dimension. The energy gap on the Fermi sur
kÞ0 ~at m̄.22t) everywhere in region I. In region II a ga
in the spectrum occurs at the bottom of conduction band w
zero momentumk50 (m̄<22t) and the energy gap is dif
ferent from the order parameterD. The boundary between
the region I and II, defined by Eq.~40!, describes a smooth
crossover from a picture of overlapping Copper pairs to
Bose condensate of independent local pairs with momen
k50. The Bose condensation of preformed pairs in regio
is driven by the coupling strength and band filling. For a
infinitesimal smalluUu/t one can get a crossover from regio
I into II by the variation ofn that leads to the changeover
the BCS-like behavior. At largeuUu/t limit, the region I is
gradually decreased and at relatively small deviation fr
half-filling gives a crossover from one regime to anoth
providing the separation ofD from Egap. The smooth char-
acter of transition is confirmed by careful inspection in b
havior of the ground-state energyEGS and other quantities
~see Secs. IV A and IV E! as functions of2U/t andn.

Note that within the SCF approach there is no Bose c
densation of electrons with momentumk50 at the half-filled
band (n51) even for the largeuUu/t limit due to the effect
of strong interaction between the local pairs. Thus the e
lution from weakly bound BCS pairs to localized pairs atn
51 in the ground state within the SCF approach takes p
without crossover. This interesting feature shows the diff
ence in behavior between the discrete lattice atn51 and
continuum models.13 Our conclusion about the crossov
away from half-filling is overall in agreement with the pr
vious studies of crossover in the one-dimensional continu
model.23 Note that in region II near empty bandn50 there

FIG. 16. The phase diagram of one-dimensional negativU
Hubbard model in the SCF approach: in region I the minimum g
occurs atkÞ0, in region II the minimum gap occurs atk50.
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exists also a simple transition, driven by decreasing ofn,
from the Bose condensation regime into an insulating s
with D50 andEgap522mzero24t. Also we expect to get a
similar phase diagram within the SCF approach in hig
dimensions.

H. Compressibility

The behavior of the compressibilitykch[]m/]n ~or
charge susceptibilityxch[]n/]m5kch

21) is also a sensitive
test for the estimation of the accuracy of the SCF theory

In the exact theory, we can calculatekch from correspond-
ing integral equations~Appendix E!. In the SCF approach
kch must be determined self-consistently~Appendix F!. At
half-filling we have in the exact theory12

kchun→15
tpI 1~22pt/U !

I 0~22pt/U !
, ~43!

corresponding to zero-field spin susceptibilityxch in the re-
pulsive Hubbard model,xch5kch

21.39

Figures 17 and 18 show the variation ofkch as a function
of 2U/t for different valuesn both in the exact and SCF
theories. As shown in Fig. 18 the SCF theory yields a fin
value for compressibility atn50, while the exactkch→0
~xch diverges!.10,12 We note that the SCF approach signi
cantly underestimateskch near half-filling (n→1) and over-
estimates it near the empty band filling (n→0). Neverthe-
less, the SCF result captures the general trend in behavio
kch under the variation ofU/t andn. The discrepancy with
the exact results decreases with decreasing of the intera
strength2U/t. One can see from Figs. 17 and 18 that t
most serious errors occur at half-filling for large2U/4t
>1. The exact and SCF results are relatively close
2U/t<0.5 and alln. The deviations clearly reveal that th
fluctuations must be included beyond the SCF approac
obtain the better quantitative agreement forkch. In Figs. 17

p
FIG. 17. The ground-state compressibilitykch as a function of

2U/t in the exact theory~solid curves! and the SCF approach~dots
and dashed curves!. Curve indexes 1–3 correspond ton
50.6,0.8,0.9.
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and 18 the crossover inkch from the BCS regime into the
Bose condensation behavior under the variation of2U/t and
n is also shown.

V. SUMMARY

In this paper we solved numerically the Lieb-Wu equ
tions and the self-consistent equations with a renormali
chemical potential for general band fillingsn and coupling
strength2U/t. We compared in one dimension the exa
and the SCF ground-state properties such as the energy
concentration of the double occupied sites, the kinetic
ergy, and the chemical potential. In overall the SCF res
show a good agreement with the exact results. The lar
discrepancy occurs in the half-filling case and at the interm
diate values of2U/t. Even atn51 the results are very clos
to the exact values in the wide range of2U/t. The absolute
and relative errors in the calculations of the energyEGS and
the chemical potentialm for all n values systematically de
crease with increasing2U/t. The SCF approach at stron
and weak coupling reproduces the exact results and giv
reasonable interpolation scheme for the intermediate re
of 2U/t.

Although the SCF approach is quite accurate in describ
the ground-state properties, however, it poorly reprodu
the characteristics of excited states. It fails to give the cor
numerical values for the excitation gapEgap and it underes-
timates the compressibilitykch at large2U/t by a factor of
4/p2 at half-filling. The correlation effect in the SCF ap
proach are seen to be underestimated for all calculated q
tities of the weak-coupling regime2U/4t,1. At half-filling
the SCF result for the concentration of the double occup
sites D gives a good agreement with the exact one
2U/4t>1. The SCF approach provides a simple analyti
relationship between parametersD, n, and D, valid for all
2U/t andn. The parameterD has physical meaning closel
associated with parameterD, rather thanEgap. This conclu-

FIG. 18. The ground-state compressibilitykch as a function ofn
in the exact theory~solid curves! and the SCF approach~dots!.
Curve indexes 1,2 correspond to2U/t52.0,10.0.
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sion is also based on the perfect agreement between the
parameterD in the SCF approach and a similar parame
Dex5AD2D0 introduced in the exact theory.

The SCF approach atnÞ1 suggests in one dimension
smooth crossover from the BCS limit to the ideal Bose gas
independent local pairs with zero momentumk50, since
there is only a weak singularity in the excitation spectrum
m̄522t. The nonideal Bose gas behavior of local pairs i
characteristic feature of the discrete lattice model exactly
n51. At half-filling the gap in spectrum is identical withD
and the system remains in the BCS regime with the gap
momentum space atk5p/2 even at strong coupling. Al
physical quantities for variousn evolve smoothly with in-
creasing2U/t from the weak- to strong-coupling limit.

The weak singularity in the excitation spectrum atnc
within the SCF approach reflects the difference between
order parameterD and the energy gapEgap.

Thus the exact and SCF results both show that
ground-state properties change smoothly with2U/t and
there is no singular point in the2U/t2n plane except for
n51 andU50. In a future work we shall apply the Bethe
ansatz formalism to calculate the correlation functions to d
cover the difference and the relation between the unren
malized Fermi momentumkF in a non-Fermi-liquid and the
SCF parameterk0 .

The SCF theory shows also the interplay between the
calization and superconductivity under the variation of ba
filling. Near empty band the system undergoes the transi
from the Bose condensation regime into insulating state w
the energy gap for preformed pairs without coherenceD
50). We found that the energy gapEgap is a monotonous
decreasing function of the doping level~band filling nearn
50), while superconducting gapD is much smaller and in
general follows the nonmonotonous trend of its critical te
perature. The suppression of the superconductivity and p
ervation of the gap at vanishing concentration of carriers~or
band filling! are consistent qualitatively with the structure
a gap~or pseudogap at finite temperatures! in overdoped re-
gime seen recently in low-temperature tunneling experime
in YBCO and BSCCO.40,41The good agreement between th
SCF and Bethe-ansatz results suggests the correct pictu
the crossover even in one dimension at least in the lo
density limit.

Although much theoretical effort has been devoted to
examining of the crossover in the exact approach, still
very much is known, in particular, about low-lying excita
tions and spectral properties of the attractive Hubb
model.42 Our future studies will be focused on the proble
of the crossover in higher dimensions and we expect that
SCF approach will be more accurate in two and three dim
sions. We conclude that the SCF approach with a renorm
ized chemical potential in lattices retains the essential dif
ence from the standard BCS approach for allnÞ1.
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APPENDIX A: CONCENTRATION OF DOUBLE
OCCUPIED SITES IN THE EXACT THEORY

In the exact theory from Eq.~28! and Eqs.~18!–~24! we
have for the concentration of double occupied sites

D5
n

2
2s22E

2Q

Q

dkrU~k!cosk24QUr~Q!cosQ,

~A1!

where rU(k)[t]r(k)/]U and sU(l)[t]s(l)/]U satisfy
the following integral equations

rU~k!52
U cosk

4tp E
2B

B

dlsU~l! f 1~k,l!

2
cosk

2p E
2B

B

dls~l!@ f 1~k,l!/22~U/4t !2f 1~k,l!2#

2
U cosk

4tp
@ f 1~k,B!1 f 1~k,2B!#s~B!BU , ~A2!

sU~l!52
U

4tp E
2Q

Q

dkrU~k! f 1~k,l!

1
U

2tp E
2B

B

dl8sU~l8! f 2~l,l8!

2
1

2p E
2Q

Q

dkr~k!@ f 1~k,l!/22~U/4t !2f 1~k,l!2#

1
1

p E
2B

B

dl8s~l8![ f 2~l,l8!/2

2~U/2t !2f 2~l,l8!2]

2
U

4tp
@ f 1~Q,l!1 f 1~2Q,l!#r~Q!QU

1
U

2tp
@ f 2~l,B!1 f 2~l,2B!#s~B!BU , ~A3!

and QU[t]Q/]U, BU[t]B/]U are determined from the
relations

E
2Q

Q

rU~k!dk12r~Q!QU50, ~A4!

E
2B

B

sU~l!dl12s~B!BU50. ~A5!

The functionsf 1(k,l) and f 2(l,l8) are defined by Eqs.~21!
and ~22!.

Substituting the solution of the integral Bethe-ans
equations~18!–~24! into Eqs.~A1!–~A5! and resolving these
equations we obtain the concentration of the double occu
sitesD as a function of2U/t, n, ands. At s50 we have the
ground stateD ~in this caseQU50).
z

d

APPENDIX B: KINETIC ENERGY IN THE EXACT
THEORY

In the exact theory for the kinetic energy we have fro
Eqs.~33! and ~18!–~24!

Ekin522tE
2Q

Q

dk@r~k!1r t~k!#cosk24tQtr~Q!cosQ,

~B1!

where r t(k)[t]r(k)/]t and s t(l)[t]s(l)/]t satisfy the
following integral equations

r t~k!52
U cosk

4tp E
2B

B

dls~l!@ f 1~k,l!

22~l2sink!2f 1~k,l!2#

2
U cosk

4tp E
2B

B

dls t~l! f 1~k,l!

2
U cosk

4tp
@ f 1~k,B!1 f 1~k,2B!#s~B!Bt ,

~B2!

s t~l!52
U

4tp E
2Q

Q

dkr~k!@ f 1~k,l!

22~l2sink!2f 1~k,l!2#

1
U

2tp E
2B

B

dl8s~l8!@ f 2~l,l8!

22~l2l8!2f 2~l,l8!2#

2
U

4tp E
2Q

Q

dkr t~k! f 1~k,l!

1
U

2tp E
2B

B

dl8s t~l8! f 2~l,l8!

2
U

4tp
@ f 1~Q,l!1 f 1~2Q,l!#r~Q!Qt

1
U

2tp
@ f 2~l,B!1 f 2~l,2B!#s~B!Bt , ~B3!

and Qt[t]Q/]t, Bt[t]B/]t are determined from the rela
tions

E
2Q

Q

r t~k!dk12r~Q!Qt50, ~B4!

E
2B

B

s t~l!dl12s~B!Bt50. ~B5!

Equations~18!–~24! and ~B1!–~B5! determineEkin as a
function of 2U/t, n, and s. At s50 we have the ground
stateEkin ~in this caseQt50).
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APPENDIX C: CHEMICAL POTENTIAL IN THE EXACT
THEORY

In the exact theory the chemical potential is

m5
U

2
22tE

2Q

Q

dkrn~k!cosk24tQnr~Q!cosQ, ~C1!

wherern(k)[]r(k)/]n and sn(l)[]s(l)/]n satisfy the
following integral equations:

rn~k!52
U cosk

4tp E
2B

B

dlsn~l! f 1~k,l!

2
U cosk

4tp
@ f 1~k,B!1 f 1~k,2B!#s~B!Bn ,

~C2!

sn~l!52
U

4tp E
2Q

Q

dkrn~k! f 1~k,l!

1
U

2tp E
2B

B

dl8sn~l8! f 2~l,l8!

2
U

4tp
@ f 1~Q,l!1 f 1~2Q,l!#r~Q!Qn

1
U

2tp
@ f 2~l,B!1 f 2~l,2B!#s~B!Bn , ~C3!

andQn[]Q/]n, Bn[]B/]n are determined from the rela
tions

E
2Q

Q

rn~k!dk12r~Q!Qn50, ~C4!

E
2B

B

sn~l!dl12s~B!Bn5 1
2 . ~C5!

Equations~18!–~24! and ~C1!–~C5! determinem as a
function of 2U/t, n, and s. At s50 we have the ground
statem ~in this caseQn50).

APPENDIX D: ENERGY GAP IN THE EXACT THEORY

In the exact theory the energy gap is

Egap52U22tE
2Q

Q

dkrs~k!cosk24tQsr~Q!cosQ,

~D1!

where rs(k)[]r(k)/]s and ss(l)[]s(l)/]s satisfy the
following integral equations:

rs~k!52
U cosk

4tp E
2B

B

dlss~l! f 1~k,l!

2
U cosk

4tp
@ f 1~k,B!1 f 1~k,2B!#s~B!Bs ,

~D2!
ss~l!52
U

4tp E
2Q

Q

dkrs~k! f 1~k,l!

1
U

2tp E
2B

B

dl8ss~l8! f 2~l,l8!

2
U

4tp
@ f 1~Q,l!1 f 1~2Q,l!#r~Q!Qs

1
U

2tp
@ f 2~l,B!1 f 2~l,2B!#s~B!Bs , ~D3!

and Qs[]Q/]s, Bs[]B/]s are determined from the rela
tions

E
2Q

Q

rs~k!dk12r~Q!Qs522, ~D4!

E
2B

B

ss~l!dl12s~B!Bs521. ~D5!

Equations~18!–~24! and ~D1!–~D5! at s50 determine
Egap as a function of2U/t andn.

APPENDIX E: COMPRESSIBILITY IN THE EXACT
THEORY

In the exact theory the compressibility is

kch[
]m

]n
[mn , ~E1!

mn522tE
2Q

Q

dkrnn~k!cosk28tQnrn~Q!cosQ

24tQnnr~Q!cosQ

14tQn
2Fr~Q!sinQ2

]r~k!

]k U
k5Q

cosQG , ~E2!

where rnn(k)[]rn(k)/]n and snn(l)[]sn(l)/]n satisfy
the following integral equations

rnn~k!52
U cosk

4tp E
2B

B

dlsnn~l! f 1~k,l!

2
U cosk

2tp
@ f 1~k,B!1 f 1~k,2B!#sn~B!Bn

2
U cosk

4tp F] f 1~k,B!

]B
1

] f 1~k,2B!

]B Gs~B!Bn
2

2
U cosk

4tp
@ f 1~k,B!1 f 1~k,2B!#S ]s~l!

]l U
l5B

DBn
2

2
U cosk

4tp
@ f 1~k,B!1 f 1~k,2B!#s~B!Bnn , ~E3!
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snn~l!52
U

4tp E
2Q

Q

dkrnn~k! f 1~k,l!1
U

2tp E
2B

B

dl8snn~l8! f 2~l,l8!2
U

2tp
@ f 1~Q,l!1 f 1~2Q,l!#rn~Q!Qn

1
U

tp
@ f 2~l,B!1 f 2~l,2B!#sn~B!Bn2

U

4tp F] f 1~Q,l!

]Q
1

] f 1~2Q,l!

]Q Gr~Q!Qn
2

2
U

4tp
@ f 1~Q,l!1 f 1~2Q,l!#S ]r~k!

]k U
k5Q

DQn
22

U

4tp
@ f 1~Q,l!1 f 1~2Q,l!#r~Q!Qnn

1
U

2tp F] f 2~l,B!

]B
1

] f 2~l,2B!

]B Gs~B!Bn
21

U

2tp
@ f 2~l,B!1 f 2~l,2B!#S ]s~l!

]l U
l5B

DBn
2

1
U

2tp
@ f 2~l,B!1 f 2~l,2B!#s~B!Bnn , ~E4!
and Qnn[]Qn /]n, Bnn[]Bn /]n are determined from the
relations

E
2Q

Q

rnn~k!dk14rn~Q!Qn12S ]r~k!

]k U
k5Q

DQn
2

12r~Q!Qnn50, ~E5!

E
2B

B

snn~l!dl14sn~B!Bn12S ]s~l!

]l U
l5B

DBn
2

12s~B!Bnn50. ~E6!

Equations~18!–~24! and ~E1!–~E6! determinekch as a
function of 2U/t, n, and s. At s50 we have the ground
statekch ~in this caseQn5Qnn50).

APPENDIX F: COMPRESSIBILITY IN THE SCF
APPROACH

In the SCF approach the compressibilitykch[]m/]n
[mn satisfies the following self-consistent equations
hy
2
1

Nlatt
(

k

~U22mn!Ek22~Ek!n~«k2m̄ !

2Ek
2 51, ~F1!

(
k

~Ek!n

Ek
2 50, ~F2!

where

~Ek!n[
]Ek

]n
5

2~«k2m̄ !~U22mn!1DDn

4Ek
, ~F3!

and m̄[m2nU/2, Dn[]D/]n.
Equations ~15!–~16! and ~F1!–~F3! determine self-

consistently ground statem, D, kch, andDn as functions of
2U/t andn.
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