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Ground-state properties of the attractive Hubbard model in one dimension are studied by means of both the
exact Bethe-ansatz formalism and the self-consistent f&@&H approach with renormalized chemical poten-
tial for general band fillings and a wide range of coupling strendtht. The energy, the concentration of
double occupied sites, the kinetic energy and the chemical potential of the ground state are in a good numerical
agreement with the exact results over a wide range of paraméterandn. The concentration of local pairs
or double occupied sites in the Bethe-ansatz solution serves as a suitable parameter measuring the electron
pairing correlations. The SCF theory provides a simple analytical relationship between the concentration of
double occupied sites, the band filling and the BCS order parameter, valid for arbitfargnd n. The
calculated energy gap, the BCS order parameter, the phase diagram and the compressibility are also discussed.
The SCF theory in one dimension distinguishes the order parameter from the excitation gap and suggests a
smooth crossover away from half-fillingt n#1) from the BCS pairing to the Bose condensation regime
under the variation o)/t andn. [S0163-18289)04911-5

[. INTRODUCTION from the BCS superconductivity to superfluidity of local
pairs in a lattice driven by band filling and interaction
The attractive Hubbard modésee, e.g., Ref.)lexhibits  strength is an open question. It is interesting to study the
the simplest Hamiltonian that incorporates the basic ingredierossover in a discrete model under the variation of the num-
ents of electron pairing correlations in lattices, and becausber of electrongor chemical potentialand to understand the
of its controllable coupling strengtbl/t, is frequently ap- peculiarity of one-dimensional system exactly at half-filling.
plied in a weak-coupling(BCS theory® and a strong- The purpose of this paper is to investigate the effect of the
coupling (model of local pairs® regimes to explain the variation of band fillingn and coupling strength- U/t on the
appearance of the superconductivity and the charge-densitground-state properties in an attractive Hubbard model. The
waves in conventional and new high-temperaturefinal goal is to develop a reliable self-consistent field theory
superconductor§® The exact solution of this model in one over a wide range of U/t. The lack of the exact results for
dimensiofd~2 provides reliable information on the general many physical quantities even in one dimension leads to dif-
features of electron pairing and can serve as a benchmark fdiculties for systematic studies of approximate theories. In
approximate theories for the intermediate regiotJéf. Itis  this paper we derive the exact integral Bethe-ansatz equa-
interesting to compare the predictions of the self-consistertions for the concentration of double occupied sites, the ki-
field (SCB approach(or modified BCS approach where the netic energy, the chemical potential, and the compressibility
variation of particles is included and the weak coupling re-(the inverse of the charge susceptibifly extending in this
gime is not assuméavith the exact Bethe-ansatz results in away previous exact results?1221?3y/e test the SCF theory
wide range of the coupling strength and for all bandby numerically calculating the ground-state characteristics as
fillings.t314 functions of —U/t or n and comparing with our exact re-
The gas of electrons in continuum model interacting viasults.
attractive potential displays a crossover from the strong- Our investigations show that in two extrem@geak and
coupling extreme of tightly bound weakly interacting local strong coupling the exact and self-consistent results are
Bose pairgcomposite bosongo the weak-coupling limit of identical and they are also moderately close one to another at
relatively large overlapping Cooper pairs® The crossover the intermediate coupling strength. We found that the SCF
between the BCS pairing and the Bose condensation regiméiseory with renormalized chemical potential provides a
has been a subject of many recent warks?In Ref. 15, this  simple and reasonable interpolation scheme between the
intriguing question for the continuum model of a Fermi gasweak and strong interaction limit for all band fillings. Even
with a fictitious separable attractive potential has been anan one-dimensional case the SCF approach displays the
lyzed. As far as we know, the existence of the crossovecrossover and the main ground-state features of very general
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relevance. We expect that this theory will be even more acy) is the spin indexU is the coupling strengthl{<0), and
curate in higher dimensions, where the quantum fluctuations;’ (c;,) is the Fermi creatioridestruction operator of an
become significantly suppressed. electron at sité with spin o.

Although the attractive Hubbard model is similar to the  After Fourier transformation the Hamiltonian takes the
one-dimensional electron gas with pairwise attractiveform
sfunction interaction in the continuum modél?® there are
some specific features related with a lattice model exactly at " " +
half-filled band. The crossover from a weak- to a strong- H:g &kCroCho * mkkE Ck+Q1Ckr —qI CkiCk/1
coupling superconductivity for different concentrations of ' Q 2
electrons within the SCF theory is studied by comparison _ ) )
with the exact results. There is extensive evidence, dftect WhereNiy is the total number of lattice sites,
and indirect® for the local quasi-one-dimensional character
of electronic structure in high temperature superconductors. ey=—12, explik-R), 3
Unlike the conventional superconductors in which the phase R
coherence and pairing occur at once and at same temper,

; i th derdoned tes th it i R= ri—r; is the nearest-neighbor vector. In one dimension
ure, in the underdoped cuprates there exists a separa |2p{:1) £, = — 2t cosk.

between the pair binding and superconductivity as doping i The average number of electrofar band filling n, the

decreased below the optimal vaffelt is also well estab- : '
. . i average spis, and the BCS order parametkiare defined as
lished that the pseudogap in a normal state has essentially the gesp P

same magnitude and momentum dependence as in the super- 1
conducting staté’ The evolution of the energy gafFermi n=y > (cfc), o=*1(T or |), (4
surface in the momentum spaesith the band filling and the latt k.o
coupling strength in the SCF approach are also examined.

The interplay between the Bose condensation and localiza- s= 1 2 o(Cy, Cro) (5)
tion of electrons with purely attractive interaction are dis- 2Nja o Kokl

cussed in the context of the existence of a pseudogap in the

insulating state of underdoped cuprates at vanishing carriers 2U

concentratiorf® In general separation between the binding A:m; (CkiCok))- (6)

and phase coherence can be accomplished either by increas-

ing the coupling strength or by decreasing the density of Inthe SCF approach we introduce the consistent chemical
electrons. We study the pair formation associated with theotentialu, which must be adjusted to fix the band filling
distinct change in the band structure driven by bdihh and  and use the canonical transformation metteek, e.g., Refs.

n. Our simplified model with local attraction which does not 29 and 30 to diagonalize the Hamiltonian by means of the
have all the features of real superconductors, neverthelesgew operators

provides a reasonable testing ground for approximate ap-

proaches intended for the full problem. bkfukcm—vkcfkl ,
The paper is organized as following: After an introduction
(Sec. ) we review the model and the basic formalism for the b_y = u,(c,MJrz;,(c,fT , )

SCF approacHiSec. I) and the solution of the Bethe-ansatz - .
equations(Sec. Ill). Section IV presents the numerical cal- yvhereuk andu are real coefficients that satisfy the normal-

culations of the ground-state properties and a comparisoﬁatlon condition
between the exact and the SCF results, using both the Bethe-
ansatz and the SCF approach. Section V constitutes a sum-
mary. The Appendixes deal with the exact calculation pjinimization of the total energy with respecttiQ anduv

schemegintegration equationgor the concentration of local  giyes the following resultésee, e.g., Refs. 29 and 30
pairs, the kinetic energy, the chemical potential, the energy

uZ+ovi=1. (8)

gap, the compressibility, and the SCF calculation scheme , 1 E— W
(self-consistent equationor the compressibility. ui=5|1 E, | 9
Il. ATTRACTIVE ELECTRONS IN LATTICE AND THE 2_} 1— gk M 10
V= y ( )
SCF APPROACH 2 Ey

The model under consideration is the Hubbard model de- A

fined by the Hamiltonian Ex=\/(e— )+ T (11
we have the SCF Hamiltonian for quasiparticles
H=—t > ¢, +UX clelcici, (1)
(i.i)o [

Hscr= 2 B b+ Nia( Eas— ), (12)

wheret>0 corresponds to the kinetic energy of electron
hopping between two nearest neighboandj, c=*+1 ({ or  where
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latt k
A > A? n2U 13
Niart K Uk 4aU 4 (13

is the ground-state average valil¢scp per one lattice site,
and

L 14
BW=p— (14

is the renormalized chemical potential in the SCF approach.

In the SCF approach the number of electronand the
BCS order parameteX are included on an equal footing, and
by minimization ofEgs— uh over these parameters, one can
obtain a set of self-consistent equatihseterminingn and
A at a givenu (or u andA at a givenn):*®

1 ek~ M
=1-n, (15)
Nja % Ex
J ! _ 1 (16)
Nia € 2Bk .

Note that at half-filling 6=1) =0, and we restore the

usual BCS result foA. After simple algebraic transforma-

tions, the ground-state energy in Ef3) can be written in a

more convenient form

E,+ iC 1
Kt g #(An).

17

In the thermodynamic limiN,,>1, the sum ovek can
be replaced by an integral over the first Brillouin zone.

Ill. LIEB-WU EQUATIONS

The Bethe-ansatz techniqué'*gives an exact solution
of the Hubbard model(1l) in one dimension. In the limit
Na=>1, the energy of the system per one lattice site is

n
=S

E=U(2

Q
)—thQdkp(k)cosk, (18

where 0=n<1, 0<s=<n/2 andp(k) is determined from the
Fredholm integral equations

1 Ucosk (B
p0= 5= [ dronfaen), a9
Q
ey LU CLCAY
U (e
+mf_8d)\’0'()\/)f2()\,)\/), (20)
1
falk)= @

(U/4t)%+ (N —sink)?’
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FIG. 1. The ground-state ener@gs as a function of coupling
strength— U/t in the exact theorysolid curve$ and the SCF ap-
proach (dotg. Curve indexes 1-5 correspond to the values
=0.2,0.4,0.6,0.8,1. The bold curve indicates the smooth crossover
from the BCS regime into the local pair behavisee Sec. IV

1
ROND= 00z e 2
with normalization conditions determining andB,
Q
J p(k)dk=1-2s, (23
-Q
B n
f o(N)d\= z—s. (29
B 2

The parameter® andB generally depend on, s, U andt.
The solution of Eqs(18)—(24) at s=0 determines the exact
ground-state energy

Ecs=Els-0- (25

In this caseQ= = for all values ofU, t, andn.

IV. COMPARISON OF SCF AND EXACT GROUND-STATE
RESULTS

A. Energy

First we calculated the ground-state enekgys for the
one-dimensional case in the SCF approach and in the exact
theory according to the formulg47) and (25), correspond-
ingly. For this purpose we solved numerically the self-
consistent equationd5) and (16) for given values of cou-
pling strength—U/t and band fillingn using an iteration
algorithm. We also solved the integral equatiqd8) and
(20) with the conditiong23) and(24) for the same values of
—U/t andn using the subroutinéed?2 (see Ref. 31, §18)1
In Fig. 1, both results are shown as functions-ofJ/t for
different n. Similar results for the ground-state energy at
—U/t=<10 have been reported previously in Ref. 14. In both
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FIG. 2. The ground-state ener@s as a function of band fill- FIG. 3. The ground-state concentration of double occupied sites

ing n in the exact theorysolid curve and the SCF approach D as a function of-U/t in the exact theorysolid curveg and the
(doty. Curve indexes 1-4 correspond to the valuedJ/t SCF appr_oac!(ldots). The indexes 1-5 and the bold curve mean the
=0.5,2.0,6.0,10.0. The bold curve indicates the crossover, as in Figame as in Fig. 1.

1.

1
extreme cases of strong and weak interaction the agreement D= N_E (CﬁCmCﬁCu)- (27)
between the exact and the SCF results is excellent, and a latt 1
small deviation from the exact result occurs only near half-Obviously[see Eq(1)], this quantity measures the derivative
filled band (1=1) for intermediate values of-U/t. Note  of energy with respect tt,
that the SCF approach gives a good numerical agreement
with the exact result for various. This conclusion is justi- _ KH) _9E
fied in Fig. 2, where the ground-state energy is shown as a " NdU  oU”
function of n for various values of-U/t. One can see from

Fig. 2 that the ground-state energy in the SCF and the exalfn€r€E=(H)/Niz.
results both depend on linearly. Analytical calculations In the exact theory we can calculdlefrom Eq.(18) (see

performed at a small concentration of electrons 0 show “PPendix A. For the SCF approach, the paramderan be

that the SCF result coincides with the exact ground-statd€nived from Eq.(17). It is not difficult to find out that at
energy U=0 we have

U2 _ _ n2
Ecs= N\ +4t? (26) D=Do=7" (29

for all values ofU/t. This result in SCF approach is consis-  From Egs.(28), (17), and(15) we find that the SCF ap-
tent with predictions of crossover and Bose condensation iRroach gives the common relationship between the concen-
the dilute regimdsee Secs. IVE and IVGThe bold curves tration of double occupied sitd3, the BCS order parameter
in Figs. 1 and 2 show the crossover from the BCS-like be4, and the filling factom,
havior into the Bose-Einstein condensation of local pdos 5
an explanation see Sec. I\)@\ote that in Fig. 2 the bold D=D.+ A_ (30)
. 0 2
curve at smalh shows the crossover from linear dependency 4U
to a quadratic behavior. The system is in the BCS regime

above and below the bold curve on Figs. 1 and 3 respec\{alid for arbitraryU<0 and alln values. The order param-
tively. The bold curve in Fig. 1 does not intersect the curveeterA in Eq. (30) is found self-consistently from the Egs.

_ : o g .. (15 and (16) depending onn and —U/t. The coupling
Iﬁ;ncrols'scs)r\]/g\;v:E?Ot?r?eslgaobsll(lat)égg32?12::;0?:“rr(]a%i(r:winiese against strength and the band filling favors the formation of local

pairs and double occupancy of sites. For general band filling
) L 0<n=<2 the parameteD is changed in the range<D
B. Concentration of double occupied sites <1. The termA2/4U? in Eq. (30) shows the probability for a
The concentration of the local paitsr the double occu- pair of electrons to be found in a local bound state and the
pied site$ D is a much more sensitive measure of pairingaverage quantity27) has a meaning of total probability for
correlations than the ground-state energy. We define the comlectrons to be in a form of local pait®oth bound and
centration of the double occupied sitesas unbound.

(28)
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FIG. 4. The ground-state concentration of double occupied sites o )
FIG. 5. The ground-state kinetic ener@y;, as a function of

D as a function oh in the exact theorysolid curves and the SCF ; h
U/t in the exact theory(solid curve$ and the SCF approach

approachdots. The indexes 1-4 and the bold curve mean the same - .
as in Fig. 2. (dots. The indexes 1-5 and the bold curve mean the same as in

Fig. 1.

In Fig. 3 we compare the exact Bethe ansatz and the SCéerve as a reliable measure of pairing correlations for general
results forD values in the ground state as functions-ofJ/t band filling and over wide range of U/t.
for different n. One can see that the SCF data follow the
exact result much more closely at large values-of/t, C. Kinetic energy
while the maximum deviation occurs at small values of o
— U/t near the half-filled band. The SCF result Drbarely The kinetic energy,
changes at weak coupling U/t<1, while the exact result ¢
gives a linear dependence. We see from Fig. 3 that the SCF Epn=——— >, (CCio), (31)
results forD underestimate the local pairing correlations at Niatt (i1}, 0

smal_l __U/t‘ Hence the derivative d with respect to—U also serves as a measure for estimation of electron pairing
(pc_)smve slop¢ measures the degree to which pairing COITe-rrelations. From Eqg1) and (27) we have an exact rela-
lations are included in the SCF approach at the weaky,, betweerE,,, andD

n '

coupling limit. Thus, the correlation effect in the SCF ap-

proach becomes ineffective for relatively small valligit Ew,=E—UD. (32
<1. In contrast, at large-U/t values the SCF approach

suppresses the fluctuations and therefore slightly overesttherwise, we may calculate the kinetic energy by differen-

mates the exadd values. tiating the total energy with respect top
For comparison in Fig. 4 we show the concentration of
double occupied sites as a functionrofor various values of E.. :tE (33)
—U/t. Again we see the parametBr increases monotoni- kin" ot
cally with — U/t increasing at a given and withn increas- ) )
ing at a given— U/t. In the SCF approach is exponentially We can calculat&,;, in the exact theory resolving corre-

small at weak coupling anB~D,. At strong couplingA sponding integral equation&ppendix B. For the SCF ap-

=|U|n(2=n) (Ref. 32 and the concentration of double Proach, using Eq(17), we have in the ground state

occupied sites becomes equal to the number of local pairs

D~n/2. Thus the SCF result for the parameleinterpolates 1 (e~ H)ek

" » . Erin=1g— 2 : (34)
etween the number of itineramy/4) and local pairst{/2) Niar ‘% \/(gk—ﬁ)% A%/4

by increasing the coupling strengthU/t. In Figs. 3 and 4

the bold curves show the smooth crossover from BCS-like Figure 5 presents ground stdg,,/t as a function of the

superconductivity to a strong-coupling Bose condensation bgoupling strength— U/t for variousn. The SCF result for

increasing |U|/t=|U|./t and decreasingh<n., respec- E,, is more accurate at weak coupling comparing with the

tively. The exact results fob are remarkably well repro- corresponding result for parametershown in Fig. 3. The

duced within the SCF approach with renormalized chemicaéxact and the SCF results show significant narrowing of the

potential, especially at large and smallJ/t. Based on the effective bandwidth by increasing/t. The SCF approach

common SCF relationshif80) and a reasonable agreement overestimates the effect of pairing correlation in the kinetic

with the exact results we conclude that the parametaray  energy at weak coupling and underestimates it at strong cou-
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FIG. 6. The ground-state kinetic enerfy;, as a function oh FIG. 7. The ground-state kinetic enerBy;, as a function oD,
in the exact theorysolid curve$ and the SCF approachots. The when — U/t is changed, in the exact theofgolid curveg and the
indexes 1-4 and the bold curve mean the same as in Fig. 2. SCF approacikdoty. The indexes 1-5 and the bold curve mean the
same as in Fig. 1.
pling. The SCF approach becomes ineffective at srdatl
values and the maximum deviation from the exact results w= E (35)

occurs at the half-filing case for intermediate coupling an

strength. In Fig. 6 we ploE;,/t as a function of the band (see Appendix & From SCF Eqs(15) and (16) one can

filling n for various — U/t values. We notice that the effec- umerically determine the SCE chemical potential. In Eig. 9
tive bandwidth gradually diminishes with decreasing ban Y . . P : 9-
he ground-state chemical potential values are plotted for all

filing n and it is significantly suppressegharrowed at o o "o~ (/i and different band fillings, At half-filling

strong-coupling limit near zero fillingn—0). The suppres- = _
sion of the bandwidth at vanishing carrier concentration re{n=1) p= |U]/2 for all values ofU. In an empty bandat

minds the trivial metal-insulator transition. A good agree—Zero filling, n=0)

ment with the exact results is obtained at snma#ind large 02

—U/t. The bold curve in Figs. 5 and 6 indicates the pair U= fhyer=— \] —— +4t? (36)
formation vs condensation in kinetic energy. The smooth 4

crossover from the BCS into the Bose condensation regime

occurs below the bold curve in Fig. 5 and above it in Fig. 6 e U L L DL B
at the cross points with corresponding curves.

To better illustrate the correlations in behavior between
the concentration of double occupied sii2snd the kinetic S
energyE,;,, we present the dependencekf,/t versusD 12 '
for the exact and the SCF results when the coupling strength
changes at different given values-efJ/t (Fig. 7) and when
the band filling changes at different given valuesnofFig.

8). In Figs. 7 and 8 the intersections of the SCF results with -E, /t o.s
the bold curve show the crossover from the BCS regime

(above the curveinto the Bose condensation phaselow

the curvg. The agreement between the results is quite well at

weak and strong couplings. Note that the agreement is gooc 04 :
at n<0.2 also for intermediate couplingFig. 7) and at ' o
—U/t=<0.5 for all values ofn (Fig. 8). The area below the g o
bold curve presents the BCS-like behavior in Fig. 7 and the
Bose condensation regime in Fig. 8.

0.3 0.4 0.5

D. Chemical potential S .
FIG. 8. The ground-state kinetic enerBy;, as a function oD,

The chemicql potential is also an important characteristigvhenn is changed, in the exact theofgolid curve$ and the SCF
for the evaluation of the SCF theory. From Bethe-ansatapproachdots. The indexes 1—4 and the bold curve mean the same
equations one can calculate the exact chemical potential as in Fig. 2.
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FIG. 9. The ground-state chemical potentiabs a function of FIG. 10. The ground-state chemical potenfighs a function of
— U/t for variousn in the exact theorysolid curve$ and the SCF  n for various— U/t in the exact theorysolid curve$ and the SCF
approachdots. The indexes 1-5 and the bold curve mean the sam@pproact{dots. The indexes 1-4 and the bold curve mean the same
as in Fig. 1. as in Fig. 2.

(Ref. 33 and the SCF results fqu coincide with the exact In Fig. 10 the bold curve displays the crossover under the
ones. We have a good agreement also for intermediate valugariation ofn from the BCS-like(below the curvginto the
of n and for various—U/t values. Fom<1 and|U|/t<1  Bose-Einstein behavigabove the curve Finally we should
the chemical potentiale decreasesalgebraically approxi-  stress that the numerical agreement between the exact and
mately as—U?. This result is consistent with the corre- approximate results for in a discrete lattice is much more
sponding exact result for continuum model of excitonicaccurate than for the corresponding result foin a con-
insulator* In another limit > n, and|U|/t<1) the depen- tinuum modef:*
dence of u on U/t in the SCF approach is linean
=(nU/2)— 2t cosfim/2). The bold curve in Fig. 9 indicates E. Energy gap
the transition from the BCS regimg@elow the curve into
the Bose condensatig@above the curveunder variation of
the parameter- U/t (see Secs. IV E and IV GNote that the
SCF curve ofu for n=1 in Fig. 9 everywhere is below the
bold curve, showing that the system at half-filling remains in
the BCS regime even at largeU/t values.

Figure 10 shows the variation of ground-staté&t as a
function ofn for various— U/t. Note thatu increasegalge-
braically) monotonically with the band filling du/dn>0)

For further corroboration of the validity of the SCF ap-
proach we compare the results for the energy gap. In the SCF
approach the order parametkrand the single-particle exci-
tation energy gaji.=2 min E, are determined by Eq11)
and both vary withn. At half-filling (n=1) we find from
Egs. (15 and (16) that the minimum excitation gap, which
occurs atk=ko=/2, is equal to the order parameteg,,
=A. At n<1 the minimum excitation gap occurs lat kg

providing the stability of the pairing phaSethe compress- where

ibility is positive). The SCF chemical potential coincides m .

with the exact one in the two extreme cases of strong and _ arcco% - z), if |ul<2t,

weak coupling and is moderately close to the exact solution ko= (39
for intermediate values of U/t. At U=0 we have a simple 0, if |u]=2t.

relationship between the chemical potential and band filling;, the first caseE..=A. In the second case possible only
ga . l

u=—2t cosfin/2) and a metal-insulator transition occurs away from half-filling, the energy gap to break a pair is
when u approaches the bottom of the bapd —2t. This

gives the simple relation betwegnandn near the band edge Ega= VA(+2t)2+ A2 (39
) . gap

n=m""\J4+2ult. The SCF result nicely follows the exact
one for all— U/t and we find a smooth transition from qua-
dratic behavioru=n? at weak coupling to a linear depen- —L or_

; L2 - ut2t=0 (40
denceucn at the strong-coupling limit. At largeU|/t it
readily follows from Eqgs(15) and(16) that to the order of determines the critical value, of the band filling at a given
t?/|U] we have approximately a linear dependence, U/t (or the critical valueU./t of the coupling strength at a
given n) showing that the energy gap and the SCF order
parameten\ are different whenevar<n, at fixed — U/t (or
whenever|U|/t>|U.|/t at givenn). In spectrum neaj=

andEg,p is generally greater thad. Thus the equality

U 4t%(1-n)
M:§+T. (37)
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FIG. 11. The one-quasiparticle excitation energy spectruminthe FIG. 12. The SCF energy gdfy,, as a function of—U/t for
SCF approach at-U/t=4.0. Curve indexes 1-3 correspondrto  variousn. The indexes 1-5 and the bold curve mean the same as in
=0.25,0.5,1.0. The minimum excitation gap in momentum spacd-ig. 1.
with k=0 occurs an<n.=0.32(see Fig. 15

Egap/t versus— U/t for differentn. The variation of SCF gap
—2t there exists a weak singularity, which describes ag,/t with n for variousU/t along with the exact result are
smooth crossover by changing the parametéitsor n from given in Fig. 13. Near zero filling the exact gap increases
the BCS regime into a Bose condensate of structureless locglowly with the decreasing, whereas the SCF gap slowly
bosonic pairs with total momentukn=0."> Note that at the  decreases with. The bold curve in Figs. 12 and 13 indicates
crossover the renormalized chemical potenfiatiriven by  a smooth evolution of the SCF gap from the BCS regime into
the couping strength or band filling approaches the bottom ofhe Bose condensation regime by increasingJof and n,
the band—2t and leads to the transition from the BCS-like respectively.
into the Bose condensation behavior. This crossover closely The exact and the SCF approaches at weak coupling both
resembles the onset of the localization of pairs at thejives Egop<t exp(—2at/|U]) at n=1, and Egapocu2/t at n
insulator-metal transition in the case of vanishing carrier=0. In a strong coupling within the SCF approach we have
concentratiom— 0. Egap=|U|—4t%|U| at n=1 and Eg,=|U|-4t at n=0,

In Fig. 11 we show a quasiparticle energy spectrum atvhile the exact solution givegg,,=|U|—4t for all band
fixed —U/t=4 for three different values of. The minimum fillings. The energy gap in weak coupling is reproduced
excitation gap in the spectrum at=0.5 occurs at the Fermi
energy ko=0.237). Below the critical valuen.=0.32, the
minimum excitation gap occurs &,=0 and according to
Eq. (39 the corresponding energy gap is greater than the
order parameteA.

Note that according to the generalized Luttinger theorem 8
the position of singularity in the density-density correlation
function is unrenormalized by the interaction strength and
the corresponding parameter in a non-Fermi-liquid is the
same as the Fermi momentum 1dr=0.3>%|n contrast, the
SCF result for the parametkg, which plays the similar role Egap/t
in single-particle spectrum for spin degrees of freedom, is
renormalized by the interaction strengthU/t, only when 4
n#1.

In the exact solution the energy gap is determined as

6

£ JE | JE |
9P 5(2s ~9(2s)|

(41)

)|s:+0 s=-0

and can be calculated from E¢$8)—(24) (see Appendix D
The energy gagor binding energyin the exact and the

SCF approaches has tendency to grow monotonously with FIG. 13. The SCF energy gap as a functionnofThe indexes

increasing—U/t. In Fig. 12 we plot the dependence of 2-4 and the bold curve mean the same as in Fig. 2.
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FIG. 14. The order parametér as a function of— U/t in the FIG. 15. The order parametédr as a function oh in the exact
exact theory(solid curve$ and the SCF approacdots. The in-  theory(solid curve$ and the SCF approadHots. The indexes 2—4
dexes 1-5 and the bold curve mean the same as in Fig. 1. and the bold curve mean the same as in Fig. 2.

rather well within the SCF approach and we expect to get
even better agreement with the exact solution in higher di
mensions for wider range of U/t values.

he obtained results foh, and A show that parameteid
and A%/4U? have many common features in wide range of
coupling strength- U/t.
Under the decreasing of the parameteA and A, both
F. Order parameter change as it is shown in Fig. 15. Here again we have a
The order parameteX significantly imitates the behavior perfect agreement betweénand A, for all band fillingsn
of parameteD under the variation of- U/t andn. From Eq.  and differentU/t values. In SCF approach there is an exact

(30) we obtain a simple relationship: correspondence in behavior betweg,, and A under the
variation of band filling for largen till the critical concentra-
A=2|U|D—D,. (42)  tion n; shown in Figs. 13 and 15 by the bold curve. In

generalA is not a monotonous function of However, for

Nonvanishing order parametérin one dimension is an |U|/4t=1 the parameteA smoothly increases with, and at
artifact of the SCF approach. Due to strong fluctuations onlyelatively large —U/t we have A=|U|{/n(2—n).% For
algebraically decaying correlationgKosterlitz-Thouless  small |U|/4t<1, the parameteA primary increases passing
type’) are expected, rather than true long-range order in onghrough maximum and then gradually decreases. Note that
dimension. Thus the SCF order parameiedoes not have when the band fillingi— 0, the order parameter vanishes and
corresponding analogue in the exact theory. Nevertheless fhe system with the empty band becomes insulator with the
is interesting to compare the SCF result fowith the simi-  chemical potential disposed below the bottom of the conduc-
lar parameterA ,=2|U|{D — D, defined in the exact theory tion band, u,e< —2t. The SCF theory with renormalized
to see how these two quantities are related to each another. dhemical potential provides a simple géw pseudogap at
Fig. 14 we plot the variation of the order paramesgiusing  finite temperaturésn the absence of pair coherence between
the Eq.(42) along with the exact result for parameteg, as  the pairsA =0. Near this threshold the system behaves as an
a function of —U/t for variousn. We notice that the exact insulator with preformed bound pairs similar to what was
parameterA ., and the order parameteér show the perfect found recently in highF, cuprates in underdoped regime
matching for various in wide range olU/t. In Fig. 14, both  —028 The superconductivity occurs only when initially
A and A, depend om and have a tendency to grow mo- formed pairs become cohereht-0. Note that the order pa-
notonously with increasing coupling strengttlJ/t. We can  rameter is significantly suppresseti-G0) nearn=0, while
compare also the SCF results #8g,,andA in Figs. 12 and  Eg,, is relatively large. The SCF theory overestimates the
14 to see that these parameters nicely follow each other foralue of the exact gap for all values efU/t andn, but it
small U/t till the crossovel(intersection with the bold curve correctly describes the difference in behavior between the
—U,/t), showing the onset of separation and difference beerder parameter and excitation gap under the variation of
tween gap and order parameter. Note that at zero filing, and —U/t.
=0, the order parameter vanishAs=0, whereas the SCF
gap is equal to the exact gaBg,,= U+ 16t%—4t.3%1
Thus the coupling strengtt/t#0 preserves the galec-
tron binding, even though the pairing parametenvanishes The crossover from Cooper pairing phase to Bose conden-
at zero band filling. The relationship in E(B0) along with  sation phase as a function efU/t and n within SCF ap-

G. Phase diagram
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FIG. 16. The phase diagram of one-dimensional negdfive- FIG. 17. The ground-state compressibility, as a function of
Hubbard model in the SCF approach: in region | the minimum gap— U/t in the exact theorysolid curve$ and the SCF approachots
occurs atk#0, in region Il the minimum gap occurs kt=0. and dashed curvies Curve indexes 1-3 correspond to

=0.6,0.8,0.9.

gir;?:gig:] zgfwigegfggg Iisﬁrg%g(eh?ﬁ’inti?:l;?nls no f?ﬁlrp exists also a simple transition, driven by decreasingn,of
P 9ap al Mo”4y the Bose condensatlon regime into an insulating state

mentumk=0 serves as a measure to distinguish dlfferenRN
ith A=0 andEg,,= -2 4t. Also we expect to get a
regimes on the phase diagram, where either BCS-like o Hzero - We exp g

Bose condensation behavior take place. Figure 16 show t §|mltle?1r8ipomrr1gse dlagram within the SCF approach in_higher
ground-state phase diagramnnU plane using our SCF re-
sults in one dimension. The energy gap on the Fermi surface
k+#0 (at u> —2t) everywhere in region I. In region Il a gap
in the spectrum occurs at the bottom of conduction band with The behavior of the compressibilitx,.=du/dn (or
zero momentunk=0 (< —2t) and the energy gap is dif- charge susceptibility..=dn/du= k) is also a sensitive
ferent from the order parametér. The boundary between test for the estimation of the accuracy of the SCF theory.
the region | and II, defined by E@40), describes a smooth In the exact theory, we can calculatg, from correspond-
crossover from a picture of overlapping Copper pairs to théng integral equationgAppendix B. In the SCF approach
Bose condensate of independent local pairs with momentum, must be determined self-consistentéppendix B. At
k=0. The Bose condensation of preformed pairs in region lhalf-filing we have in the exact thedty
is driven by the coupling strength and band filling. For any
infinitesimal smal|U|/t one can get a crossover from region tarl (—2mt/U)
| into Il by the variation ofn that leads to the changeover to Kch|nﬂ1:m’
the BCS-like behavior. At larggU|/t limit, the region | is
gradually decreased and at relatively small deviation fronforresponding to zero-field spin susceptibility, in the re-
half-filling gives a crossover from one regime to another,pulsive Hubbard modely = x>
providing the separation af from Ey,,. The smooth char- Figures 17 and 18 show the variation qf, as a function
acter of transition is confirmed by careful inspection in be-of —U/t for different valuesn both in the exact and SCF
havior of the ground-state enerdys and other quantities theories. As shown in Fig. 18 the SCF theory yields a finite
(see Secs. IV A and IV Eas functions of-U/t andn. value for compressibility ah=0, while the exactx,—0

Note that within the SCF approach there is no Bose conéxc diverges.’%'? We note that the SCF approach signifi-
densation of electrons with momentus 0 at the half-filled  cantly underestimates,, near half-filling (h—1) and over-
band fi=1) even for the largéU|/t limit due to the effect estimates it near the empty band filing-¢0). Neverthe-
of strong interaction between the local pairs. Thus the evoless, the SCF result captures the general trend in behavior of
lution from weakly bound BCS pairs to localized pairsnat ¢, under the variation o)/t andn. The discrepancy with
=1 in the ground state within the SCF approach takes placthe exact results decreases with decreasing of the interaction
without crossover. This interesting feature shows the differstrength—U/t. One can see from Figs. 17 and 18 that the
ence in behavior between the discrete latticenatl and most serious errors occur at half-filling for largeU/4t
continuum modelé® Our conclusion about the crossover =1. The exact and SCF results are relatively close for
away from half-filling is overall in agreement with the pre- —U/t<0.5 and alln. The deviations clearly reveal that the
vious studies of crossover in the one-dimensional continuurfluctuations must be included beyond the SCF approach to

model?® Note that in region Il near empty bamt=0 there  obtain the better quantitative agreement &g. In Figs. 17

H. Compressibility

(43
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sion is also based on the perfect agreement between the order
parameterA in the SCF approach and a similar parameter
A.=+D—Dg introduced in the exact theory.

The SCF approach at#1 suggests in one dimension a
smooth crossover from the BCS limit to the ideal Bose gas of
independent local pairs with zero momentu 0, since
there is only a weak singularity in the excitation spectrum at
w=—2t. The nonideal Bose gas behavior of local pairs is a
characteristic feature of the discrete lattice model exactly at
n=1. At half-filling the gap in spectrum is identical with
and the system remains in the BCS regime with the gap in
momentum space at= /2 even at strong coupling. All
physical quantities for varioua evolve smoothly with in-
creasing— U/t from the weak- to strong-coupling limit.

The weak singularity in the excitation spectrum rat
within the SCF approach reflects the difference between the
order parameteA and the energy gaRyqp.

Thus the exact and SCF results both show that the
ground-state properties change smoothly witiJ/t and
. . there is no singular point in the U/t—n plane except for
_ FIG. 18. The grouno_l-state compressibility, as a function oh n=1 andU=0. In a future work we shall apply the Bethe-
in the .e)éaCt theory(solid cur\(/je$ a;nd_the SCF approacols.  ansatz formalism to calculate the correlation functions to dis-
Curve indexes 1,2 correspond tol/t=2.0,10.0. cover the difference and the relation between the unrenor-

. o malized Fermi momenturkg in a non-Fermi-liquid and the
and 18 the crossover irg, from the BCS regime into the gcp parametek, .

Bose condensation behavior under the variatior of/t and
nis also shown.

The SCF theory shows also the interplay between the lo-
calization and superconductivity under the variation of band
filling. Near empty band the system undergoes the transition

V. SUMMARY from the Bose condensation regime into insulating state with
the energy gap for preformed pairs without coherente (

In this paper we solved numerically the Lieb-Wu equa-=0). We found that the energy gdf,,, is a monotonous
tions and the self-consistent equations with a renormalizedecreasing function of the doping levdand filling neam
chemical potential for general band fillingsand coupling =0), while superconducting gaf is much smaller and in
strength—U/t. We compared in one dimension the exactgeneral follows the nonmonotonous trend of its critical tem-
and the SCF ground-state properties such as the energy, therature. The suppression of the superconductivity and pres-
concentration of the double occupied sites, the kinetic enervation of the gap at vanishing concentration of carriers
ergy, and the chemical potential. In overall the SCF resultdand filling) are consistent qualitatively with the structure of
show a good agreement with the exact results. The largest gap(or pseudogap at finite temperaturés overdoped re-
discrepancy occurs in the half-filling case and at the intermegime seen recently in low-temperature tunneling experiments
diate values of- U/t. Even atn=1 the results are very close in YBCO and BSCCJ%*!The good agreement between the
to the exact values in the wide range-6tJ/t. The absolute SCF and Bethe-ansatz results suggests the correct picture of
and relative errors in the calculations of the enelfggg and  the crossover even in one dimension at least in the low-
the chemical potentigk for all n values systematically de- density limit.
crease with increasing-U/t. The SCF approach at strong  Although much theoretical effort has been devoted to the
and weak coupling reproduces the exact results and givesexamining of the crossover in the exact approach, still not
reasonable interpolation scheme for the intermediate regiowery much is known, in particular, about low-lying excita-
of —U/t. tions and spectral properties of the attractive Hubbard

Although the SCF approach is quite accurate in describingnodel?? Our future studies will be focused on the problem
the ground-state properties, however, it poorly reproducesf the crossover in higher dimensions and we expect that the
the characteristics of excited states. It fails to give the correcBCF approach will be more accurate in two and three dimen-
numerical values for the excitation gé&R., and it underes- sions. We conclude that the SCF approach with a renormal-
timates the compressibility., at large— U/t by a factor of ized chemical potential in lattices retains the essential differ-
4/7? at half-filling. The correlation effect in the SCF ap- ence from the standard BCS approach foma# 1.
proach are seen to be underestimated for all calculated quan-
tities of the weak-coupling regime U/4t<1. At half-filling _ ACKNOWLEDGMENTS
the SCF result for the concentration of the double occupied
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APPENDIX A: CONCENTRATION OF DOUBLE APPENDIX B: KINETIC ENERGY IN THE EXACT
OCCUPIED SITES IN THE EXACT THEORY THEORY
In the exact theory from Eq28) and Eqs.(18)—(24) we In the exact theory for the kinetic energy we have from
have for the concentration of double occupied sites Egs.(33) and(18)—(24)
n Q Q
D=5-s- 2f dkpy(k)cosk—4Qup(Q)cosQ, Exin= —2tf Qd KL p(k) + p(k) ]Jcosk—4tQp(Q)cosQ,
7Q —

(A1) (B1)
where py(K)=tdp(k)/dU and oy(N\)=tdo(\)/aU satisfy ~wherep(k)=tdp(k)/t and o(N)=tdo(N)/dt satisfy the
the following integral equations following integral equations

U cosk (B __UcoskfB

pulk)== e |yt pK= = | __dRo I Fa(kN)
cosk (B —2(N—sink)?f;(k,\)?]
- _ 2 2

o= _Bd)\a()\)[fl(k,)\)/z (U/4t)“f 1 (k,N)7] UcoskJ'B o)
- Ot 1K,

UCOSkf k,B)+fi(k,—B B)B A2 e

At [f1(k,B)+fi(k,—B)]o(B)By, (A2) U cosk

~ 0o [11(kB)+F1(k —B)]o(B)B,

U (Q
au<x>=—qudkpu<k>fl<k,x> (82

U (Q
U (s U
+Eﬁgd)\'(’“()\’)f2()"7\’) o(N) yTos JQdkp(k)[fl(k,)\)

1 [0 —2(N—sink)?f(k,N)?]
—2—f dkp(K)[ f1(k,\)/2—(U/4t)2f1(k,N)?] U (B
m™J-Q
+—f dN (N[ Fo(N,NT)
2t -B

1 (8 ’ ’ ’
+;fdeA 0-()\ )[fZ()\v)\ )/2 _2()\_)\!)21:2()\,)\!)2]

—(U/2t)%f (A, N")2] U e
’ 2 T _Qdkpt(k)fl(k,)\)
~ 2t QN+ (= Q.M)]1p(Q)Qu u e /
+mj_8d)\ a(N) (A7)

U
o [NB) (L ~B)Jo(B)By,  (A3)

U
_E[fl(Q,)\)"‘fl(_Q,)\)]P(Q)Qt
and Q,=t9Q/dU, By=tdB/JdU are determined from the

i )
relations + 5—[f2(\,B)+f,(N,—B)]o(B)B;, (B3)
2t
Q
f pu(kK)dk+2p(Q)Qu=0, (A4)  andQ,=tdQ/dt, B,=toB/at are determined from the rela-
-Q tions
B Q
f _au(\)d\+20(B)By=0. (A5) f pi(K)dk+2p(Q)Q,=0, (B4)
_ -Q

The functionsf;(k,\) andf,(\,\") are defined by Eq$21) B

and(22). J oi(N)dN+20(B)B;=0. (B5)
Substituting the solution of the integral Bethe-ansatz -B

equationg18)—(24) into Eqs.(A1)—(A5) and resolving these

equations we obtain the concentration of the double occupied Equations(18)—(24) and (B1)—(B5) determineE,;, as a

sitesD as a function of-U/t, n, ands. At s=0 we have the function of —U/t, n, ands. At s=0 we have the ground

ground stateD (in this caseQy=0). stateE,;, (in this caseQ;=0).
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APPENDIX C: CHEMICAL POTENTIAL IN THE EXACT
THEORY

In the exact theory the chemical potential is

u Q
B=7- 2t f_Qdkpn(k)cosk—4thp(Q)cosQ, (C)

where p,(k)=dp(k)/on and a,(\)=do(\)/dn satisfy the
following integral equations:

Ucosk (B
pn(kK)=— o= J_Bd)\o'n()\)fl(k-)\)
U cosk
- [fl(k B)+fi(k,—B)]a(B)B,,
(C2
U (Q
an<x>=—qudkpn<k)fl<k,x)

U (B
+Ejisd)\ (N (AN

u
~ 2t f(QN) + (= Q) ]p(Q)Qn

U
+ 5i-[f2(\,B)+f2(A,—B)]o(B)B,, (C3)
and Q,=dQ/dn, B,=dB/Jn are determined from the rela-
tions
Q
J_Qpn(k)dk+ 2p(Q)Q,=0, (CH
B
f on(N)dN+20(B)B,=3. (Ch
-B

Equations(18)—(24) and (C1)—(C5) determineu as a
function of —U/t, n, ands. At s=0 we have the ground
stateu (in this caseQ,=0).

APPENDIX D: ENERGY GAP IN THE EXACT THEORY

In the exact theory the energy gap is

Egap= —U —ZtJQ dkps(k)cosk—4tQgp(Q)cosqQ,
-Q
(D1)

where p(K)=dp(k)/ds and og(A\)=do(\)/ds satisfy the
following integral equations:

Uc
ps(k)= -

U cosk
e [f1(k,B)+fi(k,—B)]o(B)Bs,

(D2)
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U e
70 == 3= | dkeliotae)

U (B
+EﬁBd)\ oA )fa(A )

u
~ 2t LF1(QN) +f1(=QN)1p(Q)Qs

U
+ E[fz()\,BH—fz()\,—B)]a’(B)BS, (D3)

and Q,=0Q/Js, Bs=9B/ds are determined from the rela-
tions

Q
JQPs(k)dk+ 2p(Q)Qs=—2, (D4)

fB o(\)dN+20(B)Bs= —1 (D5)
-B

Equations(18)—(24) and (D1)—(D5) at s=0 determine
Egap @s a function of-U/t andn.

APPENDIX E: COMPRESSIBILITY IN THE EXACT
THEORY

In the exact theory the compressibility is

(ED)

Q
Mn=—2t J—Qd kpnn(k)cosk—8tQnpn(Q)cosQ

—4tQnnp(Q)cosQ

(k)

+4tQ3 p(Q)sinQ—&pT cosQ|, (E2

k=Q

where pn(k)=dp,(k)/dn and o,n(N)=do,(N)/dn satisfy
the following integral equations

Prn(K)=— 1(K,\)

U cosk

—[fu(k,B)+f1(k,—B)]on(B)B,

, (k=B
9B

U cosk
4t

f1(k,B)
B

}U(B)Bﬁ

A=B

(E3)

U cosk

do(N)
2N

[f (k B)+f1(k,—B)](

Uco

—[f(k,B) +f1(k,~B)]o(B)Bnn,
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B U Q U B ) / / U
o)== g7 | oK)+ 5 [ 0N oMM 000) = L@+ 1~ Q 1o QIQ

U U
+ G[fz()\,BHfz(?\,—B)]Un(B)Bn— yTye
U dp(k)
- E[H(Q-)\)‘Ffl(—Q,?\)](T o

U [31:(\B) _dfa(\,—B)
2tr| B B

U
+ E[fz()\,B)-l—fz()\,—B)]U(B)Bnn,

and Q,,=dQ,/dn, B,,=9B,/dn are determined from the

relations

ap(Kk)
ok

Q
f par(K Akt 4pn(Q)Qp+ 2 )Qﬁ
-Q k=Q

+2p(Q)Qnn=0, (E9

do(N)
2N

oon(N)dN+40,(B)B,+2

B ) )
f B;,
-B =B

Equations(18)—(24) and (E1)—(E6) determinex., as a
function of —U/t, n, ands. At s=0 we have the ground
statexy, (in this caseQ,=Q,,=0).

+20(B)B,,,=0. (E6)

APPENDIX F: COMPRESSIBILITY IN THE SCF
APPROACH

In the SCF approach the compressibiligg,=du/don
= u, satisfies the following self-consistent equations

afl(Q!)\) n afl(_Q!)\)

}mQ)Qﬁ

aQ aQ

U
Q= 717 [F1(QM)+T1(= QM) 1p(Q)Qnn

, U ¢ ¢ do(N) )
U(B)Bm“m[ 2(N,B)+ (N, —B)] N |, Bn
(E4)
|
1 (U—2pn)Ex—2(E)n(ex—p)
_Nlattzk: 2EE =L (D
(Ek)n_
> 2
where
JE 2(e— U—2u,)+AA,
(Ek)nEa_nk: (e ﬁ)(4Ek,U«) , (F3)

andu=u—nU/2, A,=09Aldn.

Equations (15—-(16) and (F1)—(F3) determine self-
consistently ground state, A, «¢,, andA, as functions of
—U/t andn.
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