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Charged particles in external fields as physical examples of quasi-exactly-solvable models:
A unified treatment
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We present a unified treatment of three cases of quasi-exactly-solvable problems, namely, a charged particle
moving in Coulomb and magnetic fields for both the Schro¨dinger and the Klein-Gordon case, and the relative
motion of two charged particles in an external oscillator potential. We show that all these cases are reducible
to the same basic equation, which is quasiexactly solvable owing to the existence of a hidden sl2 algebraic
structure. A systematic and unified algebraic solution to the basic equation using the method of factorization is
given. Analytical expressions of the energies and the allowed frequencies for the three cases are given in terms
of roots of one and the same set of Bethe ansatz equations.
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I. INTRODUCTION

It is well known that exact solutions are hard to come
in physics~in fact, in all sciences!. Many exactly solvable
examples presented in textbooks of physics are only ex
tions. More often than not they serve only as paradigms
illustrate the fundamental principles in their respective fiel
For real problems, approximation methods are indispensa

Recently, it was found that for certain quantum
mechanical problems analytical solutions are possible,
only for parts of the energy spectra and for particular val
of the fundamental parameters. First it was realized that
problem of two electrons moving in an external oscilla
potential belongs to this class of problems@1,2#. Later, it was
discovered that the two-dimensional Schro¨dinger equation of
an electron moving in an attractive/repulsive Coulomb fi
and a homogeneous magnetic field also share similar cha
teristics @3–5#. More recently, the latter problems were e
tended to the two-dimensional Klein-Gordon@6# and the
Dirac equation@7#.

The essential features shared by all these above exam
are as follows. The differential~Schrödinger, Klein-Gordon,
and Dirac! equations are solved according to the stand
procedure. After separating out the asymptotic behavior
the system, one obtains an equation for the part that ca
expanded as a power series of the basic variable. It is at
point that deviation from the standard exactly solvable ca
appears: instead of the two-step recursion relations for
coefficients of power series so often encountered in exac
solvable problems, one gets three-step recursion relati
The complexity of the recursion relations does not allow o
to do anything to guarantee normalizability of the eigenfu
tions. However, one can impose a sufficient condition
normalizability by terminating the series at a certain order
the power of the variable, i.e., by choosing a polynomial.
doing so one could obtain exact solutions to the origi
problem, but only for certain energies and for specific valu
of the parameters of the problem. These parameters are
frequency of the oscillator potential and the external m
netic fields.
1050-2947/2001/63~6!/062105~5!/$20.00 63 0621
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It was soon realized@8,7# that the above quantum
mechanical problems are just examples of the so-ca
quasi-exactly-solvable models, recently discovered by ph
cists and mathematicians@9–16#. This is a special class o
quantum-mechanical problems for which several eigenst
can be found explicitly. The reason for such quasiexact so
ability is usually the existence of a hidden Lie-algebra
structure@10–14#. More precisely, a quasi-exactly-solvab
Hamiltonian can be reduced to a quadratic combination
the generators of a Lie group with finite-dimensional rep
sentations.

In this paper we would like to show that three of the fo
problems mentioned in the second paragraph, namely,~a!
charged particle moving in Coulomb and magnetic fields~the
Schrödinger case!, ~b! charged particle in Coulomb and mag
netic fields~the Klein-Gordon case!, and~c! relative motion
of two charged particles in an external oscillator potent
can be given a unified treatment. We shall show that all th
cases are simply variations of the same basic equation@Eq.
~10! below#, which is quasiexactly solvable owing to th
existence of a hidden sl2 algebraic structure. This algebra
structure was first realized by Turbiner for the case of t
electrons in an oscillator potential@8#. We shall give a sys-
tematic and unified algebraic solution to the basic equa
using the method of factorization presented in@7#. Our
method allows one to find the analytic expressions of
energies, and the allowed frequencies once and for al
terms of the roots of a set of Bethe ansatz equations. Th
in sharp contrast to the method of solving recursion relatio
which must be performed for each and every order of
polynomial part in order to get these expressions.

We will define the three problems in Sec. II. In Sec.
the basic equation is solved by the method of factorizati
The Lie-algebraic structure underlying the basic equation
discussed in Sec. IV. Section V then concludes the pape

II. BRIEF DESCRIPTION OF THE THREE PROBLEMS

In this section we shall give a brief description of th
three cases of charged particles moving in external fie
which we will consider in the rest of the paper. Followin
©2001 The American Physical Society05-1
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the previous works, we adopt the atomic units\5m5e51
in the cgs system.

A. Electron in Coulomb and magnetic fields:
The Schrödinger case

This general case was considered in@3–5,7#. The Hamil-
tonian of a planar electron in a Coulomb field and a cons
magnetic fieldB5Bẑ (B.0) along thez direction is

H5
1

2 S p1
1

c
AD 2

2
Z

r
, ~1!

wherec is the speed of light,Z ~positive or negative! is the
charge of the source of the Coulomb field, and the vec
potentialA is A5 1

2 B3r in the symmetric gauge.
An ansatz of the eigenfunction in the polar coordina

(r ,u) is

C~r ,t !5
u~r !

Ar
exp~ imu2 iEt !, m50,61,62, . . . .

~2!

Herem is the angular momentum quantum number andE is
the energy. The radial wave functionu(r ) satisfies the radia
Schrödinger equation

F1

2

d2

dr2
2

1

2 S m22
1

4D 1

r 2
2

1

2
vL

2r 21
Z

r
1E2mvLGu~r !50,

~3!

wherevL5B/2c is the Larmor frequency.

B. Electron in Coulomb and magnetic fields:
The Klein-Gordon case

In @6# the above problem is extended to the Klein-Gord
case, assuming the same ansatz of the wave function a
Eq. ~2!. Now the radial wave functionu(r ) obeys the fol-
lowing equation:

F1

2

d2

dr2
2

1

2 S m22
Z2

c2
2

1

4D 1

r 2
2

1

2
vL

2r 21
EZ

c2r
1

E2

2c2
2

c2

2

2mvLGu~r !50. ~4!

But now, as noted in@6#, the quantum numberm must satisfy
the relation

m22
Z2

c2
.0 ~5!

in order for the solutions to make sense. This relation forb
the existence of thes states (m50).
06210
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C. Relative motion of two electrons in an external
oscillator potential

In @2# the author considered the problem of a thre
dimensional Schro¨dinger equation for two electrons~inter-
acting with Coulomb potential! moving in an external
harmonic-oscillator potential characterized by frequen
vext . The Hamiltonian is

H52
1

2
¹1

21
1

2
vext

2 r1
22

1

2
¹2

21
1

2
vext

2 r2
21

1

ur12r2u
. ~6!

The total wave function is factorizable into three parts th
depend, respectively, only on the center of mass, the rela
coordinates, and the spins of the electrons. The wave fu
tion of the center-of-mass coordinates satisfies the Sc¨-
dinger equation of a three-dimensional oscillator, the so
tion of which is well known. The spin part dictates the par
of the wave function of the relative motion. The Schro¨dinger
equation for the relative motion is

F2
1

2
¹ r

21
1

2
v r

2r21
1

2r Gf~r !5e8f~r !, ~7!

where r5r12r2 , v r5vext/2, and e8 is one-half of the
eigenenergy of the relative motion~in the notation of@2#!.
By assuming an ansatz of the wave function in the spher
coordinates of the form

f~r !5
u~r !

r
Ylm~ r̂ !, ~8!

whereYlm are the spherical harmonics, we get from Eq.~7!
the following equation

F1

2

d2

dr2
2

l ~ l 11!

2

1

r 2
2

1

2
v r

2r 22
1

2r
1e8Gu~r !50. ~9!

We note here that if we change the sign of the 1/r term in
the last equation, we get an equation that describes the
tive motion in the oscillator potential of an electron and
positron. This case will be included in our discussions.

III. THE BASIC EQUATION AND THE METHOD OF
FACTORIZATION

After making some appropriate changes of the para
eters, we can recast Eqs.~3!, ~4!, and~9! into the same basic
form, namely,

F1

2

d2

dr2
2

g~g21!

2

1

r 2
2

1

2
v2r 21

b

r
1aGu~r !50.

~10!

Hereb,g, andv (g,v.0) are real parameters, anda is the
eigenvalue of Eq.~10!. Explicit expressions of these param
eters for the three cases will be given in the next secti
That this equation is quasiexactly solvable means that, gi
5-2
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a fixed value of the parameterg andb ~or v), the equation
can be solved exactly only for a particular set of parametev
~or b) and eigenvaluea.

Now we make the following change of variables:x
[A2vr andb[A2/vb. Then Eq.~10! becomes

F d2

dx2
2

g~g21!

x2
2

x2

4
1

b

x
1

a

vGu~x!50. ~11!

The values ofa andb in Eq. ~11! may be found by means o
a method closely resembling the method of factorization
nonrelativistic quantum mechanics@7#. We shall discuss this
method briefly below. Let us assume

u~x!5xgexp~2x2/4!Q~x!, ~12!

whereQ is a polynomial. As mentioned in the Introductio
the assumption thatQ be a polynomial is only a sufficien
condition for normalizability of the eigenfunctionu(x). Sub-
stituting Eq.~12! into Eq. ~11!, we have

F d2

dx2
1S 2g

x
2xD d

dx
1S e1

b

xD GQ~x!50, ~13!

wheree5a/v2(g11/2).
It is seen that the problem of finding the spectrum of E

~13! is equivalent to determining the eigenvalues of the
erator

H52
d2

dx2
2S 2g

x
2xD d

dx
2

b

x
. ~14!

We want to factorize the operator~14! in the form

H5a†a1e. ~15!

The eigenfunctions of the operatorH at e50 must satisfy the
equation

ac50. ~16!

Suppose polynomial solutions exist for Eq.~13!, say Q
5)k51

n (x2xk), wherexk are the zeros ofQ and n is the
degree ofQ „we mention here that the ordern in this paper is
equal to (n21) in @2–6# where xn21 is the highest order
term in Q…. Then the operatora must have the form

a5
]

]x
2 (

k51

n
1

x2xk
, ~17!

and the operatora† has the form

a†52
]

]x
2

2g

x
1x2 (

k51

n
1

x2xk
. ~18!

Substituting Eqs.~17! and ~18! into Eq. ~15! and then
comparing the result with Eq.~14!, we obtain the following
set of equations for the zerosxk ~the so-called Bethe ansa
equations@13#!:
06210
n

.
-

2g

xk
2xk22(

j Þk

n
1

xj2xk
50, k51, . . . ,n ~19!

as well as the two relations,

b52g(
k51

n

xk
21 , e5n. ~20!

Summing all then equations in Eq.~19! enables us to rewrite
the first relation in Eq.~20! as

b5 (
k51

n

xk . ~21!

From the second relation in Eq.~20!, one gets

e5n5a/v2S g1
1

2D . ~22!

For n51,2 the zerosxk and the values of the parameterb
for which solutions in terms of the polynomial of the corr
sponding degrees exist can easily be found from Eqs.~19!
and ~21! in the form

n51, x156A2g, b56A2g;

n52, x152x25A2g11, b50,

x152g/x2 , x256~11A4g11!/A2,

b56A2~4g11!. ~23!

For general values ofn it is difficult to solve for thexk’s
from Eq.~19! and one must resort to numerical methods. B
some properties of the solutions are known. First, from E
~19! we see that if$xk% is a set of solutions to Eq.~19!, then
so is$2xk%. This means, by Eq.~21!, that for every possible
value ofb, there is a corresponding negative value2b. Sec-
ond, as we shall see later in Sec. IV, the number of value
b for a fixed ordern is n11.

We now apply the above results to the three cases m
tioned previously. The essential step is to solve the Be
ansatz equations~19! for the rootsxk’s for each ordern.
Then from Eqs.~21! and ~22! we obtain the values of the
allowed pair of frequency and energy. Here we will giv
only the general expressions. The reader can easily re
duce the expressions for the two simplest orders~i.e., n51
and 2) given in@2–6# by substituting Eq.~23! into the gen-
eral expressions.

A. Electron in Coulomb and magnetic fields:
The Schrödinger case

In this case,g5umu11/2, v5vL , b5Z56uZu, anda
5E2mvL . The upper~lower! sign in b corresponds to the
case of attractive~repulsive! Coulomb interaction. We have

vL5
2Z2

b2
, E5vL~n1m1umu11!. ~24!
5-3
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These are the general expressions for the frequency~and
hence the magnetic field! and the energy in terms of th
values ofb. They reproduce the results in@3–5#.

B. Electron in Coulomb and magnetic fields:
The Klein-Gordon case

For definiteness, we consider positive-energy soluti
for the attractive Coulomb potential (Z.0). This is the case
considered in@6#. Negative-energy solutions and the case
repulsive Coulomb field can be treated in exactly the sa
way. In this case, g5Am22Z2/c211/2, v5vL , b
5ZE/c2, and a5E2/2c22c2/22mvL . In order for the
wave function to make sense,g has to be real. This implies
that m22Z2/c2.0, which forbids the existence of them
50 states~thes states! in the Klein-Gordon case, as noted
@6#.

Using vL52b2/b2 we get the allowed magnetic field a

B52cvL5
4Z2E2

b2c3
~25!

and from Eq.~22! we obtain the corresponding energyE,

E25c4F12
4Z2

b2c2
~n111m1Am22Z2/c2!G21

. ~26!

These are the most general expressions for the energy
the frequency.

For negative-energy solutions, the energy is given by
negative roots of Eq.~26!. The only difference is that the
roots of the Bethe ansatz equations have opposite sign
view of Eq.~21!. This only changes the nodal structure of t
wave functions. From the expressionb5ZE/c2, we note the
equivalence between the positive-~negative-! energy solu-
tions in the attractive Coulomb case and the negat
~positive-! energy solutions in the repulsive Coulomb cas

Let us mention here that for the cases in Secs. III A a
III B, we may consider a dual situation of the original pro
lem: we may consider the magnetic fieldB ~and thusvL) as
a fixed quantity, and the Bethe ansatz equations instead
the allowed values of the energy and the Coulomb chargZ.

C. Relative motion of two electrons in
an external oscillator potential

In this case,g5 l 11/2, v5v r , b521/2, anda5e8.
We have the following general solutions:

v r5
1

2b2
, e85v r S n1 l 1

3

2D . ~27!

They are also the solutions for the case of an electron a
positron in the oscillator potential (b511/2).
06210
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IV. HIDDEN LIE-ALGEBRAIC STRUCTURE
OF THE BASIC EQUATION

The basic equation~10!, or its equivalent form~13!, pos-
sesses an underlying Lie-algebraic structure that is resp
sible for its quasiexact solvability. In fact, Turbiner has ide
tified an sl2 structure for the case of two charged particles
an oscillator potential@8#. In view of the fact that all the
previous cases considered in this paper are related by
same basic equation~10!, one expects the same hidden stru
ture to be present in all these cases. This is indeed the
and it is sufficient to show that an sl2 algebra is in fact the
underlying structure possessed by Eqs.~10! or ~13!. In this
section we shall carry out Turbiner’s analysis to Eq.~13!,
with only slight modifications in the parameters to suit t
general situation. Only the main ideas are given here, and
refer the reader to@8# for details.

Let us construct three generators in the following mann

Jn
15r 2

d

dr
2nr,

Jn
05r

d

dr
2

n

2
,

Jn
25

d

dr
. ~28!

These generators realize the sl2 algebra,

@Jn
1 ,Jn

2#522Jn
0 , @Jn

0 ,Jn
6#56Jn

6 ~29!

for any value of the parametern. If n is a non-negative inte-
ger, then there exists for the sl2 algebra a
(n11)-dimensional irreducible representationPn11(r )
5^1,r ,r 2, . . . ,r n&. From this it is clear that any differentia
operator formed by taking the polynomial of the generat
~28! will have the spacePn11 as the finite-dimensional in
variant subspace. This is the main idea underlying the qu
exactly-solvable operators@8–14#.

Now consider the quasi-exactly-solvable operator tha
quadratic in theJn’s,

T252Jn
0Jn

212vJn
12S n

2
12g D Jn

2 . ~30!

This operator belongs to the class VIII according to the cl
sification given in@10#. In terms ofr, T2 becomes

T252r
d2

dr2
12~vr 22g!

d

dr
22vnr. ~31!

Let us now consider the eigenvalue problem

T2Q~r !52b~n!Q~r !. ~32!

This eigenvalue problem possessesn11 eigenvaluesb(n),
and the corresponding eigenfunctions are in the form o
polynomial of thenth power, while other eigenfunctions ar
nonpolynomial, which in general cannot be found in clos
5-4
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analytic form @8#. Let us first substitute the form~31! into
Eq. ~32!, then divide the resulting equation by 2vr and
change the variabler to x[A2vr . This leads to the follow-
ing equation

F d2

dx2
1S 2g

x
2xD d

dx
1H n1A2

v
b~n!

1

xJ GQ~x!50.

~33!

This is exactly Eq. ~13!, provided that e5n and b
5A2/vb(n). This means that Eq.~13! is quasiexactly solv-
able if e5n, which is exactly our relation in Eq.~22!, and
that there are onlyn11 allowed values ofb5A2/vb in Eq.
~13! @cf. Eq. ~23!#.

Translating back to the original three cases considere
this paper, these results imply the following. In Sec. III C,b
is a fixed parameter (b561/2), hence the finite numbe
(5n11) of the values ofb implies the same number of th
allowed frequencyvext of the external oscillator potentia
and the corresponding energy. This is the case found in@2#
and presented here again from a new light. For the case
Secs. III A (b5Z) and III B (b5ZE/c2), the above results
mean that, at a fixed ordern, there are exactlyn11 allowed
values of the pair of energy and magnetic field for a fix
Coulomb charge, or of the pair of energy and Coulom
charge for a fixed magnetic field.

Furthermore, it has been shown@8# that there exist@(n
11)/2# positive eigenvalues and the same number of ne
tive eigenvalues ofb ~here@a# represents the integral part o
a). In the general situation considered in this paper, posi
~negative! values ofb correspond to the attractive~repulsive!
06210
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Coulomb field for positive-energy solutions. For negativ
energy solutions, the sign ofb is reversed for the two kinds
of Coulomb field. Hence, our unified treatment together w
the Lie-algebraic analysis of these cases give a very sim
explanation as to why the number of the positive-energy l
els for a fixed ordern considered in@2–6# are all equal to
@(n11)/2#.

V. CONCLUSIONS

In this paper we have presented a unified treatmen
three cases of quasi-exactly-solvable problems, namel
charged particle moving in Coulomb and magnetic fields
both the Schro¨dinger and the Klein-Gordon case, and t
relative motion of two charged particles in an external os
lator potential. We show that all these cases are reducibl
the same basic equation@Eq. ~10!#, which is quasiexactly
solvable owing to the existence of a hidden sl2 algebraic
structure. A systematic and unified algebraic solution to
basic equation using the method of factorization is giv
Our method allows one to express the analytic expression
the energies and the allowed frequencies once and for a
terms of the roots of a set of Bethe ansatz equations.
treatment also reveals that the eigenenergies and the allo
frequencies in these cases are all given by the roots of
same set of Bethe ansatz equations.
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