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Charged particles in external fields as physical examples of quasi-exactly-solvable models:
A unified treatment
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We present a unified treatment of three cases of quasi-exactly-solvable problems, namely, a charged particle
moving in Coulomb and magnetic fields for both the Sclimger and the Klein-Gordon case, and the relative
motion of two charged particles in an external oscillator potential. We show that all these cases are reducible
to the same basic equation, which is quasiexactly solvable owing to the existence of a hjddigelslaic
structure. A systematic and unified algebraic solution to the basic equation using the method of factorization is
given. Analytical expressions of the energies and the allowed frequencies for the three cases are given in terms
of roots of one and the same set of Bethe ansatz equations.
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I. INTRODUCTION It was soon realized8,7] that the above quantum-
mechanical problems are just examples of the so-called
It is well known that exact solutions are hard to come byquasi-exactly-solvable models, recently discovered by physi-
in physics(in fact, in all sciences Many exactly solvable Cists and mathematicia8—16|. This is a special class of
examp|es presented in textbooks of physics are on|y exce‘g}uantum-mechanical problems for which several eigenstates
tions. More often than not they serve only as paradigms t&an be found explicitly. The reason for such quasiexact solv-
illustrate the fundamental principles in their respective fields@bility is usually the existence of a hidden Lie-algebraic
For real problems, approximation methods are indispensabléfructure[10—14. More precisely, a quasi-exactly-solvable
Recently, it was found that for certain quantum- Hamiltonian can be reduced to a quadratic combination of

mechanical problems analytical solutions are possible, bJPe generators of a Lie group with finite-dimensional repre-

: tations.
only for parts of the energy spectra and for particular valueseNate :
of the fundamental parameters. First it was realized that the In this paper we WO.UId like ta show that three of the four
S : problems mentioned in the second paragraph, nantaly,
problem of two electrons moving in an external oscillator

. ) . charged particle moving in Coulomb and magnetic fiétts
potential belongs to this class of problghlsZ]. Later, it was Schr'gc]dinger cask (b) ch%rged particle in Coul%mb ang mag-
discovered that the two-dimensional Sdtirmer equation of

e ; : . netic fields(the Klein-Gordon cageand(c) relative motion
an electron moving in an attractive/repulsive Coulomb fieldy¢ 4,0 charged particles in an external oscillator potential,

and a homogeneous magnetic field also share similar charagap, pe given a unified treatment. We shall show that all these
teristics[3—5]. More recently, the latter problems were ex- -gses are simply variations of the same basic equéEgn
tended to the two-dimensional Klein-Gord¢6] and the  (10) below], which is quasiexactly solvable owing to the
Dirac equatior{7]. existence of a hidden sklgebraic structure. This algebraic
The essential features shared by all these above examplggucture was first realized by Turbiner for the case of two
are as follows. The differentidSchralinger, Klein-Gordon, electrons in an oscillator potentif8]. We shall give a sys-
and Dirag equations are solved according to the standardematic and unified algebraic solution to the basic equation
procedure. After separating out the asymptotic behaviors ofising the method of factorization presented [if|. Our
the system, one obtains an equation for the part that can bmethod allows one to find the analytic expressions of the
expanded as a power series of the basic variable. It is at thsnergies, and the allowed frequencies once and for all in
point that deviation from the standard exactly solvable caseterms of the roots of a set of Bethe ansatz equations. This is
appears: instead of the two-step recursion relations for tha sharp contrast to the method of solving recursion relations,
coefficients of power series so often encountered in exactlywhich must be performed for each and every order of the
solvable problems, one gets three-step recursion relationpolynomial part in order to get these expressions.
The complexity of the recursion relations does not allow one  We will define the three problems in Sec. II. In Sec. llI
to do anything to guarantee normalizability of the eigenfunc-the basic equation is solved by the method of factorization.
tions. However, one can impose a sufficient condition forThe Lie-algebraic structure underlying the basic equation is
normalizability by terminating the series at a certain order ofdiscussed in Sec. IV. Section V then concludes the paper.
the power of the variable, i.e., by choosing a polynomial. By
doing so one could obtai'n exact_solutions to th'e' original || BRIEE DESCRIPTION OF THE THREE PROBLEMS
problem, but only for certain energies and for specific values
of the parameters of the problem. These parameters are the In this section we shall give a brief description of the
frequency of the oscillator potential and the external magthree cases of charged particles moving in external fields,
netic fields. which we will consider in the rest of the paper. Following
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the previous works, we adopt the atomic urfits m=e=1 C. Relative motion of two electrons in an external
in the cgs system. oscillator potential
In [2] the author considered the problem of a three-
A. Electron in Coulomb and magnetic fields: dimensional Schidinger equation for two electron@nter-
The Schradinger case acting with Coulomb potential moving in an external

harmonic-oscillator potential characterized by frequency

This general case was considered3r-5,7. The Hamil- Pext. The Hamiltonian is

tonian of a planar electron in a Coulomb field and a constan

magnetic fieldB=BZ (B>0) along thez direction is H 1VZ 1, ., 1V2 1, ., 6
=—_-Vi+= ri—=Vs+ = + .
1 1 2 7 2 1 Zwext 1 2 2 zwextrz |r1—r2| ( )
H=Z|p+ A =1 D
¢ r The total wave function is factorizable into three parts that

_ . - o depend, respectively, only on the center of mass, the relative
wherec is the speed of lightZ (positive or negativeis the  coordinates, and the spins of the electrons. The wave func-
charge of the source of the Coulomb field, and the vectotion of the center-of-mass coordinates satisfies the “Schro

potentialA is A=%B><f in the symmetric gauge. _ dinger equation of a three-dimensional oscillator, the solu-
An ansatz of the eigenfunction in the polar coordinatesion of which is well known. The spin part dictates the parity
(r,0) is of the wave function of the relative motion. The Satirmer

equation for the relative motion is

ucr) .
V(r,t)= ——=expimé—iEt), m=0,=1,=2,....

o

—£V2+E 2r2+i d(r)=¢€"(r) )
2 2 T OrT T oy ’

where r=ri—r,, o,=wey 2, and e’ is one-half of the
eigenenergy of the relative motidin the notation of 2]).

By assuming an ansatz of the wave function in the spherical
coordinates of the form

Herem is the angular momentum quantum number &nd
the energy. The radial wave functiorir) satisfies the radial
Schralinger equation

1d> 1/ , 1)1 1, Z urr) .
Eﬁ_i(m —Z>ﬁ—§er +T+E_me u(r)=0, ¢(r):TY'm(r)’ 8
@ | |
whereY),, are the spherical harmonics, we get from Eq.
wherew_ = B/2c is the Larmor frequency. the following equation

1d® 1+ 1 1 1
———u———wfrz—ﬁjte’ u(r)=0. (9

B. Electron in Coulomb and magnetic fields:
The Klein-Gordon case

In [6] the above problem is extended to the Klein-Gordon

case, assuming the same ansatz of the wave function as ilq We note hgre that if we change .the sign of the_tﬂe/rm n
Eq. (2). Now the radial wave functiomi(r) obeys the fol- 1€ last equation, we get an equation that describes the rela-
lowing equation: tive motion in the oscillator potential of an electron and a

positron. This case will be included in our discussions.

1d> 1 zZ 1|1 1 EzZz E?2 ¢?
| m-—=—-|=-= 0’12 — 4+ —— =
2dr2 2 2 42 2 L c2r  2c2 2 Il. THE BASIC EQUATION AND THE METHOD OF
FACTORIZATION
—may u(r)=0 4) After making some appropriate changes of the param-
L ' eters, we can recast Ed8), (4), and(9) into the same basic

form, namely,
But now, as noted if6], the quantum numben must satisfy

i 1 d? -1)1 1
the relation Eﬁ_”“’z )r_2_§w2r2+€+a u(r)=0.
z2 (10
m?— —2>O (5)
c HereB,v, andw (v,w>0) are real parameters, andis the

eigenvalue of Eq(10). Explicit expressions of these param-
in order for the solutions to make sense. This relation forbideters for the three cases will be given in the next section.
the existence of the states (n=0). That this equation is quasiexactly solvable means that, given
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a fixed value of the parameterand 8 (or w), the equation 2y n 1

can be solved exactly only for a particular set of parameter — =Xy~ 22 =

(or B) and eigenvaluer. Xk Fk XXk
Now we make the following change of variables:

=\2wr andb=2/wB. Then Eq.(10) becomes

n
d? -1) x> b b=2 X b, e=n. 20
—7(7—)——+;+%u(x)=o. (11) N e (20

0, k=1,...n (19

as well as the two relations,

Summing all then equations in Eq(19) enables us to rewrite
The values ofr andb in Eq. (11) may be found by means of the first relation in Eq(20) as
a method closely resembling the method of factorization in

nonrelativistic quantum mechanifg]. We shall discuss this "
method briefly below. Let us assume b=k§=:1 X - (21)
— 2
u(x)=x"exp( —x*/4)Q(x), (12 From the second relation in E€RO), one gets
whereQ is a polynomial. As mentioned in the Introduction, 1
the assumption tha® be a polynomial is only a sufficient e=n=alw—| y+ ik (22

condition for normalizability of the eigenfunctian(x). Sub-

stituting Eq.(12) into Eq. (11), we have Forn=1,2 the zerox, and the values of the parameter

for which solutions in terms of the polynomial of the corre-

a2 [2y ) d b) ; ; ;
2 ] et = X)=0, 13 sponding degrees exist can easily be found from Eb@).
dx? ( X dx | €7 x Q) (13 and(21) in the form
wheree=alw—(y+1/2). n=1, x;=*+2y, b==2y;
It is seen that the problem of finding the spectrum of Eqg.
(13) is equivalent to determining the eigenvalues of the op- n=2, X;=—X,=+2y+1, b=0,

erator

X, =2yIXy, Xp=*(1+\Ay+1)/42,
H="2 |\ X ¥a&x x (149 b= \2(4y+1). 23

For general values of it is difficult to solve for thex,’'s
from Eq.(19) and one must resort to numerical methods. But
H=ata+e. (15)  some properties of the solutions are known. First, from Eq.
(19) we see that ifx,} is a set of solutions to Eq19), then
The eigenfunctions of the operatidrat e=0 must satisfy the so is{—x,}. This means, by Eq21), that for every possible
equation value ofb, there is a corresponding negative valub. Sec-
ond, as we shall see later in Sec. IV, the number of values of
ay=0. (16 pfor a fixed ordem is n+1.

We now apply the above results to the three cases men-
tioned previously. The essential step is to solve the Bethe
ansatz equationgl9) for the rootsxy's for each ordem.
Then from Egs.(21) and (22) we obtain the values of the
allowed pair of frequency and energy. Here we will give
only the general expressions. The reader can easily repro-

duce the expressions for the two simplest ordees, n=1
a= 7 1 ' (17) and 2) given in2—6] by substituting Eq(23) into the gen-
IX k=1 X—X eral expressions.

We want to factorize the operat@t4) in the form

Suppose polynomial solutions exist for E@L3), say Q
=TIg_,(x—x,), wherex, are the zeros of andn is the
degree ofQ (we mention here that the ordein this paper is
equal to f—1) in [2—6] wherex" ! is the highest order
term in Q). Then the operatoa must have the form

n

¥
and the operatoa’ has the form A. Electron in Coulomb and magnetic fields:

n The Schradinger case

al=————+x-2, : (18 In this case,y=|m|+1/2, v=w,, B=Z=*|Z|, anda
k =E—mw, . The upperlower) sign in 8 corresponds to the
Substituting Eqs(17) and (18) into Eq. (15) and then case of attractivérepulsive Coulomb interaction. We have
comparing the result with Eq14), we obtain the following 2
set of equations for the zerog (the so-called Bethe ansatz w|_=£,
equationg 13)): b2

E=w (n+m+|m|+1). (24)
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These are the general expressions for the frequéany IV. HIDDEN LIE-ALGEBRAIC STRUCTURE
hence the magnetic fieldand the energy in terms of the OF THE BASIC EQUATION

values ofb. They reproduce the results jB8-5]. The basic equatiofil0), or its equivalent form(13), pos-

sesses an underlying Lie-algebraic structure that is respon-
B. Electron in Coulomb and magnetic fields: sible for its quasiexact solvability. In fact, Turbiner has iden-
The Klein-Gordon case tified an s} structure for the case of two charged particles in
an oscillator potential8]. In view of the fact that all the

For definiteness, we consider positive-energy solutiongye,ious cases considered in this paper are related by the
for the attractive Coulomb potentiaZ &0). This is the case  g5me basic equatidi0), one expects the same hidden struc-

considered ii6]. Negative-energy solutions and the case fory,re 1o he present in all these cases. This is indeed the case
repulsive Coulomb field can be treated in exactly the sameq it js sufficient to show that an,shigebra is in fact the
way. '2” this case, y>Nm —Z7ct+ 12, w=w, underlying structure possessed by E@€) or (13). In this
=ZE/c?, and a=E*/2c*—c*/2—mw_ . In order for the  gection we shall carry out Turbiner's analysis to E&),
wave f2unct2|on2to make sensg,has to be real. This implies \ith only slight modifications in the parameters to suit the
that m*—Z°/c*>0, which forbids the existence of th®  general situation. Only the main ideas are given here, and we
=0 stateqthes state$ in the Klein-Gordon case, as noted in refer the reader t68] for details.

[6]. ] o Let us construct three generators in the following manner:
Using o, =28%/b? we get the allowed magnetic field as

d
47%E? ngrza—nr,
Bzzch:W (25)

d n

O— —_—— —

_ _ =gy~ 2

and from Eq.(22) we obtain the corresponding energy
_d
) J, =ar (28

472 -
241 — [2_ 722
Bf=c1 b2c2(n+ T+mtym™=2%c%) . (26 These generators realize the algebra,
[3;,3,1==23°, [32,3,1==3; (29)
These are the most general expressions for the energy and ) .
the frequency. for any value of the parameter If nis a non-negative inte-
For negative-energy solutions, the energy is given by th@e"» then there —exists for the sl algebra a
negative roots of Eq(26). The only difference is that the (n+1)—(2:i|men5|l?nal ireducible  representatiof, , 1(r)
roots of the Bethe ansatz equations have opposite signs (L% -...r"). From this it is clear that any differential
view of Eq.(21). This only changes the nodal structure of the OP€rator formed by taking the polynomial of the generators
wave functions. From the expressiga- ZE/c?, we note the ~ (28) will have the spaceP, ., as the finite-dimensional in-
equivalence between the positiveregative} energy solu- variant subspace. This is the main idea underlying the quasi-
tions in the attractive Coulomb case and the negative®Xactly-solvable operato{8—14. _
(positive) energy solutions in the repulsive Coulomb case. ~NOW consider ’the quasi-exactly-solvable operator that is
Let us mention here that for the cases in Secs. Ill A andluadratic in thel,'s,
I11 B, we may consider a dual situation of the original prob-
lem: we may consider the magnetic fiddand thusw,) as T,= —JﬂJn+2wJ§—(
a fixed quantity, and the Bethe ansatz equations instead give
the allowed values of the energy and the Coulomb charge

n

+
7 T2y

J . (30)

This operator belongs to the class VIII according to the clas-
sification given in[10]. In terms ofr, T, becomes
C. Relative motion of two electrons in

. . 2
an external oscillator potential

d d
T2=—r—2+2(a)r2—y)d——2wnr. (31)
In this case,y=1+1/2, v=w,, B=—1/2, anda=¢". dr r

We have the following general solutions: ) )
Let us now consider the eigenvalue problem

: (27) T2Q(r)=2B(n)Q(r). (32

This eigenvalue problem possessesl eigenvalueg(n),

and the corresponding eigenfunctions are in the form of a
They are also the solutions for the case of an electron and polynomial of thenth power, while other eigenfunctions are
positron in the oscillator potential3= + 1/2). nonpolynomial, which in general cannot be found in closed

3
wo,=—, €=, n+|+§
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analytic form[8]. Let us first substitute the forrt81) into  Coulomb field for positive-energy solutions. For negative-
Eqg. (32), then divide the resulting equation byw? and  energy solutions, the sign &fis reversed for the two kinds
change the variableto x=\2wr. This leads to the follow- of Coulomb field. Hence, our unified treatment together with

ing equation the Lie-algebraic analysis of these cases give a very simple
explanation as to why the number of the positive-energy lev-
d? 2y d \F 1 els for a fixed orden considered i{2-6] are all equal to
E—i_ T_X &-l- n+ Z,B(n); Q(x)=0. [(n+1)/2].
(33
V. CONCLUSIONS
This is exactly Eq.(13), provided thate=n and b . .
— 2w p(n). This means that Eq13) is quasiexactly solv- In this paper we have presented a unified treatment of

three cases of quasi-exactly-solvable problems, namely, a
charged particle moving in Coulomb and magnetic fields for
both the Schrdinger and the Klein-Gordon case, and the
irelative motion of two charged particles in an external oscil-
fhtor potential. We show that all these cases are reducible to
the same basic equatidiq. (10)], which is quasiexactly
solvable owing to the existence of a hidden algebraic
structure. A systematic and unified algebraic solution to the
basic equation using the method of factorization is given.
Our method allows one to express the analytic expressions of
e energies and the allowed frequencies once and for all in
terms of the roots of a set of Bethe ansatz equations. Our

mtTan the]}t,hat a fi_xedf ordes there dare exac_tlynfv} Il da;llowe](cj_ dtreatment also reveals that the eigenenergies and the allowed
values of the pair of energy and magnetic field for a fixe frequencies in these cases are all given by the roots of the
Coulomb charge, or of the pair of energy and Coulomb

. L same set of Bethe ansatz equations.
charge for a fixed magnetic field.

Furthermore, it has been shoW@] that there exisf(n
+1)/2] positive eigenvalues and the same number of nega-
tive eigenvalues ob (here[a] represents the integral part of  This work was supported in part by the Republic of China
a). In the general situation considered in this paper, positivehrough Grant No. NSC 89-2112-M-032-020. We would like
(negative values ofb correspond to the attractieepulsive  to thank Dr. R. Rao for a careful reading of the manuscript.

able if e=n, which is exactly our relation in E¢22), and
that there are onlp+1 allowed values ob= \2/wp in Eq.
(13) [cf. Eq. (23)].

Translating back to the original three cases considered
this paper, these results imply the following. In Sec. &,
is a fixed parameterd= *=1/2), hence the finite number
(=n+1) of the values ob implies the same number of the
allowed frequencywe,; of the external oscillator potential
and the corresponding energy. This is the case fourj@]Jin
and presented here again from a new light. For the cases
Secs. A (3=Z) and Il B (8=ZE/c?), the above results
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