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Quantum metastability in a class of moving potentials

Chung-Chieh Lee and Choon-Lin Ho
Department of Physics, Tamkang University, Tamsui 25137, Taiwan

~Received 15 August 2001; published 16 January 2002!

In this paper we consider quantum metastability in a class of moving potentials introduced by Berry and
Klein. This class of potential has height and width scaled in a specific way so that it can be transformed into
a stationary one. While deriving the nondecay probability of the system, we demonstrate that the appropriate
technique to use is the less well known method of scattering states. This method is illustrated through two
examples, namely, a movingd-function potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite nondecay probability persists at large times. Generalization to scaling potentials of
arbitrary shape is briefly outlined.
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I. INTRODUCTION

An interesting issue in cosmology is the evolution
metastable states in the early universe in the original ver
and its variants in the inflationary models@1,2#. In these
models inflation of the early universe is governed by a Hig
field trapped in a metastable state. Inflation ends when
metastable state decays to the true ground state of the
verse. During inflation the universe expands exponentially
is thus obvious that the metastable state of the Higgs fiel
trapped in a rapidly varying potential. The problem is the
fore a truly time-dependent one. However, owing to the
herent difficulties of the problem, more often than not o
considers the decay of the Higgs field in a quasistation
approximation, in which the decay is studied by assumin
static potential@3#. Certainly this approximation is hard t
justify, but for the present one has to be content with
Ultimately one hopes to be able to tackle the nonstation
case. To this end, it is desirable to gain some insights firs
studying metastability in time-dependent potentials in sim
quantum-mechanical models.

Time-dependent potentials can be broadly divided i
three classes. Potentials in the first class are of tim
dependent strength. When the strength is small, the Sc¨-
dinger equation can be solved by time-dependent pertu
tion theory. Almost all pedagogical examples belong to t
type. When the strength of the potential is not small, ot
methods of solution must be sought. For example, soluti
of time-dependent harmonic oscillator@4# and time-
dependent linear@5# potentials can be obtained by th
method of invariants. We note that the interesting pheno
enon of quantum tunneling induced by an externally driv
field has also been examined experimentally and theo
cally @6–8#. The second class of potentials involves tim
dependent boundaries. Unlike the first class, this class
potentials has attracted much less attention, and almos
previous work in this area concerned only the simplest of
cases, namely, an infinite potential well with a moving w
@9,10#. The last class is a combination of the previous t
classes.

We believe that the barrier potential in an inflationa
universe is nonstationary; not only the barrier height but a
the barrier width should be changing as time elapses. H
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ever, it will be extremely difficult to study metastability i
such a time-dependent potential in full generality. Thus
would be helpful if the quantum tunneling effect could b
studied in any class of moving potential, special though
may be, as a step toward understand the decay of a no
tionary metastable system.

In this paper we consider quantum metastability in a cl
of scaling potentials that allows one to apply techniques u
in the corresponding problem with stationary potentials. T
class of potentials was introduced by Berry and Klein@11#.
These potentials have heights and widths scaled in a spe
way so that one can transform the potential into a station
one.

The organization of the paper is as follows. In Sec. II w
give a general discussion of the solutions of the Schro¨dinger
equation with the scaling form of the time-dependent pot
tial introduced in@11#. It is argued that the most suitabl
technique for studying quantum metastability in such a
tential is the less well known method of scattering stat
Two simple examples of such metastable systems, a mo
d-function potential and a moving square barrier, are inv
tigated in Secs. III and IV, respectively. A generalization
an arbitrary barrier is briefly discussed in Sec. V. Section
concludes the paper.

II. SCHRÖ DINGER EQUATION WITH A SCALING
POTENTIAL

We consider the problem of quantum metastability o
particle of massm trapped in a moving potentialV(x,t)
which has the scaling form proposed by Berry and Kle
@11#, namely, V(x,t)5V̄„x/L(t)…/L2(t), where L(t) is a
time-dependent scaling factor. The Schro¨dinger equation is

i\
]C~x,t !

]t
5F2

\2

2m

]2

]x2
1

1

L2~ t !
V̄S x

L~ t ! D GC~x,t !. ~1!

So far solution of Eq.~1! is restricted mostly to the specia
case in whichV̄ has the functional form of an infinite poten
tial well, i.e., V(x,t) is an infinite well with a moving wall
@9,10#. In this case, the scaling factorL2(t) in front of V̄ is
immaterial.
©2002 The American Physical Society11-1
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We assumeV̄ to have the generic shape of a potential w
that is impenetrable to the left and has a finite barrier to
right, much like that usually employed in the discussion oa
decay. The scaling factorL(t) is assumed to be a linear func
tion of time:

L~ t !5L01vt, v5const. ~2!

Of course, forv,0, the problem is meaningful only for tim
duration 0,t,L0 /uvu. Equation ~1! cannot be solved by
separating the time and spatial coordinates. However, for
scaling form ofV(x,t) in Eq. ~1! and the linear form ofL(t),
separation of variables can be achieved through a serie
transformations introduced in@12,11# ~see also@9,10#!. One
first transforms the coordinate frame into a rescaled fra
with a rescaled coordinatex̄ defined by

x̄~ t ![
x

L~ t !
. ~3!

In this frame the Schro¨dinger equation becomes

i\
]

]t
C~ x̄,t !5F2

\2

2mL2

]2

]x2
1 i\

v
L

x̄
]

] x̄
1V̄~ x̄!GC~ x̄,t !.

~4!

Equation~4! can be further simplified by the transformatio

C~ x̄,t !5
1

AL~ t !
e( im/2\)Lv x̄2

F~ x̄,t !, ~5!

and the introduction of a new time variablet:

t5E
0

t ds

L2~s!
5

t

L0L~ t !
. ~6!

After substituting Eqs.~5! and ~6! into Eq. ~4!, one obtains
the equation

i\
]

]t
F~ x̄,t!52

\2

2m

]2

] x̄2
F~ x̄,t!1V̄~ x̄!F~ x̄,t!, ~7!

which resembles the Schro¨dinger equation with a stationar
potential. Equation~7! can be solved by separation of var
ables:

F~ x̄,t!5F~ x̄!e2( i /\)Ēt, ~8!

whereF( x̄) satisfies the eigenvalue equation

F2
\2

2m

d2

dx2
1V̄~ x̄!GFk~ x̄!5ĒkFk~ x̄!. ~9!

Once Eq.~9! is solved exactly in the rescaled frame, t
exact wave function in the original frame is then given b
02211
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Ck~x,t !5
1

AL~ t !
e( im/2\)(v/L)x2

e2( i /\)(1/L0L)ĒktFkS x

L D .

~10!

The set of solutions~10! is complete and orthonormal:

^Ck~x,t !uC l~x,t !&5^Fk~ x̄!uF l~ x̄!&5dkl , ~11!

so using this set of solutions we can find a solution satisfy
any initial condition. Furthermore, if an initial stateC(x,0)
is expressible in the basis$Ck% as

C~x,0!5(
k

ckCk~x,0!, ck5^Ck~x,0!uC~x,0!&,

~12!

then at a later timet the state is

C~x,t !5(
k

ckCk~x,t !. ~13!

We have now succeeded in transforming the origi
time-dependent Schro¨dinger equation into a time
independent one. The problem of calculating the decay pr
ability of a particle confined inV(x,t) at timet is reduced to
the corresponding problem with a static potentialV̄( x̄).
Hence techniques used in the time-independent potentia
calculating decay rate can be borrowed.

However, there are some subtleties. Naively, one
tempted to employ the best-known method, namely, the c
plex eigenvalue method, proposed by Gamow in his stud
of a decay@13#. In this approach an ‘‘outgoing wave bound
ary condition’’ is imposed on the solutions of the Schr¨-
dinger equation for the particle trapped in the well. Th
means incoming plane wave solutions outside the poten
well are discarded right from the beginning. This procedu
naturally leads to an eigenvalue problem with complex
ergy eigenvalues. One then relates the imaginary parts o
energy to the decay rate. While the complex eigenva
method is straightforward and physically reasonable, it s
fers from some conceptual difficulties@14#. For example,
how can energy eigenvalues be complex as we are dea
with a Hermitian Hamiltonian? Also, the eigenfunctions a
not normalizable, a difficulty directly related to the eigenva
ues being complex. Furthermore, the particle trapped in
well cannot be in an eigenstate of the system in the fi
place, since such states are not completely confined att50.

Apart from the difficulties mentioned above, the compl
eigenvalue method cannot be employed in the present
for other reasons. First, the problem we are interested in i
intrinsically time-dependent one, with a nonconservat
Hamiltonian. Hence energy eigenvalues and eigenstates
their meanings altogether@Ē in Eq. ~9! is not an energy
eigenvalue#. Second, the ‘‘outgoing wave boundary cond
tion,’’ essential to Gamow’s method, cannot be imposed
our case. The reason is as follows. As discussed before
order to fix a moving potential we need to transform o
problem to a corresponding static one in a rescaled fra
But in this frame the meaning of an incoming or outgoi
1-2
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QUANTUM METASTABILITY IN A CLASS OF MOVING . . . PHYSICAL REVIEW A 65 022111
plane wave is rather obscure. In fact, it can be checked
an outgoing plane wave in the originalx-t ~rescaledx̄-t)
frame contains both ‘‘incoming’’ and ‘‘outgoing’’ compo
nents in the rescaledx̄-t ~original x-t) frame.

The instanton method is another technique commo
used in the calculation of the decay rate of a metastable s
@15#. This semiclassical method amounts essentially to fi
ing the imaginary part of the ground state energy of the s
tem. Since it is based on the idea of eigenvalues of
Hamiltonian, it is therefore not suitable here.

One more method that can be useful in tackling the pr
lem is the complex scaling method@16#. The general idea o
this method is to consider a complex rotated Hamilton
obtained from the usual Hamiltonian by making the posit
and momentum complex. This resolves the paradox that
eigenenergies are complex, since now the complex rot
Hamiltonian is no longer Hermitian. A pleasant merit of t
method is that the eigenfunctions associated with these c
plex resonant eigenvalues are square integrable, and
various approximation methods developed for bound st
can be applied to the scattering processes. However,
method, while elegant in many respects, is not useful in
present case, since it also requires the idea of eigenene

Since these common methods fail to suit our purpose,
have to look for alternatives. Fortunately, a different meth
exists, namely, the scattering state method~or virtual level
method, as Fermi called it! @17#. This method is much les
well known and seldom used in the literature@18#. However,
it is conceptually the most satisfying of all the methods.
this method, one first constructs the initial confining sta
which is not viewed as an eigenstate, but rather as a lin
superposition of scattering states with real energies, and
lows its evolution in time. In the course of this evolution, n
energy will become complex. Unlike the Gamow states,
scattering states contain both incoming and outgoing com
nents in the region into which the particle escapes. It is
feature of the method that makes it most suitable in
present problem. The method is easily adapted to Eq.~7! by
taking the scattering states as the states~8! with real values
of Ē.

In the next two sections, the scattering state method
applied to two simple examples of the class of scaling
tentials. As the scattering state method is not so well kno
in the literature, we think it appropriate to give some deta
in order to make this work self-contained. The procedu
given in @14# are slightly adapted to our needs.

III. MOVING d-FUNCTION POTENTIAL

The first example is a uniformly movingd-function po-
tential

V~x,t !5H `, x<0,

V̄0

L~ t !
d„x2a~ t !…5

V̄0

L2~ t !
dS x

L~ t !
2āD , x.0,

~14!
02211
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wherea(t)5āL(t).0 gives the location of thed-function
potential. This class of potentials was defined in the last s
tion and corresponds in the rescaled frame toV̄( x̄)5` for
x̄,0 andV̄( x̄)5V̄0d( x̄2ā). One hasF( x̄)50 in the region
x̄,0. For x̄.0, Eq. ~9! is

2
\2

2m

d2F~ x̄!

dx̄2
1V̄0d~ x̄2ā!F~ x̄!5ĒF~ x̄!. ~15!

Its general solutions are

F~ x̄!5H sin~ k̄x̄!, 0, x̄,ā,

C cos~ k̄x̄1u!, ā, x̄,
~16!

wherek̄5A2mĒ/\, C is a real constant, andu is a phase
angle. Note that the wave function is real, and includes
incoming wave component in the regionx̄.ā. This ensures
that k̄, and henceĒ, is always real. The wave function and i
first derivative satisfy the following boundary conditions
x̄5ā:

F~ x̄5ā1!5F~ x̄5ā2! ~17!

and

dF~ x̄!

dx̄
U

x̄5ā1

2
dF~ x̄!

dx̄
U

x̄5ā2

5
2m

\2
V̄0F~ x̄5ā!. ~18!

From these relations the coefficientC can be determined as
function of k̄:

C2~ k̄!5sin2~ k̄ā!1S cos~ k̄ā!1
2mV̄0

\2k̄ā
sin~ k̄ā!D 2

. ~19!

Physically, the value ofC2( k̄) can be interpreted as the rat
of the probability of finding particles in the regionx̄.ā to
the probability of finding them within the confined regio
0, x̄,ā for a particulark̄. The general shape ofC2( k̄) is
shown in Fig. 1, from which we can assert that the parti
can be trapped within the confined region only whenC2

assumes one of its minima, which occur only in the neig
borhood of some specific values ofk̄. In these regions the
values ofC2( k̄) are extremely small. From Eq.~19! it is
obvious that these minima will be centered aroundk̄n

5np/ā (n51,2, . . . ) @i.e., sin(k̄nā)50# as long asV̄0 is
large enough so that 2mV̄0 /\2@np.

For largeV̄0 approximate analytic expressions can be o
tained and compared with the corresponding results in
time-independent case@19#. According to the scattering stat
method, one constructs confining states in the potential w
by taking a suitable superposition of the scattering sta
with k̄ in the neighborhood ofk̄n . To this end, let us first
expandC2 aboutĒn5\2k̄n

2/2m ~we revert to the variableĒ
below!:
1-3
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C2~Ē!'S mā

\2k̄n
D 2F11S 2mV̄0

\2k̄n
D 2G ~Ē2Ēn1d!2

1F11S 2mV̄0

\2k̄n
D 2G21

~20!

[G2~D1d!21F2, ~21!

whereD5Ē2Ēn and the constants

d5
2V̄0

ā
F11S 2mV̄0

\2k̄n
D 2G21

, ~22!

G25S mā

\2k̄n
D 2F11S 2mV̄0

\2k̄n
D 2G , ~23!

F25F11S 2mV̄0

\2k̄n
D 2G21

. ~24!

The scattering states withĒ in the neighborhood ofĒn can
then be written as

cD~ x̄!55A
2

R

1

AG2~D1d!21F2
sin~ k̄x̄!, 0, x̄,ā,

A2

R
cos~ k̄x̄1u!, ā, x̄.

~25!

This system is quantized in the interval@0,R#, whereR@ā,
which at the end of the calculation will be set to infinit
With these scattering states, an initial state is constructed
is completely confined within the well by taking a line
combination of the scattering states with differentD but the
same value ofĒn ,

FIG. 1. The shape of lnC2(k̄ā) in Eq. ~19! as a function ofk̄ā for

2mV̄0 /\2510 ~dotted line! and 200~solid line!. The minima of

ln C2(k̄ā) will be centered aroundk̄nā5np (n51,2, . . . ) for large

values of 2mV̄0 /\2.
02211
at

F~ x̄,t50!5(
D

cDcD~ x̄!5H fn~ x̄!, x̄,ā,

0, x̄.ā.
~26!

The coefficientcD can be calculated from orthogonality o
the statescD( x̄),

cD5E
0

R

dx̄cD~ x̄!F~ x̄,0!

5A2

R

1

AG2~D1d!21F2E0

ā
dx̄ sin~ k̄x̄!fn~ x̄!. ~27!

Choosing

fn~ x̄!'A2

ā
sinS np x̄

ā
D , n51,2,3, . . . , ~28!

we get

cD'
1

ARā

2

AG2~D1d!21F2
E

0

ā
dx̄ sin~ k̄x̄!sinS np x̄

ā
D
~29!

'Aā

R

1

AG2~D1d!21F2
. ~30!

The initial state is then given by

F~ x̄,t50!'Aā

R(
D

1

AG2~D1d!21F2
cD~ x̄!. ~31!

From Eqs.~10!, ~12!, and~13!, the solution at a later timet
is

F~ x̄,t!'Aā

R(
D

1

AG2~D1d!21F2
cD~ x̄!e2( i /\)(Ēn1D)t.

~32!

As the system is quantized in the interval@0,R#, we have
k̄R5n8p/2, wheren8 is a very large integer (n8@n). After
replacing the sum by an integral

(
D

→E dD
R

p\
A2m

Ēn

, ~33!

Eq. ~32! becomes

F~ x̄,t!'
R

p\
A2m

Ēn

Aā

RE2`

`

dD

3
1

AG2~D1d!21F2
cD~ x̄!e2( i /\)(Ēn1D)t.

~34!
1-4
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QUANTUM METASTABILITY IN A CLASS OF MOVING . . . PHYSICAL REVIEW A 65 022111
SubstitutingcD( x̄) from Eq.~25!, we obtain the approximate
wave function of the state confined in the well (0, x̄,ā) as

F~ x̄,t!'
2

p\
Amā

Ēn

sin~ k̄nx̄!e2( i /\)Ēnt

3E
2`

`

dD
e2( i /\)Dt

G2~D1d!21F2

5
2

\
Amā

Ēn

sin~ k̄nx̄!

uFGu
e2( i /\)Ēnte2(1/\)uF/Gut.

~35!

For metastable systems an important quantity is the n
decay probabilityP(t) that the particle is still in the well a
time t if it is initially confined in the well at t50 @P(t
50)51#. In our caseP(t) is defined as

P~ t !5

E
0

a(t)

uC~x,t !u2dx

E
0

a(0)

uC~x,0!u2dx

5

E
0

ā
uF~ x̄,t!u2dx̄

E
0

ā
uF~ x̄,0!u2dx̄

. ~36!

From Eq.~35! we find

P~ t !;exp@2gn~ t !#, ~37!

where

gn~ t !52UFGU t

L0L~ t !
~38!

52S \2k̄n

mā
D F11S 2mV̄0

\2k̄n
D 2G21

t

L0L~ t !
. ~39!

We have used Eqs.~6!, ~23!, and ~24! to obtain the result
~39!. We note that for an expanding potential (v.0)

gn~ t !→2UFGU 1

L0v
~40!

as t→`. Unlike the stationary case (v50), there is a small
but finite probability that the particle does not tunnel out
02211
n-

f

the well. This result is reasonable, since as the barrier mo
away fromx50 it leaves more room for the particle to sta
within the well.

For V̄0 much larger than the characteristic value ofk̄n of
the escaping particles,g(t) becomes

gn~ t !→ F ~\2k̄n!3

2m3āV̄0
2G t

L0L~ t !
5F \6~np!3

2m3ā4V̄0
2G t

L0L~ t !
,

~41!

where k̄n5np/ā has been substituted. It is proper to com
pare Eq.~41! with the corresponding result in the stationa
case (v50). In the limit v→0, we haveL(t)→L0 , ā

→a/L0 , Ēn→EnL0
2, and k̄n→knL0, whereEn is the corre-

sponding energy in the static frame, andkn5A2mEn/\. In
this limit g(v50) is directly proportional to the timet. We
can therefore define a decay rate byGn[gn(v50)/t, which
in this case is

Gn5
\6kn

3

2m3a~V̄0 /L0!2
5

\6~np!3

2m3a4~V̄0 /L0!2
. ~42!

Equation~42! is consistent with the result obtained by th
complex eigenvalue method in@19# for a staticd-function
potential located atx5a with strengthV̄0 /L0.

IV. MOVING SQUARE BARRIER POTENTIAL

For the next example, consider a moving barrier poten

V~x,t !55
`, x<0,

1

L2~ t !
V̄0 , a~ t !,x,b~ t !,

0, x.b~ t !,

~43!

with a(t)5āL(t) andb(t)5b̄L(t)(ā andb̄ are two positive
constants!. When the problem is transformed to the resca
frame, it is equivalent to solving Eq.~9! with a stationary
potential

V̄~ x̄!5H `, x̄<0,

V̄0 , ā, x̄,b̄,

0, x̄.b̄.

~44!

The general solutions are
F~ x̄!5H sin~ k̄x̄!, 0, x̄,ā, k̄5A2mĒ/\2,

Aek̄8x̄1Be2 k̄8x̄, ā, x̄,b̄, k̄85A2m~V̄02Ē!/\2,

C cos~ k̄x̄1u!, ā, x̄.

~45!
1-5
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CHUNG-CHIEH LEE AND CHOON-LIN HO PHYSICAL REVIEW A65 022111
HereA, B, andC are real constants, andu is a phase angle
As before, one can set the solutions real in the whole reg
to ensure thatk̄ is always real. The solutions and their d
rivatives need to be continuous at the boundariesx̄5ā andb̄.
These boundary conditions determine the values of the c
ficientsA, B, andC as functions ofk̄:

A~ k̄!5
1

2
e2 k̄8āFsin~ k̄ā!1

k̄

k̄8
cos~ k̄ā!G , ~46!

B~ k̄!5
1

2
ek̄8āFsin~ k̄ā!2

k̄

k̄8
cos~ k̄ā!G , ~47!

C2~ k̄!5S 11
k̄82

k̄2 D e2k̄8b̄A212S 12
k̄82

k̄2 D AB

1S 11
k̄82

k̄2 D e22k̄8b̄B2. ~48!

The general shapes ofA( k̄) andC2( k̄) are shown in Fig. 2.
Note that metastable states of the system will occur only
finite number of neighborhoods ofk̄n (n51,2, . . . )such that
A( k̄n)50. The rootsk̄n satisfy

sin~ k̄nā!1
k̄n

k̄n8
cos~ k̄nā!50. ~49!

Equation ~48! implies thatC2( k̄) is minimal at k̄n . For a
given V̄0, the number of rootsk̄n is restricted by the condi
tion that k̄n8 in Eq. ~45!,

k̄n85A2mV̄0

\2
2 k̄n

2, ~50!

FIG. 2. The shapes of lnC2(k̄ā) ~solid line! in Eq. ~48! and

5ek̄8āA( k̄ā)/2 ~dotted line! in Eq. ~46! as functions ofk̄ā for b̄

52ā and 2mV̄0ā2/\2540 showing that the minima of lnC2(k̄ā)

occur only in a finite number of neighborhoods ofk̄n (n

51,2, . . . ) such thatA( k̄nā)50.
02211
n

f-

a

must be real. Hence the possible values ofk̄n can lie only in

the interval (0,A2mV̄0 /\2). For instance, there are only tw
roots for the parameters assumed in Fig. 2.

We now expand the coefficientsA( k̄) and B( k̄) about
Ēn (5\2k̄n

2/2m):

A~Ē!'FdA

dĒ
G

Ē5Ēn

~Ē2Ēn!, ~51!

B~Ē!'B~Ēn!. ~52!

Inserting Eqs.~51! and~52! into Eq.~48!, after some tedious
calculations we find thatC2(Ē) behaves in the neighborhoo
of Ēn as

C2~Ē!5G2~D1d!21F2, ~53!

whereD5Ē2Ēn as in the previous example, and the co
stants in the present case are

G25
1

4 S mā

\2k̄n
D 2S 11

k̄8n
2

k̄n
2 D F cos~ k̄nā!2

k̄n

k̄n8
sin~ k̄nā!G 2

3e2k̄n8(b̄2ā), ~54!

F25S 11
k̄n

2

k̄8n
2D 21F sin~ k̄nā!2

k̄n

k̄n8
cos~ k̄nā!G 2

e22k̄n8(b̄2ā),

~55!

and

d5S \2k̄n

mā
D S k̄n

22 k̄8n
2

k̄n
21 k̄8n

2D
3S k̄n8 sin~ k̄nā!2 k̄n cos~ k̄nā!

k̄n8 cos~ k̄nā!2 k̄n sin~ k̄nā!
D e22k̄n8(b̄2ā). ~56!

From the relation~53!, the scattering states relevant to th
metastable system can be constructed by following exa
the same procedures as in the previous section. The no
cay probabilityP(t) of finding the particle within the con-
fined region (0, x̄,ā) at time t is again of the formP(t)
;exp(2gn(t)), wheregn(t) is now given by

gn~ t !52UFGU t

L0L~ t !

5
8\2k̄n

3

mā
S k̄n8

k̄n
21 k̄8n

2D 2

e22k̄n8(b̄2ā)
t

L0L~ t !
, ~57!

where we have used Eqs.~54!, ~55!, and ~49!. When the
barrier height is much larger than the characteristic ‘‘energ
of the escaping particles (V̄0@Ēn), which is equivalent to
the relationk̄n8@ k̄n , gn(t) becomes
1-6
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gn~ t !→ 8\2

mā

k̄n
3

k̄8n
2

e22k̄n8(b̄2ā)
t

L0L~ t !
. ~58!

As in the previous example, for positivev.0 ~the expanding
case! one finds a small but finite probability that the partic
does not tunnel out of the well at large time. In this case
only does the barrier leave more room for the particle to s
within the well as it moves away fromx50, but its width
also becomes thicker, thus making tunneling difficult.

In order to transform the result~58! to the stationary one
we simply apply the same substitutions as given at the en
the last section, with the addition ofb̄→b/L0 and k̄n8

→kn8L0, where kn85A2m@(V̄0 /L0
2)2En#/\. Once again

gn(v50) is directly proportional to the timet, in which case
a decay rate can be defined:Gn[gn(v50)/t. For the present
example,

Gn~v50!5
8\2

ma

kn
3

k8n
2

e22kn8(b2a), ~59!

which is the same as the result obtained by the comp
eigenvalue method for a square barrier with width (b2a)
and heightV̄0 /L0

2 @20#.

V. GENERAL SCALING POTENTIALS

We have calculated the nondecay probabilities of t
nonstationary metastable systems explicitly. The poten
barriers in the rescaled frame considered in these sys
assumed the form of ad function and a square barrier. The
calculations can be immediately generalized to barriers w
more general shapes. Without giving further examples,
only discuss briefly the close connection between the non
cay probability P(t) of a particle in a metastable scalin
potentialV(x,t)5V̄„x/L(t)…/L2(t) and the decay rateG of
the same particle if it were instead confined in a static
tential well V(x)5V̄(x).

From the previous examples, we know that the calculat
of P(t) is reduced to the corresponding computation in
static potentialV̄( x̄) in the rescaled frame. Now this last tas
would be exactly the same as that carried out in the poten
V(x)5V̄(x) in ordinary coordinates. The only difference,
seen from the previous two examples, is that all ordin
parameters, such asE, k, k8, t, a, etc., are replaced
by the corresponding rescaled ones, i.
Ē, k̄, k̄8, t, ā, etc. Application of the scattering
state method to the generala decay type of potentialV(x) in
normal coordinates was given in@14#, and can be carried
02211
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over directly. Following@14# the important step is to deter
mine the discrete valuesEn ~or equivalentlykn) that mini-
mize the amplitudeC of the wave function in the region
outside the well. Consider a confining state constructed w
E centered around a specificEn . Minimization of C then
gives the two functionsF(En) andG(En) ~other parameters
in F and G are not indicated!. The nondecay probability in
V(x) is then given by exp(2Gnt), where the decay rateGn is

Gn~En!52UF~En!

G~En!
U. ~60!

Suppose all these computations have been done in ordi
coordinates. Then one can immediately write down the
pression of the nondecay probabilityP(t);exp@2gn(t)# for
the scaling potentialV(x,t) as

gn~ t !52UF~Ēn!

G~Ēn!
U t

L0L~ t !
5Gn~Ēn!

t

L0L~ t !
. ~61!

Here the functional form of the decay rateGn is taken over
directly, but with all the parameters replaced by the cor
sponding rescaled ones. Equation~61! gives the connection
between the nondecay probability in V(x,t)
5V̄„x/L(t)…/L2(t) and the decay rate inV(x)5V̄(x). Fi-
nally, in the nonmoving limitv50, V(x,t) becomesV(x)
5V̄(x/L0)/L0

2. Settingv50 in Eq.~61! then gives the decay
rate in this potential,Gn(En)/L0

2, as seen in the previou
cases.

VI. CONCLUSION

The problem of quantum metastability in a class of mo
ing potentials introduced by Berry and Klein is considere
The potential in this class has its height and width scaled
a specific way so that it can be transformed into a station
one. In deriving the nondecay probability of the system,
employed a method that is less well known but conceptu
more satisfactory, namely, the method of scattering sta
Nondecay probabilities in a movingd-function potential and
a moving square barrier potential were derived, and a c
nection between the nondecay probability in a general s
ing potential and the decay rate in a related static poten
was established.
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