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Quantum metastability in a class of moving potentials
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In this paper we consider quantum metastability in a class of moving potentials introduced by Berry and
Klein. This class of potential has height and width scaled in a specific way so that it can be transformed into
a stationary one. While deriving the nondecay probability of the system, we demonstrate that the appropriate
technique to use is the less well known method of scattering states. This method is illustrated through two
examples, namely, a movingfunction potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite nondecay probability persists at large times. Generalization to scaling potentials of
arbitrary shape is briefly outlined.
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I. INTRODUCTION ever, it will be extremely difficult to study metastability in
such a time-dependent potential in full generality. Thus it

An interesting issue in cosmology is the evolution of would be helpful if the quantum tunneling effect could be
metastable states in the early universe in the original versioitudied in any class of moving potential, special though it
and its variants in the inflationary mode]4,2]. In these mMay be, as a step toward understand the decay of a nonsta-
models inflation of the early universe is governed by a Higgdionary metastable system.
field trapped in a metastable state. Inflation ends when the In this paper we consider quantum metastability in a class
metastable state decays to the true ground state of the urfif Scaling potentials that allows one to apply techniques used
verse. During inflation the universe expands exponentially. [t the corresponding problem with stationary potentials. This
is thus obvious that the metastable state of the Higgs field i§lass of potentials was introduced by Berry and KIgif].
trapped in a rapidly varying potential. The problem is there-These potentials have heights and widths scaled in a specific
fore a truly time-dependent one. However, owing to the in-way SO that one can transform the potential into a stationary
herent difficulties of the problem, more often than not one@ne. o _
considers the decay of the Higgs field in a quasistationary The organization of the paper is as follows. In Sec. Il we
approximation, in which the decay is studied by assuming &ive & general discussion of the solutions of the Seimger
static potential3]. Certainly this approximation is hard to €duation with the scaling form of the time-dependent poten-
justify, but for the present one has to be content with it tial introduced in[11]. It is argued that the most suitable
Ultimately one hopes to be able to tackle the nonstationarjechnique for studying quantum metastability in such a po-
case. To this end, it is desirable to gain some insights first b{ential is the less well known method of scattering states.
studying metastability in time-dependent potentials in simpleWo simple examples of such metastable systems, a moving
quantum-mechanical models. S-function potential and a moving square barrier, are inves-

Time-dependent potentials can be broadly divided intdigated in Secs. Il and IV, respectively. A generalization to
three classes. Potentials in the first class are of time&n arbitrary barrier is briefly discussed in Sec. V. Section VI
dependent strength. When the strength is small, the 'Schréoncludes the paper.
dinger equation can be solved by time-dependent perturba-

tion theory. Aimost all pedagogical examples belong to this  |I. SCHRO DINGER EQUATION WITH A SCALING

type. When the strength of the potential is not small, other POTENTIAL

methods of solution must be sought. For example, solutions ) .

of time-dependent harmonic oscillatof4] and time- We consider the problem of quantum metastability of a

dependent lineaf5] potentials can be obtained by the Particle of massm trapped in a moving potentiaV(x,t)
method of invariants. We note that the interesting phenomWhich has the scaling form proposed by Berry and Klein
enon of quantum tunneling induced by an externally driver{11], namely, V(x,t)=V(x/L(t))/L?(t), where L(t) is a

T(x,t). (1)

field has also been examined experimentally and theoretiime-dependent scaling factor. The Safirger equation is
cally [6—8]. The second class of potentials involves time-

dependent boundaries. Unlike the first class, this class of _ﬁa\p(x,t) h? 92 . 1 v X

potentials has attracted much less attention, and almost all I | 2mge? L2(t) \L(D

previous work in this area concerned only the simplest of all

cases, namely, an infinite potential well with a moving wall . . . .
[9,10]. The Ia)s/t class is aF():ombination of the previOL?s tvvoso far SO|utI0£ of Eq(1) is restricted mostly to the special
classes. case in whichv has the functional form of an infinite poten-
We believe that the barrier potential in an inflationary tial well, i.e., V(x,t) is an infinite well with a moving wall
universe is nonstationary; not only the barrier height but als$9,10]. In this case, the scaling factbar(t) in front of V is
the barrier width should be changing as time elapses. Howimmaterial.
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We assum& to have the generic shape of a potential well

_ _ - (x
that is impenetrable to the left and has a finite barrier to the Wi(x,1)= ——=e(M#/Lx°g ('/h)(lLOL)Ektq’k(E)-

right, much like that usually employed in the discussiornrof VL(1) (10)

decay. The scaling factar(t) is assumed to be a linear func-

tion of time: The set of solution$10) is complete and orthonormal:
L(t)=Lo+uvt, v=const. 2 (P OG0 (X,0) =(y(x) | D(X)) = 8 (11)

Of course, fow <0, the problem is meaningful only for time so using this set of solutions we can find a solution satisfying
duration O<t<L,/|v|. Equation(1) cannot be solved by any initial condition. Furthermore, if an initial stat&(x,0)
separating the time and spatial coordinates. However, for this expressible in the bas{al'} as

scaling form ofV(x,t) in Eq. (1) and the linear form oL (t),

separation of variables can be achieved through a series of _

trapnsformatlons introduced 12,11 (see alsd9, %0]) One Tx0= ; SHx0), - e=(Wx 0¥ (x.0),

first transforms the coordinate frame into a rescaled frame (12

with a rescaled coordinate defined by then at a later time the state is

— X
X(O=175- ) V(X)) = W (xt). (13)
(t) 7
In this frame the Schidinger equation becomes We have now succeeded in transforming the original

time-dependent Schdinger equation into a time-
independent one. The problem of calculating the decay prob-
ability of a particle confined iV(x,t) at timet is reduced to

(4)  the corresponding problem with a static potentia(x).
Hence techniques used in the time-independent potential for

Equation(4) can be further simplified by the transformation calculating decay rate can be borrowed.
However, there are some subtleties. Naively, one is

i% &\I'(_t) -7 —+ih poad FV(X) | W(x,1).
In— X, )= | —X—_ X X
Jt  2mL2 ox2 IX

_ 1 . - tempted to employ the best-known method, namely, the com-
W (x,t)= ——=elM2ILoXp(x 1), (5)  plex eigenvalue method, proposed by Gamow in his studies

VL(D) of a decay[13]. In this approach an “outgoing wave bound-

] ) ] ) ary condition” is imposed on the solutions of the Schro

and the introduction of a new time variabte dinger equation for the particle trapped in the well. That
means incoming plane wave solutions outside the potential

[t ds ot well are discarded right from the beginning. This procedure

JOLZ(S) T LoL(t)” (6) naturally leads to an eigenvalue problem with complex en-

ergy eigenvalues. One then relates the imaginary parts of the
energy to the decay rate. While the complex eigenvalue
method is straightforward and physically reasonable, it suf-
fers from some conceptual difficultigd4]. For example,

After substituting Eqs(5) and (6) into Eq. (4), one obtains
the equation

2 o how can energy eigenvalues be complex as we are dealing
iﬁid)(?r)z - = (I)(x 7')+V(X)CI>(X 7, () with a Hermitian Hamil_tonian? Also, the eigenfunct!ons are
2m g not normalizable, a difficulty directly related to the eigenval-

ues being complex. Furthermore, the particle trapped in the
which resembles the Schtimger equation with a stationary well cannot be in an eigenstate of the system in the first
potential. Equatior(7) can be solved by separation of vari- place, since such states are not completely confinée- at
ables: Apart from the difficulties mentioned above, the complex

eigenvalue method cannot be employed in the present case

®(x,7)= @(;)ef(im)é, (8) for _oth_er reasons. First, the problem we are interested in i_s an

intrinsically time-dependent one, with a nonconservative
Hamiltonian. Hence energy eigenvalues and eigenstates lose

their meanings altogethdiE in Eq. (9) is not an energy
eigenvalué¢ Second, the “outgoing wave boundary condi-
D (X)=E, @ (X). (99  tion,” essential to Gamow’s method, cannot be imposed in
our case. The reason is as follows. As discussed before, in
order to fix a moving potential we need to transform our
Once Eq.(9) is solved exactly in the rescaled frame, the problem to a corresponding static one in a rescaled frame.
exact wave function in the original frame is then given by But in this frame the meaning of an incoming or outgoing

whereCID(;) satisfies the eigenvalue equation

h? d?
— % d—+V(X)
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plane wave is rather obscure. In fact, it can be che&ked th%herea(t)=§L(t)>0 gives the location of thé-function

an outgoing plane wave in the origingit (rescaledx-r) potential. This class of potentials was defined in the last sec-

frame contains both “incoming” and “outgoing” compo- tion and corresponds in the rescaled frame/{a)=c for

nents in the rescalextr (original x-t) frame. x<0 andV(x)=V,8(x—a). One hasb(x)=0 in the region
The instanton method is another technique commonlg(—<o_ Forx=0 Eq.(9) is

used in the calculation of the decay rate of a metastable state T

[15]. This semiclassical method amounts essentially to find- B2 R2d(x) —

ing the imaginary part of the ground state energy of the sys- o = tVod(X—a)P(X)=ED(x). (19

tem. Since it is based on the idea of eigenvalues of the 2m - dx

Hamiltonian, it is therefore not suitable here. .
One more method that can be useful in tackling the prob!tS general solutions are

lem is the complex scaling meth¢il6]. The general idea of ko). 0<x<a.

this method is to consider a complex rotated Hamiltonian (x)= sin( X)'_ X _a'_

obtained from the usual Hamiltonian by making the position Ccodkx+60), a<x,

and momentum complex. This resolves the paradox that the

eigenenergies are complex, since now the complex rotatégherek=2mE/%, C is a real constant, anélis a phase
Hamiltonian is no longer Hermitian. A pleasant merit of the angle. Note that the wave function is real, and includes an

method is that th_e eigenfunctions assoc@ed with these Co"ﬂﬁcoming wave component in the regiEtPE This ensures
plex resonant eigenvalues are square integrable, and thus —

various approximation methods developed for bound state1@tk, and hencé, is always real. The wave function and its
can be applied to the scattering processes. However, th[gst_derlvatlve satisfy the following boundary conditions at

method, while elegant in many respects, is not useful in ouk=a:
present case, since it also requires the idea of eigenenergy. _ —

Since these common methods fail to suit our purpose, we d(x=a")=d(x=a") 17
have to look for alternatives. Fortunately, a different method
exists, namely, the scattering state mettod virtual level ~ @nd
method, as Fermi called)if17]. This method is much less —
well known and seldom used in the literatdife]. However, d®(x)
it is conceptually the most satisfying of all the methods. In dx
this method, one first constructs the initial confining state,
which is not viewed as an eigenstate, but rather as a linearom these relations the coefficigbican be determined as a
superposition of scattering states with real energies, and fok,ction ofk:
lows its evolution in time. In the course of this evolution, no

(16)

2m—
=ﬁvofb(x=a). (18

energy will become complex. Unlike the Gamow states, the . L _2mv, 2
scattering states contain both incoming and outgoing compo-  C?(k)=sir?(ka) + | cogka)+ 2_sin( ka)| . (19
nents in the region into which the particle escapes. It is this hka

feature of the method that makes it most suitable in the _

present problem. The method is easily adapted to(Bgpy ~ Physically, the value o€?(k) can be interpreted as the ratio

taking the scattering states as the sta&swith real values of the probability of finding particles in the regioti>a to

of E. the probability of finding them within the confined region
In the next two sections, the scattering state method i®<x<a for a particulark. The general shape @?(k) is

applied to two simple examples of the class of scaling poshown in Fig. 1, from which we can assert that the particle

tentials. As the scattering state method is not so well knowmtan be trapped within the confined region only wheh

in the literature, we think it appropriate to give some detailsassumes one of its minima, which occur only in the neigh-

in order to make this work self-contained. The proceduregorhood of some specific values kf In these regions the
given in[14] are slightly adapted to our needs. values ofC2(k) are extremely small. From Eq19) it is
obvious that these minima will be centered aroukg
ll. MOVING  6-FUNCTION POTENTIAL =nm/a (n=1,2,...) [i.e, sink,a)=0] as long asVj is
large enough so thatr@V, /%2> nr.

For largeV, approximate analytic expressions can be ob-
tained and compared with the corresponding results in the
time-independent cag&9]. According to the scattering state
method, one constructs confining states in the potential well
by taking a suitable superposition of the scattering states
X — with k in the neighborhood ok, . To this end, let us first

——=—al, x>0, ) = =
L(t) expandC? aboutE,=#°k5/2m (we revert to the variabl&
(14 below):

The first example is a uniformly moving-function po-
tential

o0 X<=0,

V,
LI

L2(t)

V(x,t)=

Vo B
m §(X— a(t))—

022111-3
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FIG. 1. The shape of I68%(ka) in Eq.(19) as a function oka for
2mV,/%?=10 (dotted liné and 200(solid line). The minima of
In C¥(ka) will be centered arounk,a=n= (n=1,2,...) for large
values of IV, /42

2 2

CE)~| 2| |1+ Vo (E—E,+0)?
72k, 2k, "
2mVp) 2| !
+1+ — (20
h%k,
=G?(A+8)%+F?, (21)
WhereA=E—En and the constants
2V, AR
o= —|1+ — , (22
a 72k,
ma 2mVy)|
2=| ——= _ﬁ , (23
7%k, 7%k,
2mv,\ 2|t
F2=|14+| ——— (24)
72k,

The scattering states with in the neighborhood oﬁn can
then be written as

2 1 o -
_ \[ﬁmsm(kx), 0<x<a,
Pa(X)= S
'V;aﬂﬁaﬂx a<x.
(25

This system is quantized in the interJ&@,R], whereR>a,

which at the end of the calculation will be set to infinity.

PHYSICAL REVIEW A65 022111

_ — [ éax), x<a,
D(x,7=0)= 2, Cathr(X)= o
A 0, x>a.

(26)

The coefficientc, can be calculated from orthogonality of
the states/, (x),

R .
CA:L dxip (X)P(x,0)

2 1 a— —  —
_ \/%\/Wfodxsﬂkx)(ﬁn(x). (27

Choosing

_ \F _ (nﬂ
(ﬁl"l(x)m :Sln — | n:112|3 ey (28)
a a

we get

1 2

a - - nmwx
~ d in(k in| —
Ca \/R_E GZ(A+5)2+FZJO X sin( x)sm( a}

(29

(30

\/? 1
RG?(A+6)2+F?

The initial state is then given by

_ 1 )
3 T

From Eqgs.(10), (12), and(13), the solution at a later time
is

d(x,7=0)~

(31

| o

X)e—(i/ﬁ)(EnJrA)f_

_ a. 1
CD(X:T)% \[ﬁ; \/W‘//A(

(32

As the system is quantized in the interJ&,R], we have

kR=n'm/2, wheren’ is a very large integern( >n). After
replacing the sum by an integral

With these scattering states, an initial state is constructed that 1

is completely confined within the well by taking a linear

combination of the scattering states with differanbut the
same value of,,

R 2m

— | dA—~\ /=, 33

;? J‘ wh N E, 33

Eqg. (32 becomes
o R /2m\FF N
(X, 7)~— E_n R/
% ;e—(i/h)(En+A)7_

caiorie Y

(34

022111-4
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Substitutingz/;A(?) from Eq.(25), we obtain the approximate the well. This result is reasonable, since as the barrier moves

wave function of the state confined in the well(8<a) as away fromx=0 it leaves more room for the particle to stay
within the well.

_ For Vo much larger than the characteristic valuekgfof
— 2 —— _nE the escaping particlegy(t) becomes
@(X,T)~E, /:Sin(knx)e—(lm)lznr ping p %(t)
n -
_ (h%k,)% | t r8(nm)3| t
” o (i/h)Ar ya(t)— — - —— '
x f Ao omfav2 | Lol () | 2matvz2 | Lok (b)
—»  GXA+6)%+F? (41
2 [masin(k,x) P — wherek,=n/a has been substituted. It is proper to com-
7 E_n [FG| e ne : pare Eq.(41) with the corresponding result in the stationary

case (=0). In the limit v—0, we havelL(t)—Lgy, a
(39 —alLy, E,—E, L2 andk,—k,L,, whereE, is the corre-
For metastable systems an important quantity is the nonsponding energy in the static frame, akig=V2mEy/7. In

decay probabilityP(t) that the particle is still in the well at this limit (v =0) is directly proportional to the time We
time t if it is initially confined in the well att=0 [P(t  can therefore define a decay rateBy= y,(v =0)/t, which

=0)=1]. In our caseP(t) is defined as in this case is
a(t) , FY— _ A% #8(nm)? 2
“© fo ¥ (0 dx Jo [0x7)[%dx 6 " omfa(Vg/Lg)?  2mPat(Vg/Lg)?'
P(t)= =— . 36
a0 a = Equation(42) is consistent with the result obtained by the
W (x,0)|2d f ®(x,0)|2d quation{= . ol
fo [P0l dx o| (x.0)fdx complex eigenvalue method {19] for_a static 5-function
otential located at=a with strengthV,/L,.
From Eq.(35) we find P gfVo/to
IV. MOVING SQUARE BARRIER POTENTIAL
P(t)~exd = ya(D)], (37) For the next example, consider a moving barrier potential
where
ma Xgo!
t) 2’ Pt (38) V(x,t) Vo, a(t)<x<b(t) (43)
—9|_ X,t)= ) X )
=25 L 20
0, x>b(t),
12k, 2mVp| 2]t — o
:2( 1 2_0 ) (399  with a(t)=aL(t) andb(t)=DbL(t)(a andb are two positive
ma ik, LoL.(t) constants When the problem is transformed to the rescaled

frame, it is equivalent to solving Ed9) with a stationar
We have used Eqg6), (23), and (24) to obtain the result g g Ed9) y

otential
(39). We note that for an expanding potential*0) P
F| 1 = x=0,
Yn(t)ﬂzg‘ Lo (40 V(x)=1{ Vo, a<x<b, (44)

ast—oo. Unlike the stationary case €0), there is a small
but finite probability that the particle does not tunnel out of The general solutions are

sin(kx), 0<x<a, Kk=V2mE/A?2
d(x)={ A*+Be XX a<x<b, Kk =v2m(Ve—E)/4? (45)

Ccogkx+6), a<x.
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FIG. 2. The shapes of 184(ka) (solid line) in Eq. (48) and
5ek aA(ka)/2 (dotted ling in Eq. (46) as functions ofka for b
=2a and 2nV,a%#2=40 showing that the minima of 164(ka)
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must be real. Hence the possible vaIueE,ptan lie only in

the interval (0}/2mvolh2). For instance, there are only two
roots for the parameters assumed in Fig. 2.

_ We now expand the coefficients(k) and B(k) about
E, (=#%Kk2/2m):

A(E)~| —= aA E-E,) (51)
( ~ dE 7:7( n/s
B(E)~B(E,). (52)

Inserting Eqs(51) and(52) in_to Eq.(48), after some tedious
calculations we find tha?(E) behaves in the neighborhood

— of E, as
occur only in a finite number of neighborhoods &f (n n

=1,2,...)such thatA(?ng)=0. CZ(E)zGZ(A-f— 5)2+F2, (53)

HereA, B, andC are real constants, artlis a phase angle. \ynereA=E— E as in the previous example, and the con-
As before, one can set the solutions real in the whole regiogiants in the present case are

to ensure thak is always real. The solutions and their de-

rivatives need to be continuous at the boundaries andb. 1/ ma)® k’2 N ?n R 2
These boundary conditions determine the values of the coef- 4\ 52 1+ 3 cogkna) i sin(kya)
ficients A, B, andC as functions ok: _ E _ " "
B % ezkr’](b—a)’ (54)
— 1 ok
A(k)=§e 4 sin(ka) +=rcogka) |, (46) K2\t .k I
k F2=| 1+ =3 | |sin(ksa)—= cogkya)| e a2,
k2 Ky
_ 1 K ©9
_ k a -
B(k)= 2 sm(ka) o cos(ka) (47) and
T2 02
B wr —, 5:(ﬁ ko[ ke—k'2
C2(k)= 1+ﬁ)e2k bAZ4 2 1_ﬁ AB ma |\ k2+k’2
[ P | Knsintky a)_k_coik 2) e 2qb-a) (5
+ 1+7 e 2kbp?, (48) ki coskya) —kn sin(kya)

. . From the relatior{53), the scattering states relevant to this
The general shapes @f(k) andC?(k) are shown in Fig. 2. metastable system can be constructed by following exactly
Note that metastable states of the system will occur only in ¢he same procedures as in the previous section. The nonde-

finite number of neighborhoods &f (n=1,2, .. .)such that ~cay probabilityP(t) of finding the particle within the con-
A(k,)=0. The rootsk,, satisfy fined region (6<x<a) at timet is again of the formP(t)
~exp(— (1), wherey,(t) is now given by
sink.a) +E cogk.a)=0 (49) F
" Ef] n ' Yn(t)= 2 GlL L(t)
2 83 k. \P -t

Equation(48) implies thatC (k) is minimal atk,. For a —___n _2_”_ “2kgbma - (57)
given Vo, the number of rootk,, is restricted by the condi- ma | ki+k'; LoL(1)

tion thatk in Eq. (49), where we have used Eq&4), (55), and (49). When the

barrier height is much larger than the characteristic “energy”
of the escaping particlesvg>E,), which is equivalent to
the relationk;>k,, 7y,(t) becomes

2mv,

-
pz

n:

kn

(50

022111-6
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8h2 K3 — — t over directly. Following[14] the important step is to deter-
yn(t)_>—__—“2e*2kn(b*a)—_ (580  mine the discrete values,, (or equivalentlyk,) that mini-
ma k'; LoL.(t) mize the amplitudeC of the wave function in the region

, , . , outside the well. Consider a confining state constructed with
As in the previous example, for positive>0 (the expanding g centered around a speciff, . Minimization of C then

casg one finds a small but finite probabi_lity that th_e particle ;i es the two function& (E,) andG(E,) (other parameters
does not tunnel out of the well at large time. In this case no n F and G are not indicated The nondecay probability in

only does the barrier leave more room for the particle to stay) . ; ; .
LD ; . . s then given by exp{I't), where the decay rafe, is
within the well as it moves away from=0, but its width (x) g y exptlol) y "

also becomes thicker, thus making tunneling difficult. F(En)

In order to transform the resulb8) to the stationary one, I'y(Ep) =2 .
. N . G(En)

we simply apply the same substitutions as given at the end of

the last section, with the addition dfi—b/L, and k, ~ Suppose all these computations have been done in ordinary
K'Lo, where K'=+/2m[(Vo/L2)—E,]/4. Once again coordinates. Then one can immediately write down the ex-

oo, W 1= V2ml(Vo/L5) ~ E,] gain ression of the nondecay probabilig(t) ~ exd — ()] for

the scaling potentia¥/(x,t) as

(60)

v,(v=0) is directly proportional to the timg in which case
a decay rate can be defindd;= v,(v=0)/t. For the present

mample (t)=2 F(Ey =T (E,) ! (61)
8h2 kK, I T G(Ey | Lok () T LL(D)
Th(v=0)=———5e 272, (59
ma k’g Here the functional form of the decay rdtg is taken over

directly, but with all the parameters replaced by the corre-

2:‘;ponding rescaled ones. Equati@i) gives the connection

between the nondecay probability in V(x,t)

=V(x/L(t))/L%(t) and the decay rate iv(x)=V(x). Fi-

nally, in the nonmoving limitv =0, V(x,t) becomesV(x)

=V(x/Ly)/L3. Settingu =0 in Eq.(61) then gives the decay
We have calculated the nondecay probabilities of tworate in this potentiaIIn(En)/Lé, as seen in the previous

nonstationary metastable systems explicitly. The potentiatases.

barriers in the rescaled frame considered in these systems

assumed the form of & function and a square barrier. These VI. CONCLUSION

calculations can be immediately generalized to barriers with The problem of quantum metastability in a class of mov-

more general shapes. Without giving further examples, we P q y

only discuss briefly the close connection between the nond ng potenngls .|ntro_duced by Bgrry a_nd Klein IS con5|dereq.
- S ; he potential in this class has its height and width scaled in
cay probability P(t) of a particle in a metastable scaling

} ) a specific way so that it can be transformed into a stationary
potential V(x,t) =V(x/L(t))/L*(t) and the decay rat€ of  sne |n deriving the nondecay probability of the system, we

the same particle if it were instead confined in a static POemployed a method that is less well known but conceptually

tential well V(x) =V(x). more satisfactory, namely, the method of scattering states.
From the previous examples, we know that the calculatiomNondecay probabilities in a moving-function potential and

of P(t) is reduced to the corresponding computation in aa moving square barrier potential were derived, and a con-

static potentiaV/(x) in the rescaled frame. Now this last task nection between the nondecay probability in a general scal-

would be exactly the same as that carried out in the potentiahg potential and the decay rate in a related static potential

V(x)=V(x) in ordinary coordinates. The only difference, asWas established.
seen from the previous two examples, is that all ordinary
parameters, such & k, k', t, a,etc., are replaced

by the  corresponding  rescaled  ones, i.e. This work was supported in part by the National Science
E, k, k', 7, a, etc. Application of the scattering Council of Republic of China through Grant No. NSC 90-
state method to the generaldecay type of potential (x) in 2112-M-032-005. We thank Dr. K. Asokan for a careful read-
normal coordinates was given {i14], and can be carried ing of the manuscript.

which is the same as the result obtained by the comple
eigenvalue_method for a square barrier with width—(@)
and heightV,/L3 [20].

V. GENERAL SCALING POTENTIALS
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