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Planar Dirac electron in Coulomb and magnetic fields
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The Dirac equation for an electron in two spatial dimensions in the Coulomb and homogeneous magnetic
fields is discussed. This is connected to the problem of the two-dimensional hydrogenlike atom in the presence
of an external magnetic field. For weak magnetic fields, the approximate energy values are obtained by a
semiclassical method. In the case with strong magnetic fields, we present the exact recursion relations that
determine the coefficients of the series expansion of wave functions, the possible energies, and the magnetic
fields. It is found that analytic solutions are possible for a denumerably infinite set of magnetic field strengths.
This system thus furnishes an example of the so-called quasiexactly solvable models. A distinctive feature in
the Dirac case is that, depending on the strength of the Coulomb field, not all total angular momentum quantum
numbers allow exact solutions with wave functions in reasonable polynomial forms. Solutions in the nonrel-
ativistic limit with both attractive and repulsive Coulomb fields are briefly discussed by means of the method
of factorization.

PACS number~s!: 03.65.Pm, 31.30.Jv, 03.65.Fd
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I. INTRODUCTION

Planar nonrelativistic electron systems in a uniform m
netic field are fundamental quantum systems which h
provided insights into many novel phenomena, such as
quantum Hall effect and the theory of anyons, particles ob
ing fractional statistics@1,2#. Planar electron systems wit
energy spectrum described by the Dirac Hamiltonian h
also been studied as field-theoretical models for the quan
Hall effect and anyon theory@3#. Related to these field
theoretical models are the recent interesting studies regar
the instability of the naive vacuum and spontaneous mag
tization in (211)-dimensional quantum electrodynamic
which is induced by a bare Chern-Simons term@4#. In view
of these developments, it is essential to have a better un
standing of the properties of planar Dirac particles in
presence of external electromagnetic fields.

In Ref. @5# we studied exact solutions of planar Dira
equation in the presence of a strong Coulomb field, and
stability of the Dirac vacuum in a regulated Coulomb fie
Quite recently, interesting studies on the quantum spect
of a two-dimensional hydrogen atom in a homogenous m
netic field appeared@6,7#. As is well known, hydrogen atom
in a homogeneous magnetic field has attracted great inte
in recent years because of its classical chaotic behavior
its rich quantum structures. The main result found in Re
@6,7# is that, unlike the three-dimensional case, the tw
dimensional Schro¨dinger equation@6# and the Klein-Gordon
equation@7# can be solved analytically for a denumerab
infinite set of magnetic field strengths. The solutions can
be expressed in terms of special functions~see also Ref.@8#!.

In this paper we discuss the motion of Dirac electron
two spatial dimensions in the Coulomb and homogene
magnetic fields, and try to obtain exact solutions of a p
ticular form. As in the case of the two-dimensional Sch¨-
dinger and the Klein-Gordon equation, by imposing a su
cient condition that guarantees normalizability of the wa
functions @see the paragraph after Eq.~35!#, we can obtain
1050-2947/2000/61~3!/032104~7!/$15.00 61 0321
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the exact energy levels for a denumerably infinite set of m
netic fields. In the Dirac case, however, not all values of
total angular momentumj allow exact solutions with the
form of wave functions we assumed here. Solutions for
nonrelativistic limit of the Dirac equation in 211 dimen-
sions are briefly discussed by means of the method of
torization.

We emphasize that in this paper, by assuming an an
which guarantees normalizability of the wave function, on
parts of the energy spectrum of the system are solved
actly. In particular, we do not obtain energy levels with ma
nitude below the mass value, which include the most int
esting ground state solution. This is the same as in
Schrödinger and the Klein-Gordon case. All these three ca
can therefore be considered as examples of the newly
covered quasiexactly solvable models@9#. In 311 dimen-
sions, no analytic solutions, even for parts of the spectru
are possible so far.

II. MOTION OF DIRAC ELECTRON IN THE COULOMB
AND MAGNETIC FIELDS

To describe an electron by the Dirac equation in 211
dimensions we need only three anticommutinggm matrices.
Hence, the Dirac algebra

$gm,gn%52gmn, gmn5diag~1,21,21! ~1!

may be represented in terms of the Pauli matrices asg0

5s3 , gk5 isk , or equivalently, the matrices (a1 ,a2)
5g0(g1,g2)5(2s2 ,s1) and b5g0 @3#. Then the Dirac
equation for an electron minimally coupled to an extern
electromagnetic field has the form~we setc5\51)

~ i ] t2HD!C~ t,r !50, ~2!

where

HD5aP1bm2eA0[s1P22s2P11s3m2eA0 ~3!
©2000 The American Physical Society04-1
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is the Dirac Hamiltonian,Pk52 i ]k1eAk is the operator of
generalized momentum of the electron,Am the vector poten-
tial of the external electromagnetic field,m the rest mass o
the electron, and2e (e.0) is its electric charge. The Dira
wave function

C~ t,r !5S c1~ t,r !

c2~ t,r !
D ~4!

is a two-component function~i.e., a two spinor!. Here
c1(t,r ) and c2(t,r ) are the ‘‘large’’ and ‘‘small’’ compo-
nents of the wave functions.

We shall solve for both positive and negative energy
lutions of the Dirac equations~2! and~3! in an external Cou-
lomb field and a constant homogeneous magnetic fieldB
.0 along thez direction:

A0~r !5Ze/r ~e.0!, Ax52By/2, Ay5Bx/2. ~5!

We assume the wave functions to have the form

C~ t,x!5
1

A2p
exp~2 iEt !c l~r ,w!, ~6!

whereE is the energy of the electron, and

c l~r ,w!5S f ~r !eil w

g~r !ei ( l 11)wD ~7!

with integral numberl. The functionc l(r ,w) is an eigen-
function of the conserved total angular momentumJz5Lz
1Sz52 i ]/]w1s3/2 with eigenvaluej 5 l 11/2. One can of
course consider wave functions which are eigenfunction
Jz with eigenvaluesl 21/2. These functions are of the form
of Eq. ~6! with c l given by

c l~r ,w!5S f ~r !ei ( l 21)w

g~r !eil w D . ~8!

However ansatz~8! is equivalent to ansatz~7! if one makes
the changel→ l 21. It should be remembered thatl is not a
good quantum number. This is evident from the fact that
two components ofc l depend on the integerl in an asym-
metric way. Only the eigenvaluesj of the conserved tota
angular momentumJz are physically meaningful. For defi
niteness, in the rest of this paper, all statements and con
sions, whenever angular momentum numberl is mentioned,
are made with reference to ansatz~6! and ~7!.

Substituting Eqs.~6! and ~7! in Eq. ~2!, and taking into
account the equations

Px6 iPy52 ie6 iwF ]

]r
6S i

r

]

]w
2

eBr

2 D G , ~9!

we obtain

d f

dr
2S l

r
1

eBr

2 D f 1S E1m1
Za

r Dg50, ~10!
03210
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dg

dr
1S l 11

r
1

eBr

2 Dg2S E2m1
Za

r D f 50,

wherea[e251/137 is the fine structure constant. If we le

F~r !5Ar f ~r !, G~r !5Arg~r !, ~11!

Eq. ~10! becomes

dF

dr
2S l 1 1

2

r
1

eBr

2
D F1S E1m1

Za

r DG50, ~12!

dG

dr
1S l 1 1

2

r
1

eBr

2
D G2S E2m1

Za

r DF50. ~13!

By eliminating G in Eq. ~12! and F in Eq. ~13!, one can
obtain the decoupled second order differential equations
F and G. At large distances, these equations have
asymptotic forms~neglectingr 22 terms!:

d2F

dr2
1FE22m22eB~ l 11!1

2EZa

r
2

1

4
~eBr!2GF50,

~14!

d2G

dr2
1FE22m22eBl1

2EZa

r
2

1

4
~eBr!2GG50.

~15!

The last term in these two equations, which is proportiona
r 2, may be viewed as the ‘‘effective confining potential.’’

The exact solutions and the energy eigenvalues with
,E,m corresponding to stationary states of the Dirac eq
tion ~10! with B50 were found in Ref.@5#. The electron
energy spectrum in the Coulomb field has the form

E5mF11
~Za!2

@nr1A~ l 11/2!22~Za!2#2G21/2

, ~16!

where the values of the quantum numbernr are nr
50,1,2, . . . , if l>0, andnr51,2,3, . . . , if l ,0. It is seen
that

E05mA12~2Za!2 ~17!

for l 5nr50, andE0 becomes zero atZa51/2, whereas in
three spatial dimensionsE0 equals zero atZa51. Thus, in
two spatial dimensions the expression for the elect
ground state energy in the Coulomb field of a point cha
Ze no longer has a physical meaning atZa51/2. It is worth
noting that the corresponding solution of the Dirac equat
oscillates near the pointr→0.

For weak magnetic field the wave functions and ene
levels with E,m can be found from Eqs.~12! and ~13! in
the semiclassical approximation. We look for solutions
this system in the standard form

F~r !5A~r !exp@ iS~r !#, G~r !5B~r !exp@ iS~r !#. ~18!
4-2
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HereA(r ) andB(r ) are slowly varying functions. Substitut
ing Eq.~18! into Eqs.~12! and~13!, we arrive at an ordinary
differential equation forS(r ) in the form

S dS

dr D
2

[Q5E22m22eB~ l 11/2!1
2EZa

r

1
~Za!22~ l 11/2!2

r 2
2

~eBr!2

4
. ~19!

The energy levels withE,m are defined by the formula

E
r min

r maxAQdr5pS 2A~ l 11/2!22~Za!2

1
EZa

Aum21eB~ l 11/2!2E2u
D , ~20!

where r max and r min (r max.rmin) are roots of equationQ
50. In obtaining Eq.~20!, the term (eBr)2 in Q has been
dropped. If we require the energy spectrum to reduce to
~16! whenB50, we must equate the right-hand side of E
~20! to pnr . As a result we obtain~for lÞ0!

E5Fm1
eB

2m S l 1
1

2D GF11
~Za!2

@nr1A~ l 11/2!22~Za!2#2G21/2

.

~21!

In the nonrelativistic approximation the energy spectr
takes the form

Enon52
~Za!2m

2~nr1u l 11/2u!2
1

eB

2m S l 1
1

2D . ~22!

Semiclassical motion of electron in the magnetic and C
lomb fields can be characterized by means of the so-ca
‘‘magnetic length’’ l B5A1/eB and the Bohr radiusaB
51/Zam of a hydrogenlike atom of chargeZe. When the
magnetic field is weak so thatl B@aB , or equivalently,B
!Bcr[(Za)2m2/e, the energy spectrum is simply the spe
trum of a hydrogenlike atom perturbed by a weak magn
field. We obtain the Zeeman splitting of atomic spectru
depending linearly upon the magnetic field strength and
‘‘magnetic quantum number’’l 11/2.

In strong magnetic field the asymptotic solutions ofF(r )
andG(r ) have the forms exp(2ar2/2) with a5eB/2 at large
r, andr g with

g5A~ l 11/2!22~Za!2 ~23!

for small r. One must haveZa,1/2, otherwise the wave
function will oscillate asr→0 whenl 50 andl 521. In this
paper we shall look for solutions ofF(r ) and G(r ) which
can be expressed as a product of the asymptotic solut
~for small and larger ) and a series in the form

F~r !5r gexp~2ar2/2! (
n50

anr n, ~24!
03210
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G~r !5r gexp~2ar2/2! (
n50

bnr n, ~25!

with a0Þ0, b0Þ0. Substituting Eqs.~24! and~25! into Eqs.
~12! and ~13!, we obtain

Fg2S l 1
1

2D Ga01Zab050, ~26!

F ~g11!2S l 1
1

2D Ga11Zab11~E1m!b050, ~27!

F ~n1g!2S l 1
1

2D Gan1Zabn1~E1m!bn2122aan22

50 ~n>2! ~28!

from Eq. ~12!, and

S g1 l 1
1

2Db02Zaa050, ~29!

S n1g1 l 1
1

2Dbn2Zaan2~E2m!an2150 ~n>1!

~30!

from Eq. ~13!.
Equations~26! and~29! allow us to expressb0 in terms of

a0 in two forms:

b05
Za

g1 l 1 1
2

a0 ~31!

52
g2 l 2 1

2

Za
a0 , ~32!

which are equivalent in view of the fact thatg
5A( l 11/2)22(Za)2 . Solving Eqs.~27! and ~30! with n
51 gives

a152
~g1 l 1 1

2 !~E2m!1~g1 l 1 3
2 !~E1m!

~2g11!~g1 l 1 1
2 !

Zaa0 ,

~33!

b15
2~g1 l !E2m

~2g11!
a0 . ~34!

From Eq.~30! one sees thatbn (n>1) are obtainable from
an and an21. To determine the recursion relations for th
an , we simply eliminatebn andbn21 in Eq. ~28! by means
of Eq. ~30!. This leads to~for n>2)
4-3
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CHOON-LIN HO AND V. R. KHALILOV PHYSICAL REVIEW A 61 032104
S n1g1 l 2
1

2D ~n212ng!an1ZaF S n1g1 l 2
1

2D ~E2m!

1S n1g1 l 1
1

2D ~E1m!Gan211S n1g1 l 1
1

2D
3FE22m222aS n1g1 l 2

1

2D Gan2250. ~35!

Following Ref. @6#, we impose the sufficient conditio
that the series parts ofF(r ) andG(r ) should terminate ap
propriately in order to guarantee normalizability of th
eigenfunctions. It follows from Eq.~35! that the solution of
F(r ) becomes a polynomial of degree (n21) if the series
given by Eq.~35! terminates at a certainn whenan5an11
50, and am50 (m>n12) follow from Eq. ~35!. Then
from Eq. ~30! we havebn115bn125•••50. Thus in gen-
eral the polynomial part of the functionG(r ) is of one de-
gree higher than that ofF. Now suppose we have calculate
an in terms ofa0 (a0Þ0) from Eqs.~33! and ~35! in the
form

an5K~ l ,n,E,a,Z!a0 . ~36!

Then two conditions that ensurean50 andan1150 are

K~ l ,n,E,a,Z!50 ~37!

and

E22m252aS n1g1 l 1
1

2D , n51,2, . . . . ~38!

Since the right hand side of Eq.~38! is always non-negative
~for l>0, this is obvious; forl<21, one has21/2<g1 l
1 1

2 <0, recalling thatZa,1/2), we must haveuEu>m for
the energy. We note here that, similar to the Schro¨dinger and
the Klein-Gordon case, the adopted ansatz guarantees
normalizability of the wavefunction, but does not provid
energy levels with magnitudes belowuEu5m.

For any integern, Eqs. ~37! and ~38! give us a certain
number of pairs (E,a) of energyE and the corresponding
magnetic fieldB ~or a) which would guarantee normalizabi
ity of the wave function. Thus only parts of the whole spe
trum of the system are exactly solved. The system can th
fore be considered as an example of the quasiexa
solvable models defined in Ref.@9#. In principle the possible
values ofE anda can be obtained by first expressing thea
~or E) in Eq. ~37! in terms ofE ~a! according to Eq.~38!.
This gives an algebraic equation inE ~a! which can be
solved for realE (a). The corresponding values ofa ~E! are
then obtained from Eq.~38!. In practice the task could b
tedious. We shall consider only the simplest cases be
namely, those withn51, 2 and 3. In these cases, the so
tion of the pair (E,a) is unique for fixedZ and l. In general,
for n.3, there could exist several pairs of values (E,a) ~see
Refs. @6,7#!. Unlike the nonrelativistic case, here negati
energy solutions are possible. As in the case of
03210
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(311)-dimensional Dirac equation@10#, the unfilled nega-
tive energy solutions are interpreted as positrons with p
tive energies.

We mention once again that all the exact solutions p
sented below, including the restrictions for the values ofl ~or
more appropriately, the values of the conserved total qu
tum numberj 5 l 11/2), are obtained according to the ansa
~7!, and Eqs.~24! and ~25! with polynomial parts. Exact
solutions for the other parts of the energy spectrum, if at
possible, would require ansatz of different forms which a
not known yet.

~1! n51. In this case we havea0Þ0 andan50 (n>1).
From Eq.~33! one obtains the energies

E52
m

2~g1 l 11!
. ~39!

Equation~38! with n51 then gives the corresponding valu
of magnetic fieldsa. These results show that, with the ansa
assumed here, solution with positive energy cannot be
tained withn51. Furthermore, the previously mentioned r
quirement thatE<2m can only be met withl ,0.

~2! n52. We now consider the next case, in whic
a0 ,a1Þ0, andan50 (n>2). This also impliesbnÞ0 (n
50,1,2) andbn50 (n>3). From Eqs.~38!, ~35!, and~33!,
we must solve the following set of coupled equations for
possible values ofE anda:

E22m252aS 21g1 l 1
1

2D , ~40!

Za@~G11!~E2m!1~G12!~E1m!#a112a~G12!a050,
~41!

~2g11!Ga11Za@G~E2m!1~G11!~E1m!#a050.
~42!

Here G[g1 l 11/2. From these equations one can che
that E satisfies the quadratic equation

F ~2G11!~2G13!2
2g11

~Za!2
GGE214m~G11!E1m2

3F11
2g11

~Za!2
GG50. ~43!

This can be solved by the standard formula. One must
reminded of the constraintuEu>m. For l>0, we can obtain
analytic solutions with both positive and negative energi
But when l ,0, analytic solutions can only be obtained f
negative energyE<2m. Furthermore, it can be checked th
uEu is a monotonic decreasing~increasing! function of
u l u(Za) at fixedZa ( l ).

For Za!1/2, i.e. for light hydrogenlike atoms, we ca
write down approximate expression for energy near the m
value, i.e.,uEu.m. We can obtain from Eq.~43! the approxi-
mate values ofE:
4-4
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E15mF11
2~Za!2

~2g11!G
~G11!~G12!G , l>0, ~44!

for positive energies, and

E252mF11
2~Za!2

~2g11!
~G11!G , l>0 and l ,0,

~45!

for negative energies@in fact, it can be checked from Eq
~43! that for l ,0, E is always close to2m for any Za
,1/2#.

WhenZa is close toZa51/2, we haveuEu@m for l>0.
In this case the energyE can be approximated by

E56mF12~Za!2
~2G11!~2G13!

~2g11!G G21/2

. ~46!

A consequence following from this formula is that, for ea
l>0, there is a critical value ofZ beyond which polynomial
solution withn52 is impossible. The critical value ofZ for
eachl is found by setting the expression in the square roo
Eq. ~46! to zero. Forl 50 andl 51, the critical values ofZ
areZa51/2.936 and 1/2.316, respectively.

In the nonrelativistic limit~see Sec. III!, it is the upper, or
the large, componentf (r ) of the Dirac wave function tha
reduces to the Schro¨dinger wave function. Hence, in order t
ld

a

03210
f

compare with the results considered in Ref.@6#, it would be
appropriate to study the nodal structures of the functionF(r )
for positive energy solutions in the limitE.m. It is easy to
see from Eq.~41! or ~42! that in this limit, a0 anda0 have
opposite signs. ThusF(r ) has only one node in this limit
which is the same as in the Schro¨dinger case.

~3! n53. For the case ofn53, exact solution of Eqs.~37!
and ~38! becomes much more tedious. Now the values oE
anda are solved by the following coupled equations:

E22m252a~G13!, ~47!

Za@~G12!~E2m!1~G13!~E1m!#a212a~G13!a150,
~48!

4~g11!~G11!a21Za@~G11!~E2m!

1~G12!~E1m!#a114a~G12!a050, ~49!

~2g11!Ga11Za@G~E2m!1~G11!~E1m!#a050.
~50!

In place of Eq.~43! we now have a cubic equation for th
energyE. We shall not attempt to solve it here. It turns o
that the equation satisfied byE can be reduced to quadrat
ones without linear term inE in the low magnitude
(uEu'm) and the high magnitude (uEu@m) limit, which cor-
respond to small and largeZ, respectively. The results are
E15mF12
2~Za!2~G11!~G12!~G13!

~2g11!G~G12!12~g11!~G11!2G21/2

~51!

and

E252mF12
2~Za!2~G11!~G12!~G13!

~2g11!~G12!212~g11!~G11!~G13!
G21/2

~52!

for uEu'm, and

E56mF12
2~Za!2~G11/2!~G13/2!~G15/2!~G13!

~2g11!G~G15/2!~G12!12~g11!~G11/2!~G11!~G13!G
21/2

~53!
y

for uEu@m. The corresponding values of the magnetic fie
are obtained by substituting Eqs.~51!, ~52!, or ~53! into Eq.
~47!. For l 521, Eq. ~53! is real only for 1/2.65,Za,1/2.

As in the n52 case, we shall also investigate the nod
structures of the functionF(r ) for positive energy solutions
in the limit E.m. The zeros of the polynomial part ofF(r )
is given by

r 05
1

2 F2S a1

a2
D6AS a1

a2
D 2

24S a0

a2
D G . ~54!

Note that physical solutions ofr 0, if exist, must be non-
negative. In the limitE.m, Eqs.~48! and~50! give approxi-
mately
l

a1

a2
52

EZa

a
, ~55!

a0

a2
52

~2g11!G

2EZa~G11!

a1

a2
. ~56!

We see from Eq.~55! that a1 /a2,0 in this limit.
For negativel ,0, which implies21/2<G,0, we also

havea0 /a2,0. Equation~54! then implies that there is only
one positive zero ofF(r ). Hence the wave function has onl
one node forl ,0.

When l>0, we haveG.0, and hencea0 /a2.0. It can
be checked from Eqs.~47!, ~51!, ~55!, and ~56! that
4-5
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CHOON-LIN HO AND V. R. KHALILOV PHYSICAL REVIEW A 61 032104
(a1 /a2)2.4(a0 /a2). Thus F(r ) has two positive zeros
This is also consistent with the results presented in Ref.@6#
for the Schro¨dinger case~see also the last part of the follow
ing section!.

III. NONRELATIVISTIC LIMIT AND METHOD
OF FACTORIZATION

The electron in 211 dimensions in the nonrelativistic ap
proximation is described by one-component wave functi
This can easily be shown in full analogy with th
(311)-dimensional case. Let us representC in the form

C5exp~2 imt!S c

x
D ~57!

and substitute Eq.~57! into Eq. ~2!. This results in, to the
first order in 1/c, the following Schro¨dinger-type equation
~instead of the Schro¨dinger-Pauli equation in 311 dimen-
sions!:

i
]c

]t
5S P1

21P2
2

2m
1

eB

2m
2

Ze2

r Dc, ~58!

where, as before,Pk52 i ]k1eAk denote the generalize
momentum operators. The termeB/2m in Eq. ~58! indicates
that the electron has gyromagnetic factorg52 as in the (3
11)-dimensional case@10#.

One can now proceed in the same manner as in the D
case to solve for the possible energies and magnetic fie
We shall not repeat it here. More simply, we make use of
fact that Eq.~58! differs from the Schro¨dinger equation dis-
cussed in Ref.@6# only by the positive spin correction term
vL5eB/2m, which is the Larmor frequency. We thus co
clude that the denumerably infinite set of magnetic fi
strengths obtained in@6# are still intact, but the correspond
ing values of the possible energies are all shifted by
amountvL , i.e.,

E5vL~n111 l 1u l u!. ~59!

Simply put, the quantum numbern in @6# is changed ton
11.

Let us note here that the energies and magnetic field
this case may also be found by means of a method clo
resembling the method of factorization in nonrelativis
quantum mechanics. We shall discuss this method bri
below. Both the attractive and repulsive Coulomb inter
tions will be considered, since planar two electron system
strong external homogeneous magnetic field~perpendicular
to the plane in which the electrons is located! are also of
considerable interest for the understanding of the fractio
quantum Hall effect. Let us assume

c~ t,x!5
1

A2p
exp~2 iEt1 i l w!r u l uexp~2ar2/2!Q~r !,

~60!

where Q is a polynomial, anda5eB/2 as defined before
Substituting Eq.~60! into Eq. ~58!, we have
03210
.

ac
s.
e

n

in
ly

y
-
in

al

F d2

dx2
1S 2g

x
2xD d

dx
1S e6

b

xD GQ~x!50. ~61!

Here x5r / l B , l B51/AeB, g5u l u11/2, b52muZua l B

5uZuaA2m/vL, and e5E/vL2(21 l 1u l u). The upper
~lower! sign in Eq.~61! corresponds to the case of attracti
~repulsive! Coulomb interaction. This will be assume
throughout the rest of the paper.

It is seen that the problem of finding spectrum for Eq.~61!
is equivalent to determining the eigenvalues of the opera

H52
d2

dx2
2S 2g

x
2xD d

dx
7

b

x
. ~62!

We want to factorize the operator~62! in the form

H5a1a1p, ~63!

where the quantum numbersp are related to the eigenvalue
of Eq. ~61! by p5e. The eigenfunctions of the operatorH at
p50 must satisfy the equation

ac50. ~64!

Suppose polynomial solutions exist for Eq.~61!, say Q
5)k51

s (x2xk), wherexk are the zeros ofQ, and s is the
degree ofQ. Then the operatora must have the form

a5
]

]x
2 (

k51

s
1

x2xk
~65!

and the operatora1 has the form

a152
]

]x
2

2g

x
1x2 (

k51

s
1

x2xk
. ~66!

Substituting Eqs.~65! and ~66! into ~63! and then com-
paring the result with Eq.~62!, we obtain the following set of
equations for the zerosxk ~the so-called Bethe ansatz equ
tions @9#!:

2g

xk
2xk22(

j Þk

s
1

xj2xk
50, k51, . . . ,s, ~67!

as well as the two relations

6b52g(
k51

s

xk
21 , s5p. ~68!

Summing all thes equations in Eq.~67! enables us to rewrite
the first relation in Eq.~68! as

6b5 (
k51

s

xk . ~69!

From these formulas we can find the simplest solutions
well as the values of energy and magnetic field strength.
4-6
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second relation in~68! givesE5vL(21s1 l 1u l u), which is
the same as in Eq.~59! noting thatn5s11.

For s51,2 the zerosxk and the values of the parameterb
for which solutions in terms of polynomial of the corre
sponding degrees exist can easily be found from Eqs.~67!
and ~69! in the form

s51, x156A2u l u11, b5A2u l u11,

s52, x15~2u l u11!/x2 , x256~11A4u l u13!/A2,

b5A2~4u l u13!. ~70!

From Eq.~70! and the definition ofb one has the correspond
ing values of magnetic field strengths

vL52m
~Za!2

2u l u11
, s51,

vL5m
~Za!2

4u l u13
, s52, ~71!

as well as the energies

E15
2m~Za!2

2~2u l u11!
~31 l 1u l u!,

E25
m~Za!2

~4u l u13!
~41 l 1u l u!. ~72!

The corresponding polynomials are

Q15x2x15x7b,

Q25)
k51

2

~x2xk!5x27bx12u l u11. ~73!

The wave functions are described by Eq.~60!. Fors51,2 for
the repulsive Coulomb field the wave functions do not ha
nodes~for u l u50,1), i.e., the states described by them a
ground states, while for the attractive Coulomb field t
.

ity

B

03210
e
e

wave function fors51 has one node~first excited state! and
the wave function fors52 has two nodes~second excited
state!.

IV. CONCLUSIONS

In this paper we considered solutions of the Dirac eq
tion in two spatial dimensions in the Coulomb and homog
neous magnetic fields. It was shown by using semiclass
approximation that for weak magnetic fields all discrete e
ergy eigenvalues are negative levels of a hydrogenlike a
perturbed by the magnetic field. For large magnetic fiel
analytic solutions of the Dirac equation are possible fo
denumerably infinite set of magnetic field strengths, if t
two components of the wave function are assumed to h
the forms~24! and ~25! with terminating polynomial parts
Such forms will guarantee normalizability of the wave fun
tions. We presented the exact recursion relations that de
mine the coefficients of the series expansion for solutions
the Dirac equation, the possible energies and the magn
fields. Exact and/or approximate expressions of the ene
are explicitly given for the three simplest cases. For lo
positive energy solutions, we also investigate the nodal st
tures of the large components of the Dirac wave functio
and find that they are the same as in the Schro¨dinger case.
We emphasize that, by assuming a sufficient condition on
wave function that guarantees normalizability, only parts
the energy spectrum of this system are exactly solved for
this sense the system can be considered a quasiexactly
able model as defined in Ref.@9#. As in the Schro¨dinger and
the Klein-Gordon case, energy levels with magnitude bel
the mass value, which include the most interesting grou
state solution, cannot be obtained by our ansatz. For the
responding case in 311 dimensions, no analytic solutions
even for parts of the spectrum, are possible.
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