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Planar Dirac electron in Coulomb and magnetic fields

Choon-Lin Hd and V. R. Khalilo¥
!Department of Physics, Tamkang University, Tamsui 25137, Taiwan
2Department of Physics, Moscow State University, Moscow 119899, Russia
(Received 17 November 1998; revised manuscript received 4 October 1999; published 11 February 2000

The Dirac equation for an electron in two spatial dimensions in the Coulomb and homogeneous magnetic
fields is discussed. This is connected to the problem of the two-dimensional hydrogenlike atom in the presence
of an external magnetic field. For weak magnetic fields, the approximate energy values are obtained by a
semiclassical method. In the case with strong magnetic fields, we present the exact recursion relations that
determine the coefficients of the series expansion of wave functions, the possible energies, and the magnetic
fields. It is found that analytic solutions are possible for a denumerably infinite set of magnetic field strengths.
This system thus furnishes an example of the so-called quasiexactly solvable models. A distinctive feature in
the Dirac case is that, depending on the strength of the Coulomb field, not all total angular momentum quantum
numbers allow exact solutions with wave functions in reasonable polynomial forms. Solutions in the nonrel-
ativistic limit with both attractive and repulsive Coulomb fields are briefly discussed by means of the method
of factorization.

PACS numbegps): 03.65.Pm, 31.30.Jv, 03.65.Fd

[. INTRODUCTION the exact energy levels for a denumerably infinite set of mag-
netic fields. In the Dirac case, however, not all values of the
Planar nonrelativistic electron systems in a uniform mag+otal angular momentun allow exact solutions with the
netic field are fundamental quantum systems which havéorm of wave functions we assumed here. Solutions for the
provided insights into many novel phenomena, such as theonrelativistic limit of the Dirac equation in 21 dimen-
quantum Hall effect and the theory of anyons, particles obeysions are briefly discussed by means of the method of fac-
ing fractional statistic§1,2]. Planar electron systems with torization.
energy spectrum described by the Dirac Hamiltonian have We emphasize that in this paper, by assuming an ansatz
also been studied as field-theoretical models for the quantuvhich guarantees normalizability of the wave function, only
Hall effect and anyon theory3]. Related to these field- Parts of the energy spectrum of the system are solved ex-
theoretical models are the recent interesting studies regardir@ftly. In particular, we do not obtain energy levels with mag-
the instability of the naive vacuum and spontaneous magné'litude below the mass value, which include the most inter-
tization in (2+1)-dimensional quantum electrodynamics, €sting ground state solution. This is the same as in the
which is induced by a bare Chern-Simons tdeh In view  Schralinger and the Klein-Gordon case. All these three cases
of these developments, it is essential to have a better undegan therefore be considered as examples of the newly dis-
standing of the properties of planar Dirac particles in thecovered quasiexactly solvable mod¢®. In 3+1 dimen-
presence of external electromagnetic fields. sions, no analytic solutions, even for parts of the spectrum,
In Ref. [5] we studied exact solutions of planar Dirac are possible so far.
equation in the presence of a strong Coulomb field, and the
stability of the Dirac vacuum in a regulated Coulomb field. 1I. MOTION OF DIRAC ELECTRON IN THE COULOMB
Quite recently, interesting studies on the quantum spectrum AND MAGNETIC FIELDS
of a two-dimensional hydrogen atom in a homogenous mag-
netic field appearefb,7]. As is well known, hydrogen atom
in a homogeneous magnetic field has attracted great intered i
in recent years because of its classical chaotic behavior arld€nce, the Dirac algebra
its rich quantum structures. The main result found in Refs. L Y .
[6,7] is that, unlike the three-dimensional case, the two- i y}=2¢"" g¢"=diagl—1,-1) @
dimensional Schidinger equationi6] and the Klein-Gordon 5y pe represented in terms of the Pauli matricesy®s
ininte s6t of magnetic ed stengihs. The soluions cannor 737 5.k O eduivalenty, the matrices of )
. OrA~1 A2y — — A0 H
be expressed in terms of special functiésse also Ref8]). . (7,7)=(~02,01) and f=9" [3]. Then the Dirac
In this paper we discuss the motion of Dirac electron in
two spatial dimensions in the Coulomb and homogeneou
magnetic fields, and try to obtain exact solutions of a par- (id,—Hp)¥(t,r)=0, )
ticular form. As in the case of the two-dimensional Sehro
dinger and the Klein-Gordon equation, by imposing a suffi-where
cient condition that guarantees normalizability of the wave
functions[see the paragraph after E@®5)], we can obtain Hp=aP+Bm—eA’=g,P,— o,P;+ozm—eA’ (3)

To describe an electron by the Dirac equation it 2
fmensions we need only three anticommutiyiymatrices.

equation for an electron minimally coupled to an external
glectromagnetic field has the forfwe setc=#%=1)
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is the Dirac HamiltonianP, = —id,+eA, is the operator of dg
generalized momentum of the electray), the vector poten- dar
tial of the external electromagnetic fieloh the rest mass of

the electron, and-e (e>0) is its electric charge. The Dirac \yhere a=e2=1/137 is the fine structure constant. If we let
wave function

I+1 eBr

- + E L
I N L

f=0,
r

st F(r)=\rf(r), G(r)=\rg(r), (11)
1\
\P(t’r):( (L1 @ Eq. (10 becomes
is a two-component functior(i.e., a two spinor Here dF |+ 3 eBr Za
#1(t,r) and go(t,r) are the “large” and “small” compo- ar \ 7 T |FT|Etm+——]G=0, (12
nents of the wave functions.

We shall solve for both positive and negative energy so- |4+ 1
lutions of the Dirac equation®) and(3) in an external Cou- d_G ta e_Br e Z_a _

. : + + G—|E-m+ F=0. (13

lomb field and a constant homogeneous magnetic field dr r 2 r

>0 along thez direction:
By eliminating G in Eqg. (12) and F in Eq. (13), one can
A’r)=Zelr (e>0), A,=—By/2, A,=Bx/2. (5 obtain the decoupled second order differential equations for
F and G. At large distances, these equations have the

We assume the wave functions to have the form asymptotic formgneglectingr 2 terms:
W(t,X) = ——exp —IED (T, 0) © T leomoenirn+ 22 L )Z}F 0
X)=—exp(—i re), — -m°—e — —(eBr =0,
N2 e dr? r 4
(14
whereE is the energy of the electron, and
_ d’G 1
o ( f(rye'¢ ) @ F‘F E?—m?—eBl+ a—Z(eBr)Z}G=O.
ro)= : r
i, e g(r)e'('”)“’ 15

with integral numberd. The function¢(r,¢) is an eigen-  The |ast term in these two equations, which is proportional to
function of the conserved total angular momentlp-L, 2 may be viewed as the “effective confining potential.”
+8,=—idldp+03/2 with eigenvalug =1+ 1/2. One can of The exact solutions and the energy eigenvalues with 0
course consider wave functions which are eigenfunctions ot g <y corresponding to stationary states of the Dirac equa-
J, with eigenvalued — 1/2. These functions are of the forms g, (10) with B=0 were found in Ref[5]. The electron

of Eq. (6) with ¢, given by energy spectrum in the Coulomb field has the form
f(r)e‘('l)‘P)

2 —-1/2
g(re's ® E=m| 1+ 2o . (9

[n,+(1+1/2%—(Za)?]?

wl(rKP):(

However ansatz8) is equivalent to ansat#) if one makes
the changd —1—1. It should be remembered thais nota . - . .
good quantum number. This is evident from the fact that thcﬁ]ot’l’2 -o-2 0120, andny=1,2.3 ..., if 1<0. It is seen
two components off; depend on the integdrin an asym- a
metric way. Only the eigenvalugsof the conserved total N -
angular momentund, are physically meaningful. For defi- Bo=myl-(2Za) (17
niteness, in the rest of this paper, all statements and concIL'I(—)r l=n
sions, whenever angular momentum numbisr mentioned,
are made with reference to ansé&bz and (7).

Substituting Egs(6) and (7) in Eq. (2), and taking into
account the equations

where the values of the quantum numbey are n,

=0, andE, becomes zero &« =1/2, whereas in
three spatial dimensiors, equals zero afa=1. Thus, in
two spatial dimensions the expression for the electron
ground state energy in the Coulomb field of a point charge
Ze no longer has a physical meaningZzat=1/2. It is worth

9 , noting that the corresponding solution of the Dirac equation
P,=iP,=— jetie] — + (_ - _ _) } (9)  oscillates near the poimt—0.

or For weak magnetic field the wave functions and energy

levels withE<m can be found from Eqg12) and(13) in

e obtain the semiclassical approximation. We look for solutions of
df /1 . eBr o ( .. +Za Y . this system in the standard form
drir’ 2z e o F(r)=A(r)exiS(r)], G(r)=B(r)exdiS(r)]. (18
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Here A(r) andB(r) are slowly varying functions. Substitut- )
ing Eq.(18) into Egs.(12) and(13), we arrive at an ordinary G(r)=r"exp(—ar</2) Zo Bar", (25
differential equation foiS(r) in the form "

ds\? y 2EZa with ag#0, Bo# 0. Substituting Eqg24) and(25) into Egs.
gr) =Q=E°—m —eB(I+1/2+— (12) and(13), we obtain
(Za)?—(1+1/2?> (eBr)? 1
+ 5 7 (19 v— |+§ apt+ZaBy=0, (26)
r
The energy levels witle<m are defined by the formula 1
(y+1)— |+§ a1+ ZaB+(E+m)By=0, (27)
M max
j \/6dr=7r(—\/(l+l/2)2—(2a)2
"min
1
EZa (n+y)—(|+§ antZaBy+(E+m)B,_1—2aa, -
+ = =, (0
\/|m +eB(l+1/2)—E?| =0 (n=2) (28)

where r phax and rin (Fmae>min) @re roots of equatior)
—0. In obtaining Eq.(20), the term €Br)? in Q has been from Eq.(12), and
dropped. If we require the energy spectrum to reduce to Eq.

(16) whenB=0, we must equate the right-hand side of Eq. 1

(20) to 7rn, . As a result we obtaiffor | #0) y+I+ 35| Bo~Zaag=0, (29
eB/ 1 (Za)? e

E=m+——|I+2 + ) = 1
2m\ 2 [n,+ (1 +1/2%—(Za)?] n+y+l+ 5| By Zaay—(E-ma,_,=0 (n=1)

(30)
In the nonrelativistic approximation the energy spectrum
takes the form from Eq. (13).
Equationg26) and(29) allow us to expresg, in terms of

(Za)?m eB g in two forms:

1
-t |+ =
2(n,+|1+1/2)% 2m

5/

non—

(22

Semiclassical motion of electron in the magnetic and Cou- Bo= (3D
lomb fields can be characterized by means of the so-called
“magnetic length” Iz=+/1/eB and the Bohr radiusag

=1/Zam of a hydrogenlike atom of chargée. When the y—1-1
magnetic field is weak so thag>ag, or equivalently,B =— ag, (32
<B,,=(Za)?m?/e, the energy spectrum is simply the spec-
trum of a hydrogenlike atom perturbed by a weak magnetic
field. We obtain the Zeeman splitting of atomic spectrumwhich are equivalent in view of the fact thaty
depending linearly upon the magnetic field strength and the= V(I +1/2)°—(Za)* . Solving Egs.(27) and (30) with n

“magnetic quantum number?+1/2. =1 gives
In strong magnetic field the asymptotic solutions~gf)
andG(r) have the forms expfar?/2) with a=eB/2 at large (y+1+ H(E—m)+ (y+1+ 2)(E+m)
r, andr? with a;=— Zaag,
(2y+D)(y+1+3)
y=\(1+1/2?—(Za)? (23 (33
for small r. One must haveZ«<1/2, otherwise the wave 2(y+1)E—m
function will oscillate ag —0 whenl =0 andl=—1. In this 1:7—%_ (34)
paper we shall look for solutions ¢%(r) and G(r) which (2y+1)
can be expressed as a product of the asymptotic solutions
(for small and large’) and a series in the form From Eq.(30) one sees thaB, (n=1) are obtainable from
a, and a,_1. To determine the recursion relations for the
F(r):ryexp(—ar2/2)2 ", (24 a,, We simply_eliminat(e;Bn andfB,_, in Eq. (28) by means
n=0 of Eq. (30). This leads tafor n=2)
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(3+1)-dimensional Dirac equatiofil0], the unfilled nega-
(E—m) tive energy solutions are interpreted as positrons with posi-

1
n+ ’y+| — E
tive energies.

1
n+y+Il— E)(n2+2n7)an+2a

1 We mention once again that all the exact solutions pre-
Hntytl+ S| (Brm) e+ nty+i+ 35 sented below, including the restrictions for the valueb(of
more appropriately, the values of the conserved total quan-
__— 1 tum numberj =1+ 1/2), are obtained according to the ansatz
X|E*=m"—2a| n+y+l-3 | a,,=0. (39 (7), and Egs.(24) and (25) with polynomial parts. Exact

solutions for the other parts of the energy spectrum, if at all
Following Ref. [6], we impose the sufficient condition possible, would require ansatz of different forms which are
that the series parts 6%(r) and G(r) should terminate ap- "ot known yet.
propriately in order to guarantee normalizability of the = (1) n=1.Inthis case we have,#0 anda,=0 (n=1).
eigenfunctions. It follows from Eq(35) that the solution of F"om Ed.(33) one obtains the energies
F(r) becomes a polynomial of degrea<1) if the series

given by Eq.(35) terminates at a certain when a,= a1 E=_ m (39)
=0, and ,=0 (m=n+2) follow from Eg. (35). Then 2(y+I1+1)°
from Eq.(30) we haveB,,,1=Bn+2="--=0. Thus in gen-

eral the polynomial part of the functio@(r) is of one de- Equation(38) with n=1 then gives the corresponding values
gree higher than that df. Now suppose we have calculated of magnetic fields. These results show that, with the ansatz
a, in terms of ay (ag#0) from Egs.(33) and (35) in the  assumed here, solution with positive energy cannot be ob-

form tained withn= 1. Furthermore, the previously mentioned re-
quirement thaE=< —m can only be met with <0.
ap,=K(l,n,E,a,2)ay. (36) (2) n=2. We now consider the next case, in which
ag,a1#0, anda,=0 (n=2). This also impliesB,#0 (n
Then two conditions that ensurg,=0 anda,, ;=0 are =0,1,2) andB,=0 (n=3). From Eqs(38), (35), and(33),
we must solve the following set of coupled equations for the
K(l,n,E,a,2)=0 (37)  possible values of anda:
1
and E2—m?=2a| 2+ y+|+§), (40)
E?-m?=2a n+«y+|+E n=1,2 (38)
2)’ e Zao[(T+ 1) (E-—m)+(I'+2)(E+m)]a;+2a(l'+2)ay=0,
(41)
Since the right hand side of E(B8) is always non-negative
(for 1=0, this is obvious; fol<—1, one has—1/2< y+I| y+DHl'ay+Za[T'(E-=m)+(I'+1)(E+m)]ay=0.
+3<0, recalling thatZa<1/2), we must haveE|=m for (42

the energy. We note here that, similar to the Sdhnger and

the Klein-Gordon case, the adopted ansatz guarantees thtere I'=+y+1+1/2. From these equations one can check
normalizability of the wavefunction, but does not provide that E satisfies the quadratic equation

energy levels with magnitudes beld&|=m.

For any integem, Egs.(37) and (38) give us a certain 2y+1
number of pairs [,a) of energyE and the corresponding (2I'+1)(2I'+3)— ST |E*+4m(T' +1)E+m?
magnetic fieldB (or a) which would guarantee normalizabil- (Za)
ity of the wave function. Thus only parts of the whole spec- 2y+1
trum of the system are exactly solved. The system can there- x| 1+ r'l=o. (43
fore be considered as an example of the quasiexactly (Za)?

solvable models defined in RgB]. In principle the possible

values ofE anda can be obtained by first expressing the This can be solved by the standard formula. One must be
(or E) in Eqg. (37) in terms of E (a) according to Eq(398). reminded of the constraifE|=m. For|=0, we can obtain
This gives an algebraic equation B (a) which can be analytic solutions with both positive and negative energies.
solved for reaE (a). The corresponding values af(E) are  But whenl <0, analytic solutions can only be obtained for
then obtained from Eq(38). In practice the task could be negative energfe<—m. Furthermore, it can be checked that
tedious. We shall consider only the simplest cases belowE| is a monotonic decreasingincreasing function of
namely, those witm=1, 2 and 3. In these cases, the solu-|l|(Za) at fixedZa (I).

tion of the pair E,a) is unique for fixedZ andl. In general, For Za<1/2, i.e. for light hydrogenlike atoms, we can
for n>3, there could exist several pairs of valuésd) (see  write down approximate expression for energy near the mass
Refs. [6,7]). Unlike the nonrelativistic case, here negativevalue, i.e.|E|=m. We can obtain from Eq43) the approxi-
energy solutions are possible. As in the case of thenate values oE:
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E 1 2Za)° r+1{aTr+2 =0, (44
= - —
for positive energies, and
E 1 2Za)* r+1 =0 and <0
= — =
_ m +(27+1)( +1)|, and 1 <0,
(45)

for negative energiefin fact, it can be checked from Eq.
(43) that for <0, E is always close to—m for any Za
<1/2].

WhenZa is close toZa=1/2, we havgE|>m for [=0.
In this case the enerdy can be approximated by

,(2T+1)(2r+3)] 12
(2y+1)T

E=+2m1—(Za) (46)

A consequence following from this formula is that, for each
=0, there is a critical value af beyond which polynomial
solution withn=2 is impossible. The critical value & for

eachl is found by setting the expression in the square root of

Eq. (46) to zero. Forl=0 andl=1, the critical values oZ
areZa=1/2.936 and 1/2.316, respectively.

In the nonrelativistic limit(see Sec. ll}, it is the upper, or
the large, componerit(r) of the Dirac wave function that
reduces to the Schdinger wave function. Hence, in order to

PHYSICAL REVIEW A61 032104

compare with the results considered in Héf, it would be
appropriate to study the nodal structures of the fund&én)
for positive energy solutions in the limE=m. It is easy to
see from Eq(41) or (42) that in this limit, ¢y and «y have
opposite signs. Thuk(r) has only one node in this limit,
which is the same as in the Schinger case.

(3) n=3. For the case ai= 3, exact solution of Eq$37)
and (38) becomes much more tedious. Now the value& of
anda are solved by the following coupled equations:

E2—m?=2a(l +3), (47)
Za[(T+2)(E—m)+ (T +3)(E+m)]a,+2a(l+3)a;=0,
(48)

4(y+1)(I'+1)ap+Za[ (T +1)(E—m)
+(I'+2)(E+m)]ay+4a(l +2)ay=0, (49)

(2y+1)Tay+Za[T(E—m)+ (T +1)(E+m)]ay=0.
(50

In place of Eq(43) we now have a cubic equation for the
energyE. We shall not attempt to solve it here. It turns out
that the equation satisfied iy can be reduced to quadratic
ones without linear term inE in the low magnitude
(|E|~=m) and the high magnitude|>m) limit, which cor-
respond to small and largé respectively. The results are

2(Za)2T+1)(T+2)(T+3) | ?
£ om| 1 2@V T DI +2)(T+3) -
y+1)I(T+2)+2(y+1)(T'+1)2
and
2(Za) T +1)(C+2)(T'+3 i
I (Za) (P +1)(T+2)(I' +3) -
2y+1)(I'+2)?+2(y+1)(I'+1)(I'+3)
for |E|~m, and
Ecam1 2(Za)*(T'+1/2)(T +3/2)(I" +5/2)(I" +3) -1z 53
==m- 2y+1)I(T+52(I'+2)+2(y+1)(I'+1/2(I'+1)(I'+3) (53
|
for |E|>m. The corresponding values of the magnetic field a; EZ«
are obtained by substituting Eq&1), (52), or (53) into Eq. P (55
(47). Forl=—1, Eq.(53) is real only for 1/2.65Za<1/2. 2
As in then=2 case, we shall also investigate the nodal o 2y+ 1l «a
structures of the functiof (r) for positive energy solutions fo__ _E¥ToR -1 (56)
in the limit E=m. The zeros of the polynomial part &f(r) @2 2EZa(T'+1) a;

is given by

1

2

ay

ap

ro= (54

(= iz -4z
@z az
Note that physical solutions afy, if exist, must be non-

negative. In the limiE=m, Eqs.(48) and(50) give approxi-
mately

We see from Eq(55) that @, /a»,<<0 in this limit.

For negativel <0, which implies—1/2<I'<0, we also
haveaq/a,<0. Equation(54) then implies that there is only
one positive zero of (r). Hence the wave function has only
one node foll <O0.

Whenl|=0, we havel' >0, and henceyy/a,>0. It can
be checked from Eqs(47), (51), (55, and (56) that
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(a1/ay)?>4(aglas). Thus F(r) has two positive zeros.
This is also consistent with the results presented in F&f.
for the Schrdinger casédsee also the last part of the follow-

d
&-I—

b

er—
X

Q(x)=0.  (61)

d> (2
dx? X

ing section.
9 ) Here x=r/lg, lg=1/VeB, y=|l|+1/2, b=2m|Z|alg
IIl. NONRELATIVISTIC LIMIT AND METHOD =|Z|ay2m/w , and e=E/w —(2+I+]l|). The upper

OF FACTORIZATION (lower) .sign in Eq.(61) _corresponds to_ the case of attractive
(repulsive Coulomb interaction. This will be assumed
The electron in 2-1 dimensions in the nonrelativistic ap- throughout the rest of the paper.
proximation is described by one-component wave function. It is seen that the problem of finding spectrum for i)
This can easily be shown in full analogy with the is equivalent to determining the eigenvalues of the operator
(3+1)-dimensional case. Let us repres@ntn the form
d? 2y d b
H=———|——X —I;. (62

‘I’=exp(—imt)<i) (57) dx?

and substitute Eq57) into Eq. (2). This results in, to the We want to factorize the operat¢s2) in the form

first order in 1¢, the following Schrdinger-type equation H=a"a+p, (63)
(instead of the Schainger-Pauli equation in 81 dimen-
sions: where the quantum numbepsare related to the eigenvalues
2. 2 ) of Eq. (61) by p= €. The eigenfunctions of the operatdrat
i<9_l//= Pi+P; eB Z_G> " (59 P=0 must satisfy the equation
at 2m 2m r '

ay=0. (64)
where, as beforeP,=—id,+eA, denote the generalized
momentum operators. The te@B/2m in Eq. (58) indicates  Suppose polynomial solutions exist for E(1), say Q

that the electron has gyromagnetic facgee2 as in the (3 =II;_,(x—X,), wherex, are the zeros of), ands is the

+1)-dimensional casglO0]. degree ofQ. Then the operatoa must have the form
One can now proceed in the same manner as in the Dirac

case to solve for the possible energies and magnetic fields. d °1

We shall not repeat it here. More simply, we make use of the a= X & X— X (65

fact that Eq.(58) differs from the Schrdinger equation dis-
cussed in Ref[6] only by the positive spin correction term
w, =eB/2m, which is the Larmor frequency. We thus con-
clude that the denumerably infinite set of magnetic field 9
strengths obtained if6] are still intact, but the correspond- at=——— —+4x— 2 (66)
ing values of the possible energies are all shifted by an
amountw, , i.e.,

and the operatoa™ has the form

Substituting Eqs(65) and (66) into (63) and then com-
E=w (n+1+1+]l)). (59  paring the result with Eq62), we obtain the following set of
equations for the zeras, (the so-called Bethe ansatz equa-
Simply put, the quantum numberin [6] is changed tn  tions[9]):

+1.
Let us note here that the energies and magnetic fields in 2y S 1
this case may also be found by means of a method closely X—k—Xk—quﬁk X__Xk=0, k=1,...s, (67)
i

resembling the method of factorization in nonrelativistic
guantum mechanics. We shall discuss this method brieﬂ)éS well as the two relations

below. Both the attractive and repulsive Coulomb interac-

tions will be considered, since planar two electron systems in s

strong external homogeneous magnetic figldrpendicular ib=272 X[11 s=p. (68)
to the plane in which the electrons is locatede also of k=1

considerable interest for the understanding of the fractional ) ) ) )
quantum Hall effect. Let us assume Summing all thes equations in Eq(67) enables us to rewrite

the first relation in Eq(68) as

(LX) = Lexp(—iEt+i| o)rl'lexp(—ar?/2)Q(r),
a

N
(60

b= X. (69)
k=1

where Q is a polynomial, anda=eB/2 as defined before. From these formulas we can find the simplest solutions as
Substituting Eq(60) into Eg. (58), we have well as the values of energy and magnetic field strength. The

032104-6



PLANAR DIRAC ELECTRON IN COULOMB AND. ..

second relation iri68) givesE=w, (2+s+1+|l]), which is
the same as in Eq59) noting thatn=s+ 1.

Fors=1,2 the zerox, and the values of the parameter
for which solutions in terms of polynomial of the corre-
sponding degrees exist can easily be found from Eg8.
and(69) in the form

s=1, x;=*2|l|+1, b=+2|I|+1,
s=2, x;= (2|l +1)/X,, Xp,==(1+4|I[+3)/2,
b= 2(4[I[+3).

From Eq.(70) and the definition ob one has the correspond-
ing values of magnetic field strengths

(70

om 2" g
eL=eManTr 5T
) 71
wL_m4|||+31 S=¢, ( )
as well as the energies
. _ 2m(Za)? 3 (4l
1—m( +1+ 1)),
LTI 72
The corresponding polynomials are
Qi=X—X;=X¥*hb,
2
Q=1 (x—x0=x*Fbx+2|l|+1. (73
k=1

The wave functions are described by E80Q). Fors=1,2 for
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wave function fors=1 has one nod€irst excited stateand
the wave function fors=2 has two nodegsecond excited
state.

IV. CONCLUSIONS

In this paper we considered solutions of the Dirac equa-
tion in two spatial dimensions in the Coulomb and homoge-
neous magnetic fields. It was shown by using semiclassical
approximation that for weak magnetic fields all discrete en-
ergy eigenvalues are negative levels of a hydrogenlike atom
perturbed by the magnetic field. For large magnetic fields,
analytic solutions of the Dirac equation are possible for a
denumerably infinite set of magnetic field strengths, if the
two components of the wave function are assumed to have
the forms(24) and (25) with terminating polynomial parts.
Such forms will guarantee normalizability of the wave func-
tions. We presented the exact recursion relations that deter-
mine the coefficients of the series expansion for solutions of
the Dirac equation, the possible energies and the magnetic
fields. Exact and/or approximate expressions of the energy
are explicitly given for the three simplest cases. For low
positive energy solutions, we also investigate the nodal struc-
tures of the large components of the Dirac wave functions,
and find that they are the same as in the Sdimger case.

We emphasize that, by assuming a sufficient condition on the
wave function that guarantees normalizability, only parts of
the energy spectrum of this system are exactly solved for. In
this sense the system can be considered a quasiexactly solv
able model as defined in R¢B]. As in the Schrdinger and

the Klein-Gordon case, energy levels with magnitude below
the mass value, which include the most interesting ground
state solution, cannot be obtained by our ansatz. For the cor-
responding case in-81 dimensions, no analytic solutions,
even for parts of the spectrum, are possible.
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