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ABSTRACT

Chen & Chen [4] constructed the production planning model that was based on
three assumptions: (1) the demand occurs in the future time and is a random variable,
(2) there are two stages in the production process, (3) the unit production cost is a linear
function of production in the unit time. Then, the optimal production rates is derived
so as to maximize the profit. ,

The aim of this article is to extend the model under (1) the leadtime between the
production process is considered, (2) the object is cost minimization. And then, the
phenomenon of optimal solution is discussed.

1. INTRODUCTION

The classical newsboy problem is a single-period, single product
inventory problem which considers the inventory size to be ordered for
the sake of meeting random demand so as to maximize expected profit
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24 . Y. C. CHEN AND M. S. CHEN

while balancing holding and shortage costs. And there are many
papers to discuss this problem in recent years. For example, Eppen [6]
presented a multi-location newsboy problem with normal distribution
of a location’s demand, and identical linear holding and penalty cost
functions. Chen & Lin [2] extend Eppen’s model by considering the
concave cost function and with unspecified distribution of demand,
then shows that the Eppen’s results are still true.

Chen & Chen [4] construct a production planning model of the
classical newsboy problem. The main question of Chen & Chen’s
article is : In two stages production process, how should decision
makers control the production rate at each stage to meet the random
demand at the end of production period such that the expected profit
is optimal? It is also assumed that only the production and holding
costs are considered during the production period. However, it
neglects the transportation cost between the production process, i.e.,
leadtime occurs between the production process.

The main result of Chen & Chen’s model is that whether the
optimal production rates are the same or depend on the relation of
parameters of the production and holding costs. It seems that if there
are other costs which occur during the production period then the
characteristics of optimal solutions would change. Therefore, the aim
of this note is to extend the Chen & Chen’s model by incorporating the
transportation cost during the leadtime and the object of profit
maximization is replaced by cost minimization, and then discuss the
effects on the optimal production rates and quantity of goods for sale.

2. NOTATIONS AND ASSUMPTIONS
* T: The sailing time.
* L : The leadtime.

* [0,T-L): The available time interval to produce semi-finished
goods.

» [L,T]: The available time interval to produce finished goods.

* ty: The time to begin production of semi-finished goods, where
t,>0.

* t,: The time to begin production of finished goods, where
to>t, +L.

* [t;-, T —L]: The time interval during which the decision maker is
actually engaged in production of semi-finished goods.
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TWO-STAGES PRODUCTION PLANNING 25

[¢,, T] : The time interval during which the decision maker is
actually engaged in production of finished goods.

hy:The holding cost of unit semi-finished goods in the unit time.
hs : The holding cost of unit finished goods in the unit time.

hyy : The transportation and holding cost of unit semi-finished

goods in the unit time. The cost occurs in the time interval of
leadtime. And, in this time interval, if there is only holding cost

b : The loss or treatment cost of unit surplus goods.

p : The penalty cost of unit shortage of goods.

x,(£) : The cumulative production of semi-finished goods at time ¢.
x{(t) - The marginal production of semi-finished goods at time ¢.
x5(f) : The cumulative production of finished goods at time ¢.
x5(t) : The marginal production of finished goods at time t.

When the decision makers make extra production plans in
addition to the routine work, the cost will burden them, because
of the capital and the human resources. So, the unit production
cost will increase as the production increases. Hence, in this
article, we assume that the unit production cost is an increasing

function of production in the unit time. If they don’t have

production, they don’t have to pay for the cost. Therefore, the
assumption we made here is that

cyx{(t) : The unit production cost of semi-finished goods at time ¢,
where ¢; is constant.

cox5(t) : The unit production cost of finished goods at time ¢,
where ¢, is constant. ’

S : The quantity of goods in demand at time 7. Here S is a

‘random variable, its probability density function is f{s), and its

cumulative distribution function is F(s).

xo(T) : The goods for sale at time 7.

where ty 'ty , x4(t), x9(t), x{(2), x5(t) and x,(T) are decision variables.
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26 ' Y. C. CHEN AND M. S. CHEN
3. MODEL

Using the notation and assumptions in the previous section, we
have

+ The total production and holding cost of finished goods

\
lzal

= J [széz(t) + hoxo(t)]dt.
t2
« The total production and holding of semi-finished goods in the
- time interval [t; ,t, — L]
L

= [ lex®®) + hyxy(oldt.
f.l :

* The total production and holding cost of semi-finished goods in
the time interval [t - L, T — L]

CT-L . o
= J [clxl'z(t)+h1(x1(t)—x2(t+L))]dt.
ty-L

* The total transportation or holding cost of semi-finished goods in
the time interval of leadtime = hy;Lxy(T). "

Siﬁce the goods. for sale Min‘{xz(T), S} is a random variable, so

) xg(T)

* The expected cost of goods sﬁrplus = Jb(xz(T) — $)f(s)ds.
0

oo

» The expected cost of goods lacking = J (s — 2o(T)f(s)ds.
xo(T)

“

-If the object is cost minimization, then the mathematical model
1s as follows: '

J. Stat. & Mngt. Syst., Vol. 2 (1999), March, No. 1




TWO-STAGES PRODUCTION PLANNING 2T

xz(T) oo
Min [ byT) - f)ds + | pls - x(TNAs)s + by Lag(T)
0 _xz(T)
T-L ' T
v o) + hyxy®ldt + [ legrs?(®) + hoxa(®))dt

b ty
T-L

— | Byt + LNdt : | "
ty-L
St % (ty) = %o(ty) = 0, (T~ Ly =25(T), x{(t)=0 Vielt;, T~L],
©t)20 Vtelt,,T], 0<é<t-L,

xl(t "‘L) sz(t) Vie [tz s T']

_ where ty, ty , (T — L) and x5(T) are free. .

Let (x(t), x5(t)) be the optimal solution of (1), and let
x(t~Ly=y,¢) Vtelt;+L, T} and ry=¢t, +L
xo(t) =yo(t) Vi€ [ty,T] and ry=ty.

Then problem (1) becomes

. yz(ﬂ 00

| Min j b(yo(T) — s)fs)ds + J p(s —yo(TH(s)ds + by Lyo(T)
I SRR ¢4 B '
T T

[ ey 3720 + by y,(01de + [ Teg 3528) + (hy — hy)ya()1de

rl 7'2 (1,)
s.t. y1(r) =y50r) =0, y(D) =y,(]), y{(t)20 Vie (ry, T]

yé(t)ZO vté[rz,ﬂ, LSI'IS?'z,
Yi(&) 2 yq(t) Vi€ [ry, T]

where ry, ry, y(T) and yo(7T) are free.

For the sake of convenience, we first derive the optimal solution
1,y of problem (1), then transfer it to the optimal solutions

(xi(t), x5(t)) of problem (1).

(J. Stat. & Mngi. Syst., Vol. 2 (1999), March, No. 1




28 ' Y. C. CHEN AND M. S. CHEN
4. OPTIMAL SOLUTION

Since problem (1) is not the standard form of calculus of
variation, therefore, we first neglect the constraint y; 20, y; > 0, and

consider the following problem:

3’2(T) . o0
Min J by, (T) — s)s)ds + J p(s —yo(THAS)Es + hy Lyo(T)
0 ) yz(T)
T
+ j [ey ¥12(8) + hy y1(8) + Cy y52(8) + (hy — B )yo(t)]dt 5
To “

sty ) =yor) =0, yy(T) =y(T),  hy>hy
Y1) Zyot) Vite [y, T]

where y((T), yo(T) and ry > L are free.

Now, suppose (¥;(t), ¥5(t)) be the optimal solution of problem (2),
and define

Z1() = yo(t)
Vite[ry,TL
Zo(t) = y1()

Clearly, (¥(t), z5(8)) and (z4(t), Jo(t)) are feasible solutions. of
problem (2). Hence, '

- the objective value of (¥, ¥,) < the objective value of (z1(1), ¥9)

and

If we substitute (y,(t), ¥,(t)) and (z1(8), y,()) into (2), then (3)
simplifies to |
B T T
) — — ) :
c—lj(yl ~Fo)dt < | (75 - Fihde (5)
Ty

1'2'

Similarly, if we substitute (¥;,%,) and (7, ,2Zo) into (2), then (4)
simplifies to

J. Stat. & Mngt. Syst., Vol. 2 (1999), March, No. 1




TWO-STAGES PRODUCTION PLANNING ) 29

— h T
L[ (5, - 7. ©)

Ty

h
.[(yz -y %)dt <

(bmmmngw)mm<m;wemwe

T .
hy ho—h ‘
oL (5, -5)de <0, *)
€1 Co ry _ ' .
. hy ho— '
Case 1. If —1s/2— 71, then, by property (*), y,=%, V fe

¢ C2
[Ty, T]. Hence the optimal solution of problem (2 is the same as the
following problem:

yo(T)
“Min J o)~ 9fis)ds + | plo.-yaTDAS)s
yz(,r) IR
< ' T .
+ J' [(cy + c2)y2'2(t) +hy yz(t)]dt + hy Lyy(T) (73
Ty
L s.t. yo(re) =0,  yo(T) free, ry>L free.

Case (1.1). If 7y =L, then the optimal solution ¥o(t) must satisfy
the following necessary conditions [[7], pp. 67-68]:

ha=2(c1 +c2)y5 () (8) -

2cy + coF(T) + hiiL = p + (p + BF(Fp(T)) = 0. ©

Using the boundary condition Yo(L) =0, (8) leads to

hy o { ¥o(T)

Yo(b) =

Heitoy T T-L e+ 2)(T+L)}“_L)

hZ 2

B 4(c, + ¢y) (10)
Hence, by (10), (9) becomes

yo(T) hy _
h2T+2(c1+cz){;2 7 ic, +c)(T+L)}z?.(cﬁcz)yé(T)

\T/'. Stat. & Mngt. Syst., Vol. 2 (1999), March, No, 1
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30 Y. C. CHEN AND M. S. CHEN

=p—hyL—(p+HF(yAT). (11)
This means that the value of y,(T) is determined by (11).

Since y,'(t) = >0, s0ys(t)2 0 V ¢t if and only if

2(c; + ¢g)

M Ry

Yo(L) (T'-L)=0. (12)

From (11), inequality (12) holds if and only if

ha

p2ho(T-L) +‘h11L +(p+b)F {m

(P3P ) (13)

This means that if (13) hold then the optimal solution ¥,(¢) in
(10) is also the optimal solution of problem (17). (14)

Case (1.2). If 7, > L, then the optimal solution y,(¢) must satisfy
the following necessary conditions [[7], pp. 67-68]:

hy =2(cy + co)ys' () © (15)
(C1 + Co)T32( Ta) + o To( ) = Jal Fad(2(cy + co)is( To)) = O (16)
2(cy + )y (Ty+ hyyL—-p+(p+0)F(y,(1)) = 0. (17)

From (16), we know that y,( F2)=O, then, by y,(75) =0 and y,(Ty)
=0, (15) becomes '
hy

_ e = _ :
yz(t)—4(c1+c2) (t—79) Vitelry, Tl (18)

Combine (18) and (17), we have

hy

p:hz(T—r2)+hnL+(p+b)F[m

<T—@f]? (19)

Hence the value of 7y is determined by (19).

Since r, > L in this case, so (19) yields that

hoy

D <h2(T—L)+hnL+(p+b)F{m

(T - L)® j " (20)
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TWO-STAGES PRODUCTION PLANNING 31

_ _, h o ' .o
Since yJ(t)= m >0 and y4(7ry) =0, hence y4(t)>0, V te
[ry, T1.
Hence, if inequality (20) hold then the optimal solution yo(f) of
(18) and (19) is also the optimal solution of problem (1°). (21)
h, h,
Case 2. If—c~< ZC » then consider the following problem:
1 2
y2(71) L]
Min [ blyoD) = 9)fs)ds + | pls ~yo(TNAs)ds + hyyLys(T)
0 yz(T)
T
+ J' ey y1%(0) + hy v, ()] dt +J [cp y54(8) + (Rg — hy)yo(t))dt
n T2
s.t. y1(r) = ya(r0) =0, y1(T) =yo(T), y1(6) 2 y5(8) Ve [y, T,
) L<ri<r,
wherer,, ro, y{(T) and yZ(T)'are free.

Then the above problem can be divided into three subcases:

Case (2.1). If ¥y =7, =L, then the optimal solution (¥, , y,) must
satisfy the following conditions [[7], pp. 105-106]:

hl = 2C1 y{’(t) (22)
h2 - hl = 2C252”(t) . (23)
2¢, 5, T)+2023’2(T)+h11L P+ (p+b)F(yy(T)) = (24)
From (22) and (23), we have
_ hy o y(T) Ry }21 2
yl(t)—4—01t +l:T—L—401 (T + L) (t—L)—4CIL (25)
- hy—hy o | 5o(T) hy—1y o~ h1 o
Yalt) = dcy ‘ 1{ T-L 4cy (T+ L) (=L - 4c, L=
’ S (26)

Using (25), (26) and the constraint y,(T7)=y,(7), then (24)
becomes

\J. Stat. & Mngt. Syst., Vol. 2 (1999), March, No. 1
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32 Y. C. CHEN AND M. S. CHEN

yZ(T') ﬁl_ yz(T) _ hz_hl
2¢y —T——L-4c1 (T+L)}L2C{T—L 4, (T'+L)

+h,T—p+h L+ (p+b)F(y(T))=0. @7

This means that the value of y5(T) is determined by (27).
It is easy to see that y,(t) - ¥,(t)20, Vte [L,T]

3 T — ’ h 4 - V _ —_
Since ¥y (t)zz—cll> 0, 2 (t) = 2202 L0 and Y(T) =yo(T), so

¥{,¥520if and only if

ToT)  hy-
T-L 4c

hy y
T-Lyz0. .. (28)
) .

yolL) =

Now, let G be the function of the left-hand side of equation (27):

_ y h ¥oT) hy-h
G(y2<73)=2c1{;,2(}2—;10—11<T+L)}L2c;,[,z,_L~~ “—L(T+L)

ic,

+ hoT —p+ hy L+ (p+b)F(y(TY).

Clearly, G'( () > 0. Thus, by (28), 71(t), 54) 20 ¥V t e [L, 77 if and

. hy - hy
only if G[ ic,

(T - L)® ]s 0, ie.,

P="

. T~ L cilhg—hy)=cohy
)

}+h2(T—L)+huL

h2~h1 2
(P OF | = — (T-LY | (29)
2

This shows that if the inequality (29) hold, then the optimal
solution™ (¥,,¥9) in (25) and (26) is -also the optimal solution of
problem (1%). (30)

Case (2.2). If 7y=L,7,>L, then the optimal solution (y;,ys)
must satisfy the following necessary conditions [[7], pp. 105-106]:

hy=2¢;5{(t) | (31)

hz - ]11 = 202 yzﬁ(t) (32)
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TWO-STAGES PRODUCTION PLANNING 33
Co T4 Fo) + (hy ~ b)Yl To) = ¥a( Fa)(2e F3( F2)) = O (33)
201 Y{(T) + 2¢, Yo(T) + by L= p + (p + B)F(55(T)) = 0. (34)

From (33), we have ¥j(7r,) =0, then using the boundaryl condition
yo(To) =0, (32) yields that

Folt) === =T (35)

Next, using the constraint ¥i(T)=yo(T) and the boundary
condition y;(L) =0, (31) becomes

Ry | L bomby o B L
R e s Arrd (B Pl CRY SN [

hy
-1 _ 36
4CIL. (36)

Together with (36), (35) and (34), we have

2%, | =t ha = h%T Fﬁ—ﬁlw+iy+gz—th—Fj
T-L 4e Y 4 2 TIAS T2

-k )
+hT-p+hyL+(p+b)F e (T-T15)" |=0. (37)
2

This means that the value of ry is determined by (37).
It is easy to see that y,(£) —y,(£)20, Vte [Ty, T].
h ho—h

-7 1 —7 oy -
2Cll>0, F§)=—3,— >0 and Fi(T=0, s0 F(t)

Since y{'(t)=

must satisfy 7,20 V ¢; on the other hand, /20 1f and only if .

y{(L) = o) —}—l—T Ly=20 >h—TL Thi
yi(L) = ”“—'L_4c1( ~L)> ,1.e.,yg(T)_4c1 - )2, This means
h‘z—hl — 2 hl 2
o, - =D
l.e.,
L r- -1\ A (38)
e ( ) €1 hz‘hl

{J. Stat. & Mngt. Syst., Vol. 2 (1999), March, No. 1
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34 , Y. C. CHEN AND M. S. CHEN

Now, let G be the function of 7, defined in the left-hand side of
equation (37):

, hy—h h _
G(Ty) = 2¢, {LQ (T -7 - i (T+L)}L (hy— h (T ~Ty)
1

T_L 4C2
S(T-T7y)? ]

Hence by (38), yl,yzzQ if and only if
fh Cq ] :
< >0, ie.
( - (T'-L) o B, <0 and G(L)> 0, ie.,
hhTL’\/ﬁlC hy(T =L} + hyyL
(hg—h (T - L) oy hy- h1+ 1§ )+ Ay

b)F -hl—T—LZ
+(pbF | - (T-L)

+ hT — p+huL+(p+b [

Differentiate G W1th ro, we have G'(Ty) <

<p
<T—L cy(hg — hy) —cohy
2 Cz

}L ho(T = L) + hyy L

+'(p+b)F[h4 (T - L)] ' ' (39)
Co

Therefore, if inequality (39) holds, then the optimal (¥, %,) is
also optimal solution of problem (1. ' (40) .

] Case (2.3). If 7{>L,7,> L, then the optimal solution (y;,%,)
must satisfy the following necessary conditions [[7], pp. 105-106]:

hy=2¢, 51 (1) (4D
ho—hy=2coy5 () (42)
e1 71Ty + hy 31 F) = ¥1(Fy)(@ey ¥i(Fp) =0 (43)
Co F5X( Tg) + (hg ~ h)Fa( 7o) = 73( To) (205 ¥5( T)) = O (44)
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2, F{(T) + 265 75(T) + Ay L —p + (b + DYF(F(T)) = 0. (45)

From (43) and (44), we have yj(7;) =0 and y5(7y) = 0. And using the
boundary condition ¥,( 7y) = 0, ¥o( Tg) = 0, (41) and (42) lead to

- h _ _
yl(t)=4cll (t_rl)z te [rlvﬂ

) ’ 46)
_ ho—hy _ (
Yolt) = (t=T9) telr,, Tl

L 4C2

Since 3,(T) = 7o(T), so, by (48), we have

hl C2 ) .
ST TN f_ . : 47
ro=T—-(T-T1y) P .( )

Together with (45), (46) and (47), we have

lh ol oy h(T-F
(2_ 1) ( '—rl) ¢ hz_hl + 1( —7‘1)

h
_P+¥h11L+(p+b)F[*4Tl(T—Fl)2JZO. (48)
- 1

This means that the value of 7y is determined by (48). And the value
of ry 1s determined by (47). |

Furthermore, it is easy to see that y,(£)-7,(£)20, V te€
[F2 3 71]'

L hy _ ho—hy o o
Since 77/ () ==— > 0, y5'(£) = >0, and y{(Ty) =0, y3(T9) =0,

. 201 2c2

so the optimal solution in (46) (¥, ,¥,) satisfy y{ >0 and ¥, > 0.

Let G be the function of 7, defined in the left-hand side of (48):

N _
G(Fx)z(hz—hﬂ{(T—FO c—llhzcjhl }“M(T—ﬁ)

hy —
~-p+h L+(p+b)F| —(T-1)° |
4cy

J. Stat. & Mngt. Syst., Vol. 2 (1999), March, No. 1
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It is easy to see that_G’(?1)>< 0, so, Ty>L if and only if
G(L)>0, ie.,

hy ¢
p<(hy-h)T-D) N\ + T =D+ byl

1 /%2 1

hy .
+(p+b)F(ZCI—1(T—L)2}~ | (49)

Hence, if inequality (49) holds then the optimal solution (yq, )
is also the optimal solutions of problem (1'). (50)

Finally, suppose that (x] , x5), (¥] , ¥2) be the optimal solutions of
problem (1) and (1), respectively. Since. x(t-L)=yt), V te
(r1, 71, x5 =y;(‘t) V te lry,T] and ri=t1+ L, rg=t;, then by (14),
(21) and (30), (40), (50), we have

hy ho—hy
Case 1. Suppose — > .
€1 C2

- h
AD Ep>hy(T-L)+h L+ (p+ b)F[—Z—(T—L)z } then

Aleg+c)
x;(t)zz(a%.t2+:;5(_72_4(01%62) (T—L):t, 0<t<T-L
x5(f) :Kfic—z)tz +; ;2(_72 - 4(01}? = (T'+L) (¢t-L)

-4(01]?02) 2 L<t<T

where the value of x5(7) is determined by the following equation

5 h
hoT + 2(cy + cy) { ;2(_12 - i, _i ) T+1L) }
=p—hyL = (p+ bDFT)). (561)

h,
P B — 2 T_TN |,
12 Ep<hy(T~-Ly+hL+(p+b)F { (e, + 0p) (T-L) ] then

LJ. Stat. & Mngt. Syst., Vol. 2 (1999), March, No. 1
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h2 = 2 .
) = ————(t - Vteltg—L,T—-L]
50 = gy ¢~ D) e It

* h?. = 2 »
xz(t)=m(t—t2) Vitelty, Tl

where the value of ¢; is determine_d’ by the following eguation

= ho(T ~ t | hy L+ ~-+b)F ——hz—(T—t‘*)2 . (52)
p=ho(T' = t3) + Ay (P 4(c, + 09 2
hl h2_h1
Case 2. Suppose — <—— -
€1 C2
' - ho—hy{)—coh
2.1) przT2L(Cl( 2 c‘) : 1j+h2(T_—L)+h“L
2 .
ho—h
+(p+b)F[ 2 1(T—L)2],
4C2

th en

= = _ —(T-L 0<t<T-L
1(0) 4c1t “{T—L 4c1—(T )b

R
o
=

I

. ho=hy o | 2(T)  hy=Ny
4, t“{T—L— ic, (T+L) |(t—-L)

_hz_hle

<t<
i, L<tsT

)

where the value of xo(T) is determined by the following equation

. x;(T) _@1_ x(T)  hy—hy \
201[T—L—4c1(T+L)}r2C{T—L_ ic, (T+L) |+ h,T

—p+hy L+ (p+ b)F(xy(T)) = 0,

(2.2 1¢ (hy - y hi e Ay 2
218 (hy - (T - D)\ 2y + (0 +0F | -1

1
+hy(T-L)+hy,L

sp
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38 Y. C. CHEN AND M. S. CHEN

T-L [ chy—hy)-
2 Co

h
< 2 1} ho(T - L) + iy, L

{hy—hy
+(p+b)F( 24021(T—L)2],

then
xxo=%§2 {T%Zhic (T - ty)? - AT Lﬁ
0<t<T-L
“(t) = 24' Lie - f<t<T

where the value of ¢; is determined by the following equation

'2 1 hz‘hl
TL 4c

™

hy - . -
(T"‘t%)z_ (T'*‘L)i]'*‘(h:z"‘ hl)(’f"‘ rz)‘i- .fllllf

hQ_h’] ..2
~p+hL+(p+b)F 4c, (T -ty |=0.

B
(2.3) If p < (hg—hy)(T - L) Jh o +hy(T - L)+ hy,L

¢

hl 2
+(p+b)F 461(T Ly |

then
‘. h * *
xl(t)=4—c]1(t—t1)2 te[t;, T-L)
® h’ - * *
) == e-ut e lg, Tl

where the value of ¢] is determined by the following equation

ho—h)| (T~t-L M h(T~¢ L
(2_ .1) ( —hT ) CI hz—hl + 1( B30 )

“h
__p+hllL-*-(p-*'b)F(ch:(T“.t;—L)z }:O
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and

S P (Tt _L hy ¢
fp=T- -t -5) C3 ho —hy

5. CONCLUSION

To analyze the characteristics_éf the optimal solution, the
following equations should be considered first:

M Pl (54)
ey ¢y '
h2 2
(p—hy(T~L)=- hyyL] 1”~F —4(01 ey (T - L)
hy 2 s
= [hz(T—-L)+h11L_+b]F[m(T—L) ] (55)

Equation (55) can be interpreted as the unit loss of goods surplus
is equal to the unit loss of good lacking. Then, there are some features
of the optimal solution which are described as follows:

1. If (54) is satisfied, then the optimal solutions of Case 1 and
Case 2 are identical. In other words, to determine whether the
production rates of semi-finished and finished goods are the
same or not is still dependent on the sign of the value
hy hy—hy '

— - » but not on L. -

¢y cy

2. Equation (55) divides the optimal solution of Case 1 into
Cases (1.1) and (1.2). And, in this situation, the optimal
ho g

(or + o) (T_—L) . It means

that if the leadtime, L, increases then the optimal guantity of

goods for sale x5(7) will decrease. Furthermore, the optimal

quantity of goods for sale x5(T) =

quantity of goods for sale x5(7) is proportional to square of|
T - L, the length of available time interval for production.

3. If the unit loss of goods surplus is larger than the unit loss of
goods lacking then the optimal solution is Case (1.1). And the

Lo

s r2
4(cy + cq) (T-L)-

optimal quantity of goods for sale x3(T) >
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(1.2). And x5(T) = (T-t)*< (T — L)*. Then,

2 —_——
4(cy +co) 4(c; +cy)
by (52), (55) is the special case of Case (1.2) as ¢; approaches
L.

4. In Case 1, the optimal production rates of semi-finished and
finished goods are the same. Hence the phenomenon of the
two-stages production process is equivalent to one-stage
production process [3].
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