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Abstract

As the position transducers commonly used in industry do not inherently measure an

instantaneous velocity, signal processing is generally required to improve the accuracy of

velocity estimation at each sampling instant. This estimated signal is then used as the velocity

feedback for the velocity loop control in servo motor drives. In this paper, an adaptive fuzzy

logic-based observer is proposed to estimate velocity from the measured motor position. The

proposed observer has a structure similar to that of the conventional state observer except that

the state feedback is replaced with a fuzzy logic feedback. The observer has two adaptation

mechanisms: the first one is used to vary the fuzzy output, and the second one is used to

identify the motor parameters. The experimental results show that the noise in the estimated

velocity caused by the quantization of the measured position can be reduced dramatically with

the proposed observer. In addition, the observer has good transient responses in both normal

and in low speeds.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

For feedback control, all high performance servo drives require both the rotor

position and the velocity, and incremental encoders are the most commonly used

positioning transducers in industry today. Using separate transducers for position

and velocity measurement would be both mechanically difficult and also costly.

Therefore it is a common practice to employ a positional transducer only, estimating
the velocity from the measured position with appropriate numerical methods.
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The most popular numerical method is to simply take the backward difference on the

measured position to approximate the differentiation of the rotor position. This

method gives satisfactory results at normal and high motor speeds, but the estimated

velocity becomes noisy due to the quantization of the measured position when the
motor is running at low speeds [1]. In order to limit the amount of quantization noise

and prevent it from causing ripples on the current command, it is necessary to filter

the differentiated signal in the feedback controller. That is equivalent to reducing the

bandwidth of the servo drive in order to compromise the magnitude of noise.

A number of authors have investigated the use of extra counters to extend the

resolution of position measurements in order to improve velocity estimation at low

speed [2–4]. Improvement of velocity estimation is achieved by measuring the elapsed

time between two successive pulses coming from the encoder. Since these schemes
require extra hardware and dedicated software for implementation, the cost of the

system increases consequently. Several studies have been published regarding the use

of closed-loop observers for velocity estimation. Lorenz and Van Patten [5] reported

the use of a close-loop state observer; Bodson et al. [6] studied the use of a nonlinear

close-loop observer; Brown et al. [7] proposed a least-square filtering technique; and

Belanger el al. [8] proposed using Kalman filtering with constant sampling rate.

These techniques are attractive since only the software modification is required to

upgrade from the differentiator-based estimator, and significant reduction in quan-
tization noise is also achieved compared to the differentiator-based estimator.

However, as reported in [9], quantization noise still exists at very low speed when a

state observer is used for velocity estimation.

The key design trade-off for the close-loop velocity estimators is the tracking and

disturbance responses vs. the smoothness of motion at low speeds. The estimator

bandwidth needs to be high to track the changes in motor position but slow to

maintain smooth motion at speeds when the measured position pulse is discontin-

uous. In this paper, we propose a new method that uses an adaptive fuzzy logic
observer for velocity estimation from position measurements.

2. State observer for velocity estimation

The equation for a differentiator-based velocity estimator can be written as

~xxðkÞ ¼ hðkT Þ � hððk � 1ÞT Þ
T

; ð1Þ

where ~xx is the differentiated (measured) velocity and h is the position, T is the

sampling period, kT is the present sampling instant, and ðk � 1ÞT is the previous
sampling instant. Although this method is simple, however its usefulness is limited by

the accuracy and quantization noise. Because in a servo motor drive, the velocity
loop is the innermost state loop and its performance is generally required to be better

than the outer loops, therefore its gains are also higher than the gains of the outer

loops. However, the higher gain requirement for the velocity loop causes quantiza-

tion noise to appear directly in the motor current command, thus limiting the
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achievable bandwidth of the feedback controller and increasing power dissipation of

the motor drive.

An alternative method for velocity estimation is to use a closed-loop state ob-
server. Consider the dc motor model shown in Fig. 1, where Kt and J are the torque

constant and the inertia of the motor separately, ia is the motor current, Td is the
external disturbance, and b is the viscous friction coefficient. The model can be ex-

pressed in the following state variable form:

_hh

_xx
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¼
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þ
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Rewriting Eq. (2) in a more compact form:

_XX ¼ AX þ Bia þ DTd;

Y ¼ CX ;
ð3Þ

where

X ¼ h
x

� �
; A ¼

0 1

0 � b
J

" #
; B ¼

0
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J

" #
; D ¼
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� 1
J

" #
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From the model of Eq. (3), the following state velocity observer can be synthesized

when the disturbance input is ignored:

_̂
XX̂XX ¼ AX̂X þ BU þ KðCX � C X̂X Þ; ð4Þ

where X̂X ðkÞ is the estimated state vector and K ¼ ½K1 K2 � is the gain matrix. The
state velocity observer can be arranged as the block diagram shown in Fig. 2. Inputs

to the observer are the measured motor position and current. The controller has a
derivative and a proportional gain. The feedback controller forces error between the

measured and the estimated position to zero by manipulating the input to the motor

model. The damping coefficient of the observer is determined by the sum of K1 and
b. Because b is small for typical motors, and K1 is generally set to a value much
higher than b to increase the bandwidth of the observer, the frictional force bx can
be ignored in the synthesis of the state observer. In addition, an integral gain can also

added to the observer to reduce steady-state tracking error of the estimated velocity.

Fig. 1. Model of a dc motor.
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The estimated velocity can be written as a function of the actual velocity and

disturbance as follows:

x̂x ¼

J

ĴJ

K̂Kt
Kt

s2 þ K1sþ K2

 !
x þ 1

ĴJ

K̂Kt
Kt

sTd

s2 þ K1sþ K2
: ð5Þ

It can be seen that x̂x is identical to x provided that all the motor parameters are

correctly estimated. In general, the x̂x=x response is not sensitive to motor parame-
ters within its working frequency, i.e. bandwidth of the observer. Conversely, the

x̂x=Td response is sensitive to motor parameters within the working frequency of the
observer, and significant errors may occur due to external disturbances if ĴJ and K̂Kt
are not correctly estimated [9].

Note that in the above analysis, the effect due to quantization of the measured

motor position was not considered. In general, position quantization is not notice-

able when the motor is running at normal or high speed, where the measured po-

sition per sampling period is large. However at low speeds, ripples on the estimated
velocity become noticeable due to the discontinuity of the measured position pulses.

These velocity ripples are undesirable since they cause an oscillatory response in the

motor controller. Although it is possible to filter the velocity ripple by reducing the

bandwidth of the observer at a low speed, nevertheless it complicates the imple-

mentation and tuning of the observer. In the following sections, an adaptive fuzzy

observer is proposed to improve the velocity estimation.

3. Adaptive fuzzy logic-based velocity observer

Since fuzzy logic provides a nonlinear input/output mapping, hence if the regu-

lator of the observer shown in Fig. 2 is replaced with a fuzzy logic-based regulator,

then the characteristics of the observer can be designed such that it is similar to the
state observer when the motor is running at normal or high speed but its bandwidth

is low at low speed in order to smooth out the estimated velocity. A block diagram of

the proposed fuzzy velocity observer is shown in Fig. 3. The fuzzy controller uses the

position error and the rate of change of the position error as its input, and outputs a

Fig. 2. Block diagram of state velocity observer.
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command to the motor model that forces the error between the measured and the

estimated position to zero.

3.1. Fuzzy observer

The implementation of the fuzzy observer is straightforward. First, let the posi-

tion and the velocity estimated by the fuzzy observer be ĥhf and x̂xf , respectively, and

the position and the velocity errors be he ¼ h � ĥhf and xe ¼ ~xx � x̂xf . Each input to
and output from the fuzzy controller has an associated set of membership functions

that map the input space to a degree of membership. Each variable is partitioned

into seven linguistic labels, which are: negative big (NB), negative medium (NM),

negative small (NS), approximately zero (ZE), positive small (PS), positive medium

(PM) and positive big (PB), respectively. When he is negative (NB, NM, or NS) the
estimated position is behind the actual motor position, whereas when he is positive
(PS, PM, or PB) the estimated position is ahead of the actual motor position. All the

membership functions are triangular, and the equations for calculating the degrees of
membership for a given input or output variable can be calculated from the geometry

shown in Fig. 4.

The fuzzy controller has 49 rules, as shown in Table 1. The fuzzy rules are con-

structed according to the experience of how the control should response with respect

to the position and the velocity errors in order to minimize the ripple of the estimated

velocity. The center of gravity method is used for the calculation of the fuzzy con-

troller output. Let u represents the output of the fuzzy controller. Then

u ¼
P7

i¼1 wiciP7

i¼1 wi

¼

c1 � � � c7½ �
w1
..
.

w7

2
64

3
75

P7

i¼1 wi

¼ mTw; ð6Þ

where wi is the degree of membership and ci is the center of gravity of the ith
membership function, respectively, wT ¼ ½w1 � � � w7�, and mT ¼ ½c1 � � � c7�. Al-
though there are 49 rules, only four are used for every output value.

Fig. 3. Fuzzy logic-based velocity observer.
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3.2. Output adaptation mechanism

The fuzzy observer described above is able to smooth out the velocity estimates at

low speed, however response of the observer to motor disturbance also becomes

sluggish. Hence, an adaptation mechanism that automatically learns the influence of

the disturbance on the observer and varies the magnitude of the fuzzy output is

implemented to improve the dynamic response of the observer. Specifically, the effect

of motor disturbance is tracked via he and xe, and the range of the fuzzy output is
continuously updated. Several references provide general background on adaptive

fuzzy control [10,11].

(a) (b)

(c)

Fig. 4. Membership functions of the fuzzy velocity observer. (a) Membership function of position error

input. (b) Membership function of velocity error input. (c) Membership function of output command.

Table 1

Rule base for the fuzzy velocity observer

xe he

NB NM NS ZE PS PM PB

PB ZE PS PM PB PB PB PB

PM NS ZE PS PM PB PB PB

PS NM NS ZE PS PM PB PB

ZE NB NM NS ZE PS PM PB

NS NB NB NM NS ZE PS PM

NM NB NB NB NM NS ZE PS

NB NB NB NB NB NM NS ZE
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Let m̂m be the optimal range for the universe of discourse of the fuzzy output, and
Dm ¼ m � m̂m be the parameter error vector. Equations in s-domain are used in the
derivation for simplicity. From models in Figs. 1 and 3, the actual and the estimated
motor velocity can be expressed as:

x ¼ Te
Js

¼ iaKt
Js

; ð7Þ

x̂xf ¼
iaK̂Kt þ u

ĴJs
¼ iaK̂Kt þ mTw

ĴJs
: ð8Þ

If all the motor parameters are known, the rate of change of the velocity error can be

obtained by combining the above equations, as

_xxe ¼
1

J
ð�mTwÞ: ð9Þ

Then choosing the Lyapunov function as

V ¼ 1
2
ðx2

e þ bDmTDmÞ; ð10Þ

where b is a constant associated with the adaptation rate. Differentiating Eq. (10),
and then substituting Eq. (9) into the resulting equation yields

_VV ¼ �xe

J
m̂mTwþ bDmT _mm

�
þ xe

Jb
w
�
: ð11Þ

Since m̂mTw and xe always have the same polarity, therefore the following adaptation

mechanism can be used to continuously vary the location of the output membership
functions

_mm ¼ �xe

Jb
w: ð12Þ

3.3. Input scaling

As the inputs to the fuzzy observer, i.e. he and xe, vary considerably during

normal motor operations, hence in order for the fuzzy observer to work properly,
mapping between the input variables and their corresponding universe of discourse

are scaled according to the rate of change of the position and the velocity commands.

Let x	 and a	 be the velocity and acceleration commands, respectively, and rh and rx

be the input ranges for he and xe separately under these motion commands. Then the

input variables are scaled according to

rh ¼ m1x	 þ m2; ð13Þ
rx ¼ n1a	 þ n2; ð14Þ

where m1, n1 are scaling factors, and m2, n2 are the input ranges when the motor is at
rest. he is scaled according to x	 because the variation of he is expected to become
larger when speed increases. Similarly, xe is scaled according to a	 because the

variation of xe becomes larger at higher acceleration.
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3.4. K̂Kt=ĴJ Adaptation mechanism

As can be seen from Fig. 3, the adaptive fuzzy observer requires the knowledge of

the following motor parameters: J and Kt. Though it was found in [9] that the state
velocity observer is not sensitive to J and Kt within its operating frequency, however

correcting ĴJ and K̂Kt can further improve the velocity estimations, particularly in the
reduction of tracking errors during transient states. Also because J and Kt are
grouped together in the observer, only the adaptation of K̂Kt=ĴJ is needed. Let k̂ko be the
nominal value of Kt=J , and k̂kc be the correction for K̂Kt=ĴJ . Then an adaptation rule
for k̂kc can be derived easily from Eqs. (7) and (8) by using the MIT rule:

_̂kk̂kkc ¼ b _xxeia: ð15Þ

A block diagram for the fuzzy velocity observer including all the adaptation algo-

rithms is shown in Fig. 5.

4. Experimental verifications

Several experiments were performed to evaluate the performance of the adaptive

fuzzy velocity observer described in the previous sections. The motor controller was

implemented with a TMS320C25 DSP controller. A 200 W dc motor was used in the

experimental setup, with a 1000 lines/rev encoder mounted on the motor for position

measurement. A state feedback controller was used to control the motor, with the

sampling frequency set to 1000 Hz. The adaptive fuzzy observer was implemented

with a PC and interfaced to the DSP digitally to furnish the velocity feedback signal.

A state velocity observer was also implemented for comparison. The execution rate
of the fuzzy observer was also set to 1000 Hz. A block diagram of the experimental

setup is shown in Fig. 6.

Figs. 7 and 8 compare the speed responses of the control system with the mea-

sured velocity (i.e. the differentiated velocity shown in Eq. (1)), the state observer

Fig. 5. Adaptive fuzzy logic-based velocity observer.
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velocity, and the adaptive fuzzy observer velocity were used as the velocity feedback
signal, respectively. The motor was running from 0 to 150, and 15 separately for

these figures. Note that in our experimental system, 15 rpm corresponds to 1 pulse/

sampling period. It can be seen that the quantization effect of the measured velocity

becomes more noticeable as the motor speed gets lower. For example, in Fig. 8 ~xx
only has three discrete levels due to quantization of the position measurements. On

the other hand, both the state and fuzzy observers are able to track the motor ve-

locity with relatively high accuracy when the motor is running at 150 rpm. But at 15

rpm, it is apparent that the response with the adaptive fuzzy observer velocity is
superior to the response with the state observer velocity.

Fig. 6. Experimental system.

Fig. 7. Comparison of ~xx (measured velocity), x̂x (estimated velocity from state observer), and x̂xf (esti-

mated velocity from fuzzy observer) when the motor was running at 150 rpm: (a) ~xx and x̂x, (b) ~xx and x̂xf .

Fig. 8. Comparison of ~xx; x̂x, and x̂xf when the motor was running at 15 rpm. (a) ~xx and x̂x, (b) ~xx and x̂xf .
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Similar comparisons were made when the motor was running at 3.75 rpm (0.25

pulse/T), and the results are shown in Fig. 9. Note that the measured position pulses

are discontinuous when the motor speed is below 0.5 pulse/T. As shown in Fig. 9(a),

x̂x is oscillatory due to the discontinuous position inputs. The estimated velocity
increased quickly when a position pulse was detected, and decayed exponentially

when no position pulse was detected in the following sampling instants. Conversely,

as shown in Fig. 9(b), the velocity estimated from the adaptive fuzzy observer, i.e. x̂xf ,

was very smooth and almost no ripple can be found in the velocity response.

Figs. 10 and 11 compare the responses of the control system when the motor was

accelerating to 0.5 pulse/T and decelerating down to 0 pulse/T using the state ob-

server velocity and adaptive fuzzy observer velocity as its speed feedback, respec-

tively. Again, it can be seen that the responses with the adaptive fuzzy observer are
much better than with the state observer.

The effects of the output adaptation and input scaling to the fuzzy velocity ob-

server were also examined experimentally. The center of gravity vector (m) was set to
150% and 50% of its optimal value (m̂m) when the motor was running at 15 rpm. Then
the responses of x̂xf were recorded and are shown in the upper two traces of Fig. 12.

In addition, the input scaling factor for xe, i.e. rx, was also set to 150% and 50% of

its correct value when the motor was running at 15 rpm, and x̂xf was recorded and

Fig. 9. Comparison of ~xx, x̂x, and x̂xf when the motor was running at 3.75 rpm (0.25 pulse/T): (a) ~xx and x̂x,
(b) ~xx and x̂xf .

Fig. 10. Measured velocity ( ~xx) vs. estimated velocity from state observer (x̂x) when the motor was in
acceleration/deceleration region. (a) Motor accelerating from 0 to 0.5 pulse/T. (b) Motor decelerating from

0.5 pulse/T to 0.
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shown in the lower traces of Fig. 12. Note that similar results will be obtained if rh is

not set properly instead. As Fig. 12 shows, all the traces contained significant ripples.

These results indicate that both the output adaptation and the input scaling do

improve the fuzzy velocity estimation, however proper adjustments of these algo-

rithms are also needed.

Finally, comparisons of the frequency spectrum of the measured velocity, the state
observer velocity, and the adaptive fuzzy observer velocity are shown in Fig. 13. The

motor was running at 7.5 rpm, i.e. 0.5 pulse/T, when these frequency spectra were

measured. As can be seen from Fig. 13(a), the peak harmonic frequency of the

measured velocity occurs around 500 Hz. This is because the sampling rate was 1000

Hz and the motor was running at 0.5 pulse/T; therefore, the processor sees a position

pulse every 2 sampling periods. Similarly, the peak harmonic frequency of the state

observer velocity also occurs near 500 Hz, but its magnitude is only about 1/10 of

Fig. 12. Estimated velocity x̂xf when the input scaling was not properly adjusted, and the motor was

running at 15 rpm.

Fig. 11. Measured velocity ( ~xx) vs. estimated velocity from fuzzy observer (x̂xf ) when the motor was in

acceleration/deceleration region. (a) Motor accelerating from 0 to 0.5 pulse/T. (b) Motor decelerating from

0.5 pulse/T to 0.
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that of the measured velocity. On the other hand, the 500 Hz harmonic is almost un-

identifiable for the adaptive fuzzy observer velocity under the same scale.

The experimental results shown in this section demonstrate the effectiveness of

using the adaptive fuzzy logic-based observer to suppress velocity ripple at low
speed. In addition, the results also confirmed that the adaptive fuzzy observer is

superior to the state observer, particularly for low speed velocity estimation.

5. Conclusions

This paper has presented an adaptive fuzzy logic-based observer for velocity es-
timation from discrete position measurements for servo motor drives. The experi-

mental results indicate that the noises in the estimated velocity caused by the

quantization of measured positions can be reduced dramatically with the proposed

observer. Also, because the output adaptation mechanism automatically learns the

Fig. 13. Frequency spectra of the estimated velocity for various estimation techniques, with motor run-

ning at 0.5 pulse/T (7.5 rpm): (a) ~xx, (b) x̂x, (c) x̂xf .
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influence of the external disturbance on the motor and the mapping between the

input variables and their corresponding universe of discourse is scaled according to

the rate of change of the position and the velocity commands, the velocity observer
has good transient responses over the whole speed range. Thought not independently

tested, the adaptation mechanism to correct K̂Kt=ĴJ further improves the velocity es-
timation, particularly in the reduction of tracking errors during transient states. The

results also confirm that the adaptive fuzzy observer is superior to the state observer

at low speeds.
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