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A pharmacophore model for the inhibition of Tyrosine Kinase is established that could serve as a

guide for the rational design of high potent and selective inhibitors. Recently, quantitative structure-activ-

ity relationships for 4-anilinoquinazoline class of inhibitors to inhibit EGFR autophosphorylation are in

great demand. We have developed a quantitatively predictive chemical function-based pharmacophore

model by using Discovery Studio 2.1 software. The optimal hypothesis consists of four features: three hy-

drophobic (HYD), and one hydrogen bond donor (HBD) functions. The input for HypoGen was a training

set of 16 compounds exhibiting IC50 values ranging between 0.025 nM and 12000 nM, and having the out-

put borne significant conventional coefficient of 0.97. To further validate our design rationale, pro-

tein-ligand docking software was used to elucidate the intra-molecular interactions. Therefore, the estab-

lished pharmacophore model could help to a better understanding on how the substituents might influence

the activity and afford important information for both ligand-based and structure-based drug designs.

Keywords: Pharmacophore model; Tyrosine kinase; Quantitative structure-activity relationship;

4-Anilinoquinazoline; EGFR; HypoGen.

INTRODUCTION

The protein phosphorylation is a critical mechanism

for regulating protein function in many cell regulatory pro-

cesses.1 Recently, the growth factor signaling pathways are

the main focus of research for the novel cancer chemother-

apy (e.g. breast, lung, colon, and prostate) because of their

fundamental role in regulating key cellular functions which

include cell proliferation, differentiation, metastasis and

survival.2-4 An important mediator of growth factor signal-

ing pathways is the epidermal growth factor receptor

(EGFR). It has been illustrated that small molecules can se-

lectively inhibit the EGFR, and they have a great therapeu-

tic potential in the treatment of malignant and nonmalig-

nant epithelial diseases.

Of several candidate compounds synthesized and

tested, gefitinib (1) was the first EGFR-tyrosine kinase in-

hibitor being approved by US FDA (Food and Drug Ad-

ministration) for the treatment of non-small cell lung can-

cer, and later erlotinib (2), which belongs to same class, and

was used following a prior chemotherapeutic intervention.

In 2007, Lapatinib (3) (Fig. 1) was approved by US FDA to
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Fig. 1. EGFR receptor tyrosine kinase inhibitors in

clinical use.



be used for the clinical trial of breast cancer.5 These agents

belong to the 4-anilinoquinazoline class and the key fea-

tures between the receptor have been revealed. Over the

years, compounds belonging to 4-anilinoquinazoline fam-

ily are reported to be useful as an analgesic and anti-inflam-

matory agent and used in the treatment of cancer. A major

step forwarded in the development of EGFR-targeted drugs

was the discovery of the high inhibitory ability of the

4-[(3-bromophenyl) amino]-quinazoline.6 Nowadays, a

number of reports have been presented that a broad class of

4-anilinoquinazolines are potent and highly selective in-

hibitors of EGF-R phosphorylation, resulting from the

competitive binding at the ATP (Adenosine triphosphate)

site. Since the 4-anilinoquinazoline class of inhibitors has

been discovered to be effective, there is a great demand to

employ the distinctive structure-activity relationship

(SAR) models for a broad class of 4-anilino quinazolines to

investigate their abilities to inhibit EGFR autophos-

phorylation.7,8

Computer-assisted drug design (CADD) represents

the more recent applications of computers as tools in the

drug design process. The success of CADD should depend

upon the amount of information that is available about the

ligand and receptor.9 Based on the information that is avail-

able, one can apply either ligand-based or receptor-based

molecular design methods to find interesting lead mole-

cules quickly. The results can be used to predict biological

activities of untested molecules, propose compounds for

synthesis, validate models of receptor binding sites, and

optimize pharmacokinetic properties of compounds. The

ligand-based approach is applicable when the structure of

the receptor is unknown. When a series of compounds have

been identified that can exert the activity of interest, and

the quantitative structure-activity relationships (QSAR)

would become an alternative powerful theoretical tool for

the description and prediction of properties of complex

molecular systems in different environments.10-13

The ultimate goal of CADD is to determine interest-

ing lead molecules which are worth for further drug re-

search and synthesis by the related laboratory. The factors

which affect the protein-ligand interactions can be charac-

terized by using different QSAR methods or molecular

docking programs.14-18 Pharmacophore modeling is one of

the best 3D-QSAR methods that has been widely used for

generating the chemical features of relative com-

pounds.19�21 The method based on 3D structural informa-

tion of molecules, and has been successfully applied to the

drug discovery. For the numerous therapeutically relevant

drug targets with undetermined active site geometries,

pharmacophore modeling has shown to provide an effec-

tive mechanism for virtual screening. In this study,

pharmacophore methodologies are used to establish a cor-

relation between chemical structure and specific biological

activity, the method has been demonstrated as an effective

tool in discovering novel lead compounds.

The purpose of the present work is to establish a

pharmacophore model for the inhibition of Tyrosine

Kinase that could serve as a guide for the rational design of

high potent and selective inhibitors. We focus on the con-

cept of 3D pharmacophores in the context of similarity as-

sessments. A pharmacophore is based on the concept that

specific interactions are observed in the drug and receptor

interactions. In order to rapidly identify the new potential

drugs, it is expected that the established pharmacophore

models are able to correctly elucidate the QSAR of the

tyrosine kinase inhibitors.

MATERIALS AND METHODS

Biological data

The parent compound of Tyrosine Kinase inhibitor

“4-anilinequinazoline” contains quinazoline and aniline

segments (Fig. 2). According to the geometrical analysis,
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Fig. 2. Structure of: (a) 4-anilinequinazoline; (b)

quinazoline; (c) aniline.



quinazoline is made up of two fused six-membered aro-

matic rings; a nitrogen atom connects two electron-rich

groups through two rotatable N-C single bonds. The dihed-

ral angle between the aniline and quinazoline should be

treated with caution. Table 1 shows the chemical structures

of 4-anilinequinazoline derivatives. Medicinally, quinazo-

line-like compounds could be used in various areas espe-

cial in anti-malarial agent and cancer treatment.22 The tyro-

sine kinase activities of the epidermal growth factor recep-

tor which are represented as IC50 in nM, were obtained

from the literature data.6 All the initial inhibition activities

were divided into five levels, and three compounds were

selected from each level to perform the pre-analysis. The

compounds of training and test sets were selected by con-

sidering the fact that test set compounds represent a range

of biological activity and chemical classes similar to that of

the training sets. The selection of a suitable training set is

critical for the quality of pharmacophore models as gener-

ated automatically. To ensure the statistic relevance of the

calculated model, the training set should contain a set of di-

verse compounds and their activity data. These should

spread over 4-5 orders of magnitude equally and are origi-

nated from the comparable binding assays. Each selected

compound should add new information to the model while

avoiding redundancy and bias both in terms of structural

features and activity range.19 In Table 1, all of the training

set compounds are presented as the 2D chemical structures,

the most potent inhibitor shows an IC50 of 0.025 nM and

exhibits the least value of 12,000. Due to the pharmaco-

phore modeling needed, the most active compounds should

provide information on the most critical feature. Thus, on

the basis of the above criteria, 16 compounds for the

training set and 9 compounds for the test set were selected.

Pharmacophore modeling

A pharmacophore is defined as the 3D structural fea-

tures that illustrate how a ligand molecule can interact with

a target receptor in a specific binding site. When the asset

of active ligands is available, it is possible to compute their

shares of pharmacophore.20,21 In particular, pharmacophore

model in Discovery Studio 2.1 is generally referred to as a

‘hypothesis’ which consists of a collection of features nec-

essary for the biological activity of the ligands oriented in

3D space. In order to generate a pharmacophore, all mole-

cules (both training and test sets) should be built and mini-

mized within the Discovery Studio 2.1 software.15 Confor-

mation models for all of the molecules were generated by

using the CHARMM force field parameters and a con-

straint of 20 kcal/mol energy thresholds above the global

energy minimum.23 Discovery Studio 2.1 selects conform-

ers using the Poling algorithm, that penalizes any newly

generated conformer which is too close to an already

formed conformer in the set.24 This method ensures maxi-

mum coverage in conformational space. All other parame-

ters were set to the default settings.

The resulting hypotheses are specified as several de-

fault feature types (e.g. hydrogen bond acceptor, hydrogen

bond donor, hydrophobic, ring aromatic, negative/positive

ionizable) located at the well-defined positions (location

constraints). These are surrounded by certain spatial toler-

ance spheres, designating the area in space to be occupied

by the corresponding chemical functions of the matched

molecule. Each of the features is assigned a certain weight

that is proportional to its relative contribution to the biolog-

ical activity. Hydrogen bond acceptors/donors, and aro-

matic rings include an additional vector, defining the direc-

tion of the interaction. The results of the hypotheses in-

clude different statistical values calculated during the

model generation, and the best model should be selected on

the basis of the lowest total cost, rms values and high corre-
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Table 1. Structure of 4-anilinoquinazoline class of inhibitors and

relative IC50

1-15 16

No. R1 R2 X IC50 (nM)

1 H H CF3 577.000

2 NO2 H H 5000.000

3 NO2 H Br 900.000

4 H OMe Br 10.000

5 H NH2 H 100.000

6 H NH2 F 2.000

7 H NH2 I 0.350

8 H NO2 H 12000.000

9 H NO2 F 6100.000

10 OMe OMe Br 0.025

11 OMe OMe I 0.890

12 NMe2 H Br 84.000

13 H OH Br 4.7000

14 H NHAc Br 40.000

15 H NHMe Br 7.000

16 5,6-diOMe 1367.000



lation of the 3D arrangement of features with their corre-

sponding pharmacological activities in a given set of train-

ing compounds.

RESULTS AND DISCUSSION

There are several methods for generating 3D QSAR

models. Several 3D QSAR studies of quinazoline type

EGF-R inhibitors have been reported.12,25 In one example,

the steric and electrostatic fields were computed, and corre-

lated with the activity (e.g. CoMFA, CoMSIA).26 The re-

sults for the ligand-based design indicated that the elec-

tron-withdrawing lipophilic substituents on the 3’-position

of the aniline are favorable, and electron-donating groups

at the 6- and 7-postion of the quinazoline are preferred.

However, CoMFA or CoMSIA is incapable of de-

scribing appropriately all binding forces, because the

mothod is based only on standard steric and electrostatic

molecular fields to model receptor-ligand interactions. In

Discovery Studio, 3D QSAR models are generated and

based on how well a series of ligands fit in a pharmaco-

phore. The better a ligand fits a pharmacophore (e.g. the

more features that map and the closer they are to the feature

centroids), the more active it is predicted to be. To assess

the significance of the receptor-ligand interaction, we pre-

sented an evaluation of the cross-validation for the

pharmacophore results and used LibDock protocol for the

docking of ligands into the binding pocket of EGFR.27

Pharmacophore Generation & Assessment

3D QSARs differ from typical QSAR methods in that

the descriptors are derived from ligand alignments or how

well ligands fit a pharmacophore, rather than the molecular

features. Often, the descriptors are concerned with the

overall molecule instead of a single substituent. In Discov-

ery Studio, 3D QSAR models are generated and based on

how well a series of ligands fit a pharmacophore. The better

a ligand fits a pharmacophore (i.e., the more features that

map and the closer they are to the feature centroids), the

more active it is predicted to be.

Since the Pharmacophore Generation protocol can

only generate a maximum of five features for a hypothesis.

An initial analysis of the “show function mapping” tools

revealed that hydrogen bond acceptor (HBA), hydrogen

bond donor (HBD), hydrophobic (HYD), and ring aro-

matic (RA) features could effectively map all the critical

chemical/structural features of all the training set mole-

cules. Therefore, these features were used to generate 10

pharmacophore hypotheses from the training set, using a

default uncertainty value of 3. The uncertainty value repre-

sents a ratio range of uncertainty in the activity value based

on the expected statistical irregularities of biological data

collected.

The quantitative models were generated for the six-

teen compounds in the training set (compound 1-16, Table

1). Table 2 lists the top 10 hypothesis generated by

HypoRefine algorithm together with their statistical pa-

rameters. As shown in Fig. 3, the best hypothesis Hypo1

contains three features, including one hydrogen-bond ac-

ceptor (A), and three hydrophobic features (including

aliphatic and aromatic). The main difference between

Hypo1 and Hypo2 was the addition of excluded volume.

Although Hypo2 has slight improvement in the rms value,

Hypo1 comprehends two excluded volume (E) which ex-

hibit the significant meaning of actual ligand-protein inter-
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Table 2. Results obtained from pharmacophore hypothesis generation using the training set

moleculesa

Hypo number Total cost rms Correlation Featuresb

1 73.81 0.98 0.95 HBD, HYD, aliHYD, aroHYD

2 74.11 0.97 0.96 HBD, HYD, aliHYD, HYD

3 74.30 1.01 0.95 HBD, HYD, aroHYD, HYD

4 75.49 0.93 0.96 HBD, HYD, HYD, HYD

5 82.00 1.41 0.90 HBD, HYD, aliHYD HYD, R A

6 82.92 1.44 0.90 HBD, HYD, alipHYD, aroHYD, R A

7 89.90 1.76 0.84 HBD, HYD, alipHYD, alipHYD, aroHYD

8 95.36 2.05 0.78 HBD, HYD, R A

9 95.89 2.22 0.71 HYD, HYD, HYD, HYD

10 96.24 2.21 0.71 HBD, HYD, HYD, HYD, HYD

a Null cost = 123.97 and Fixed cost = 58.67. All costs are in units of bits.
b HBD (hydrogen bond donor), HYD (hydrophobic, ali = aliphatic, aro = aromatic) and RA (ring aromatic).



actions. Besides, Hypo1 was characterized by the good cor-

relation coefficient (0.95), the lowest total cost value

(73.81), and the acceptable rms (0.98).

Validation of Pharmacophores

Ideally, a good pharmacophore model should not only

be able to predict the activities of the training set com-

pounds accurately, but also can predict the activities of ex-

ternal compounds of test set.28 To further validate our de-

sign rationale, cross-validation methods were used for as-

sessing the performance of the generated pharmacophore

models. For the use of test set method, nine compounds

with different bioactivities represented as (-log IC50) and

structures were selected to form a test set. Discovery Studio

2.1/Ligand Pharmacophore Mapping protocol was used

with Hypo 1 as pharmacophore model to screen the de-

signed database. All of the test set compounds were pre-

pared by using the same method as that for the training set,

and the model analysis has resulted in the unique model

with a cross-validated coefficient of 0.762 (Fig. 4). Further

attempts were also made to classify the real screening re-

sults to the active and inactive compounds by applying the

pharmacophore model. For this purpose, the activity values

of the training set compounds were classified into three cat-

egories: highly active (IC50 � 50 nM, +++), moderately ac-

tive (50 < nM IC50 � 1000 nM, ++), and low active (IC50 >

1000 nM, +). Table 3 shows the predicted and experimental

inhibitory activities of these 16 molecules in the training

set. This classification scheme is shown to be more conse-

quential than the actual prediction values.

Docking Study

Protein-ligand docking software is widely used to

promote the drug design that has the potential to identify

the promising lead compounds at an early stage of the drug

discovery pipeline.29�31 LibDock is based on matching the

polar and apolar binding site features of the protein-ligand

complex, and this algorithm was developed by Diller and

Merz.32 The algorithm uses protein site features referred to

as HotSpots which consist of polar and apolar types. Polar

Hotspot is preferred by a polar ligand atom (e.g. a hydrogen
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Fig. 4. Plot of the correlation between the experimen-

tal and predicted activities (by using Hypo1)

for the (a) Training set and (b) Test set com-

pounds.

Fig. 3. HipHop model generated by compounds (1-16)

in the training set (Hypo1).



bond donor or acceptor) and an apolar HotSpot is preferred

by an apolar atom (e.g. a carbon atom). The receptor

HotSpot file was calculated prior to the docking procedure.

The following docking study was carried out by LibDock

within Discovery Studio 2.1 package (Accelrys, San

Diego, U.S.A.), and the Dreiding force field was used for

all calculations. The docking and subsequent scoring were

performed by using default parameters, where the X-ray

structure of EGFR-R in complex with a POX inhibitor were

obtained from the Brookhaven Protein Data Bank (PDB

code: 3BEL1). The binding site of the bound ligand (POX,

4-amino-6-{[1-(3-fluorobenzyl)-1H-indazol- 5-yl]amino}-

pyrimidine-5-carbaldehyde O-(2- methoxyethyl)oxime)

was identified as the active site, and the solvent molecules

far away the active site were removed (Fig. 5).

The binding modes of the quinazoline type inhibitors

at the ATP binding site of EGF-R have been reported by

several groups.1 The nitrogen atom connects both aniline

and quinazoline groups, and the direction of the hydrogen

bond acceptor is vital for the inhibitory activity. The SAR

at the oxime side chain (R2 group) has been reported to

have a negative effect against activity.25 In this work, we

focus our attention on the surrounding of each pharma-

cophore features. The results show that compounds with

hydrophobic substituents at 6 and 7 positions of the

quinazoline are more potent in the experimental assay. This

observation is also in agreement with the pharmacophore
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Table 4. Results of LibDock docking score and corresponding

experimental value

Compoud

No
Structure

LibDock

docking score

Experimenta

l IC50 (nm)

T1 123.403 0.240

T2 120.193 0.170

T3 113.551 0.006

T4 109.456 3.800

T5 100.118 23.000

T6 98.265 12000.000

Table 3. Experimental and predicted activities (using Hypo1) of the training set compounds

Compoud No. Experimental IC50 (nm) Predicted IC50 (nm) Errora Fit valueb Experimental scalec Predicted scalec

1 0.025 0.046 +1.84 10.43 +++ +++

2 0.890 0.726 -1.23 10.42 +++ +++

3 3.300 2.993 -1.10 8.83 +++ +++

4 0.350 3.784 +10.81 8.67 +++ +++

5 4.700 5.869 +1.25 8.47 +++ +++

6 10.000 8.614 -1.16 8.29 +++ +++

7 40.000 9.469 -4.22 8.25 +++ +++

8 7.000 10.440 +1.49 8.21 +++ +++

9 84.000 44.197 -1.90 7.99 ++ +++

10 100.000 51.566 -1.94 7.08 ++ ++

11 540.000 302.742 -1.78 6.95 ++ ++

12 1000.000 406.343 -2.43 6.86 ++ ++

13 1367.000 2332.250 +1.71 6.68 + +

14 900.000 3569.360 +3.97 6.60 ++ +

15 6000.000 5482.320 -1.09 5.84 + +

16 12000.000 6023.580 -1.99 5.77 + +

a A ratio between the experimental and predicted activities. A positive value indicates that the predicted IC50 is lower than the

experimental IC50.
b Fit value indicates how well the features in the hypothesis overlap the chemical features in the compound.
c Activity scale: +++, IC50 � 50 nM (highly active); ++, 50 nM < IC50 � 1000 nM (moderately active); +, IC50 > 1000 nM (low

active).



model. In Fig. 6, the substituent at 3’-position of aniline oc-

cupies a pocket formed by the side chains of Met766,

Leu777, Thr790, Thr854, and Phe856 (Fig. 6a, 6b). Elec-

tron-withdrawing lipophilic substituents on the 3-position

of the aniline are favorable, especially the chlorine and bro-

mine groups give the optimal effect. Both the steric effect

and intra-molecular hydrogen bond favor the inhibitory ac-

tivity, such phenomenon is revealed in Fig. 5. The replace-

ment by trifluoromethyl group may further enhance the hy-

drogen bond formation among the residues. Moreover, the

electron-donating groups at R1 position of the quinazoline

are preferred.

Molecular surface comparison

The study of molecular surface is an important analy-

sis of geometry, it can be used for the exploration of a pro-

tein folding, docking, and interactions between proteins.

Various physical chemical properties can be mapped onto

the molecular surface. To further validate our design ratio-

nale, we compared the shape of the highest activity com-

pound T1 and POX (Fig. 7a, 7b), and the higher score com-

pounds were shown to have similar orientation lying on the

active site position. According to the docking results, three

compounds (T1, T2, and T3) exhibited high scores that

have the same backbone near the free NH linker, and the

torsion angle defined by aniline and pyrimidine is around

100 degree (Fig. 7c). The hydrophobicity of aliphatic fea-

ture suggests that alkyl chain at the C-7 position is an im-

portant hint. This assumption agrees well with the structure

surface of POX.

The results from the above structural analysis of pro-

tein-ligand relationship provide the explaination of the

binding modes which were shown to fit the pharmacophore

model and the docking results. The amino modes around

anilino group form extra intramolecular hydrogen bonds,

and the overall molecular surface should fit the molecule

shape as well as the POX inhibitor.

CONCLUSIONS

A pharmacophore modeling, containing HipHop and

HypoRefine modules within Discovery Studio 2.1 software

package, was used to elucidate the structure-activity rela-

tionship of tyrosine kinase inhibitors. The pharmacophore

model Hypo1 was shown to give the best quantitative re-

sults with a high correlation coefficient (0.968), and pos-

sess the best predictive power (cross-validation correlation

coefficient of 0.762). The results on docking scores pro-

vide information on the geometry of the binding site cavity
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Fig. 5. Stereoview for comparative binding affinities

of POX (yellow, ball and stick).

Fig. 6. (a) Complexed structure of docking result:

compound T1 and protein residues are colored

as yellow and green, respectively. (b) Molecu-

lar surface is created by POX inhibitor.



and the relative substituents of various properties in differ-

ent site pockets for each of the substrates considered. Fi-

nally, the molecular surface structure of quinazoline type

inhibitor with EGFR together with the pharmacophore

mapping from the software offer well interpretation on the

structure activities of the inhibitors and afford us important

information for protein-ligand relationship.
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