# $A b$ initio total-energy pseudopotential calculations for polymorphic $\mathbf{B}_{2} \mathbf{O}_{\mathbf{3}}$ crystals 

Akira Takada<br>Fundamental Research Laboratory, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Yokohama 221, Japan<br>C. R. A. Catlow and J. S. Lin<br>Davy Faraday Research Laboratory, Royal Institution of Great Britain, 21 Albermarle Street, London W1X 4BS, United Kingdom<br>G. D. Price<br>Research School of Geological and Geophysical Sciences, Birkbeck College and University College London, Gower Street, London W1E 6BT, United Kingdom

M. H. Lee, V. Milman, and M. C. Payne<br>Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, United Kingdom

(Received 12 July 1994)


#### Abstract

We use $a b$ initio pseudopotential electronic-structure methods to describe successfully both the detailed static structures and the structural transformation in $\mathrm{B}_{2} \mathrm{O}_{3}$ crystals. Employing a reduced cell volume, with full relaxation of all internal coordinates, our calculations model the structural transformation from the polymorph containing the $\mathrm{BO}_{3}$ triangular unit into that containing the $\mathrm{BO}_{4}$ tetrahedral unit. In order to interpret the mechanism, individual energy contributions to the total energy are analyzed.


## I. INTRODUCTION

$\mathrm{B}_{2} \mathrm{O}_{3}$ is an interesting material, showing two polymorphs in which the boron atoms have different coordination numbers (see Figs. 1 and 2). Neither form of crystalline trioxide occurs naturally. Furthermore, it is not easy even under special conditions to prepare crystals and measure their properties. In such cases computer simulations can play an important role in determining the structural and physical properties. Advances in the techniques of electronic-structure calculations make it possible to calculate total energies with high accuracy. These computer simulation techniques are currently used to


FIG. 1. The $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ structure (Ref. 15).
study not only static but also dynamical structures in both the crystalline and amorphous states, although there are still considerable limitations on the size of a system that can be studied (in particular, the number of independent atoms in the unit cell) because of the constraints imposed by computer resources.

In a companion study ${ }^{1}$ of $\mathrm{B}_{2} \mathrm{O}_{3}$ and borates using periodic $a b$ initio Hartree-Fock techniques, we provide a consistent interpretation of the structure and bonding of borates which accords well with empirical concepts regarding the structure and bonding in these crystals. However, these methods were unable to study fully relaxed structures in detail, as automatic relaxation of cell dimensions or internal coordinates is not available in the present version of the periodic $a b$ initio Hartree-Fock program (CRYSTAL92).

In this paper we discuss how the structures and bulk


FIG. 2. The $\mathrm{B}_{2} \mathrm{O}_{3}$-II structure (Ref. 16).
moduli of $\mathrm{B}_{2} \mathrm{O}_{3}$ crystals have been determined employing the local-density formalism (LDF) electronic-structure methods rather than Hartree-Fock techniques. Our studies used the code CASTEP, ${ }^{2}$ which performs total-energy pseudopotential calculation. CASTEP has two distinctive features: first, the internal coordinates can be automatically relaxed so that the structure with the minimum total energy is obtained; second, it has the option of ab initio molecular-dynamics simulation, ${ }^{3}$ although this was not employed in the present case.

The next section examines the theoretical techniques in more detail and explains the contrast between the theoretical approaches adopted in this paper compared with the quantum-chemical, Hartree-Fock methods. We then apply the LDF technique to optimize the lattice parameters and internal coordinates of $\mathrm{B}_{2} \mathrm{O}_{3}$. After the optimized structures of both phases have been identified, the total energies of several points with different cell volumes were calculated and bulk moduli were estimated. Finally, we use the results of these calculations to provide the first suggestion of a mechanism for the structural transformation between $\mathrm{B}_{2} \mathrm{O}_{3}$ polymorphs.

## II. THEORETICAL METHOD

CASTEP is a powerful code for calculating the quantum-mechanical total energy of a structure and then minimizing it with respect to its electronic and nuclear coordinates. When compared with the Hartree-Fock based quantum-chemical methods, there are three distinctly different approaches involved in the techniques used by CASTEP:
(i) Density-functional theory ${ }^{4}$ and the local-density approximation (LDA) (Ref. 5) are employed to model the electron-electron interactions. The difference in formulation between Hartree-Fock (HF) theory and density functional theory (DFT) can be summarized as follows: ${ }^{6}$ DFT,

$$
\begin{align*}
& E=E[\rho, R]  \tag{1}\\
& E=T[\rho]+U[\rho]+E_{\mathrm{xc}}[\rho],  \tag{2}\\
& \rho(r)=\Sigma_{\mathrm{occ}}\left|\Psi_{i}(r)\right|^{2},  \tag{3}\\
& \partial E / \partial \rho=0,  \tag{4}\\
& {\left[-1 / 2 \nabla^{2}+V_{c}(r)+\mu_{x c}(r)\right] \Psi_{i}=\varepsilon_{i} \Psi_{i} .} \tag{5}
\end{align*}
$$

HF,

$$
\begin{align*}
& E=E[\Psi, R],  \tag{6}\\
& E=\int \Psi^{*}\left[\Sigma_{i} h_{i}+\Sigma_{i>j} 1 / r_{i j}\right] \Psi \delta \tau,  \tag{7}\\
& \Psi=\mid \Psi(1), \Psi(2), \ldots, \Psi(n)],  \tag{8}\\
& \partial E / \partial \Psi=0,  \tag{9}\\
& {\left[-1 / 2 \nabla^{2}+V_{c}(r)+\mu_{x}^{i}(r)\right] \Psi_{i}=\varepsilon_{i} \Psi_{i},} \tag{10}
\end{align*}
$$

where $E$ is total energy, $\Psi$ is wave function, $\rho$ is electron density, $R$ or $r$ is coordinate for nucleus or electron, $h$ is the Hamiltonian, $T$ is kinetic energy, $U$ is electrostatic or Coulomb energy term, $\mu_{\mathrm{xc}}$ or $\mu_{x}$ is a many-body term or
exchange term, and $\varepsilon$ is the eigenvalue.
The biggest difference between the two theories is in the term $\mu_{\mathrm{xc}}$ or $\mu_{x}$. In HF theory the exchange term $\mu_{x}$ only describes exchange effects and is calculated from all the wave functions based on the orbitals

$$
\begin{align*}
\mu_{x}^{i}(r)=- & \Sigma_{j} \delta\left(\sigma_{i}, \sigma_{j}\right) \\
& \times \frac{\int \Psi_{i}^{*}(r) \Psi_{j}^{*}\left(r^{\prime}\right)\left(1 /\left|r-r^{\prime}\right|\right) \Psi_{j}(r) \Psi_{i}\left(r^{\prime}\right) d r^{\prime}}{\Psi_{i}^{*}(r) \Psi_{i}(r)} \tag{11}
\end{align*}
$$

where $\sigma$ is the spin.
On the other hand, in DFT theory $\mu_{\mathrm{xc}}$ contains all the many-body effects and it is calculated from the total electron density

$$
\begin{equation*}
\mu_{\mathrm{xc}}(r)=\delta E_{\mathrm{xc}}[\rho] / d \rho(r) \tag{12}
\end{equation*}
$$

Further, LDA provides a good approximation,

$$
\begin{equation*}
E_{\mathrm{xc}}[\rho] \approx \int \rho(r) \varepsilon_{\mathrm{xc}}[\rho(r)] d r \tag{13}
\end{equation*}
$$

where $\varepsilon_{\mathrm{xc}}[\rho]$ is the exchange-correlation energy per electron in an interacting electron system of constant density $\rho$, and

$$
\begin{equation*}
\mu_{\mathrm{xc}}(r)=\varepsilon_{\mathrm{xc}}[\rho(r)]+\rho(r)\left\{\delta E_{\mathrm{xc}}[\rho(r)] / d \rho(r)\right\} \tag{14}
\end{equation*}
$$

This approximation is generally known to yield only a small percentage error both in the total energy and in the structural parameters. However, cohesive energies can be in error by more than $10 \%$.
(ii) Pseudopotential theory ${ }^{7,8}$ is used to model the electron-ion interactions. The strong electron-nuclear potential is replaced by a much weaker pseudopotential, and plane waves are used as basis functions to model the electron density outside the core region. This pseudopotential technique makes the solution of Schrödinger's equations much simpler. The important point is that the selection of the pseudopotential is as crucial as the selection of the basis set in the quantum-chemical calculation. Lin et al. ${ }^{9}$ have developed an efficient and general procedure to generate optimized and transferable nonlocal separable $a b$ initio pseudopotentials. Another point is that the cutoff energy, i.e., the number of plane waves, has to be so large that the total energy is converged. For oxides a larger number of plane waves are necessary than for semiconductors, to express the more complex charge-density distribution.
(iii) The counterpart to the self-consistent field method in the quantum-chemical terms is the use of the conjugate-gradients technique, i.e., iterative diagonalization approaches, ${ }^{3,10-12}$ are employed to relax the electronic coordinates. This provides an efficient method to minimize the Kohn-Sham energy functional for large systems and it is applicable to oxide materials.

## III. STRUCTURAL SIMULATION FROM FIRST PRINCIPLES

## A. Selection of model

The pseudopotentials for boron and oxygen were generated using Lin's scheme. ${ }^{9}$ For both crystal structures

TABLE I. Relation between cell volume and calculated total energy in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$-II.

| $\mathbf{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ <br> $\left(v / v_{0}\right)^{1 / 3}$ | Total energy $\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ |
| :---: | :---: |
| 1.005 | -1442.840 |
| 1.0 | -1442.892 |
| 0.995 | -1442.925 |
| 0.990 | -1442.964 |
| 0.985 | -1442.969 |
| 0.980 | -1442.977 |
| 0.975 | -1442.953 |
|  |  |
| $\mathrm{~B}_{2} \mathrm{O}_{3}-\mathrm{II}$ | Total energy $\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ |
| $\left(v / v_{0}\right)^{1 / 3}$ | -1443.124 |
| 1.0 | -1443.221 |
| 0.99 | -1443.254 |
| 0.98 | -1443.258 |
| 0.975 | -1443.237 |
| 0.97 |  |

of $\mathrm{B}_{2} \mathrm{O}_{3}$, the same cutoff energy of 500 eV for the planewave basis set was used to achieve a reasonable convergence of the total energy. The number of plane waves used was 3459 for the $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ system ( 15 atoms) and 1890 for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$ ( 10 atoms).

The other important factor is the $k$-point sampling. The Bloch theorem changes the problem of calculating an infinite number of electronic wave functions to calculating a finite number of electronic wave functions at an infinite number of $k$ points. However, it is possible to represent the electronic wave functions over a region of $k$ space by the wave functions at a single $k$ point. Several methods ${ }^{13,14}$ have been devised for obtaining an accurate approximation for the total energy with a very small number of $k$ points. Generally speaking, the denser the set of $k$ points sampled, the more accurate is the result. However, both the unit cells for $\mathrm{B}_{2} \mathrm{O}_{3}$ crystals are too large for the calculation with multi $k$ points. Therefore, several single $k$ points were investigated, and among them the single $k$ point, which gives the smallest cell stress and internal force, was selected. The resulting $k$ point was ( $\frac{1}{3}, \frac{1}{3}, \frac{1}{4}$ ) for $\mathrm{B}_{2} \mathrm{O}_{3}$-I and ( $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$ ) for $\mathrm{B}_{2} \mathrm{O}_{3}$-II. This difference results from the difference in crystal symmetry between the two polymorphs. ${ }^{15,16}$

## B. Optimization of structure

First, the relation between cell volume and total energy was calculated under the condition that the internal coor-
dinates remained fixed (Table I). When the optimized structure (i.e., the structure with minimum total energy) is compared with experiment, the error in the lattice constant is $-2.0 \%$ for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $-2.5 \%$ for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$. The error in volume is converted into $-5.9 \%$ for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $-7.3 \%$ for $\mathrm{B}_{2} \mathrm{O}_{3}$-II. This result is satisfactory, considering that a common pseudopotential set for boron and oxygen was used for both polymorphs, and only one $k$ point was sampled.
Second, internal coordinates were relaxed, with the constraint that the optimized cell parameters remain fixed. The initial and final (optimized) total energies, bond lengths, and angles are shown in Tables II and III.

Regarding the relative stability of the two polymorphs, the total energy of $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$ is lower than that of $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$, regardless of whether the internal coordinates are relaxed. Periodic Hartree-Fock calculations employing the CRYSTAL code also show the same result. ${ }^{1}$ However, the phase diagram of the $\mathrm{B}_{2} \mathrm{O}_{3}$ system ${ }^{17}$ suggests that $\mathrm{B}_{2} \mathrm{O}_{3}$-I is more stable than $\mathrm{B}_{2} \mathrm{O}_{3}$-II under ambient conditions. More sophisticated calculations may be required in order to reproduce the small difference in total energy in either method. Thus Nada et al. ${ }^{18}$ showed that to reproduce correctly the relative energies of quartz and stishovite it was necessary to use high-quality basis sets in their CRYSTAL calculations. CASTEP calculations may need a more dense set of $k$ point sampling to give the correct order of energies for the two phases of $\mathrm{B}_{2} \mathrm{O}_{3}$. We should also point out that the relative energies of the two phases are unknown and that the difference in free energy may include a large contribution from entropic factors.
When the calculated bond lengths and bond angles are compared with the experimental values, the errors in the bond lengths and bond angles are within $0.055 \AA$ and $3.5^{\circ}$. Both calculated structures reproduce the corresponding experimental structures well. It is interesting to note the change of the $\mathrm{B}(1)-\mathrm{O}(1)$ bond length in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$. In the CRYSTAL calculations the $B(1)-O(1)$ bond is elongated by $10 \%$ with the constraint that all the other atomic positions are fixed. On the other hand, the $B(1)-$ $O$ (1) bond is shortened by $4 \%$ in the same manner as the other B-O bonds when all the atomic positioned are relaxed. Therefore, the full relaxation of internal coordinates is almost certainly important for discussing the detailed structure.

## C. Estimation of bulk modulus

An estimate of the bulk modulus was obtained using the total-energy calculation technique. The procedure used was based on Murnaghan's equation. ${ }^{19}$ Several

TABLE II. Comparison of total energies between initial structures and final optimized structures in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$-II.

|  | $\mathrm{E} 1\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ <br> before relaxation | $\mathrm{E} 2\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ <br> after relaxation | $\mathrm{E} 2-\mathrm{E} 1\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ <br> difference |
| :--- | :---: | :---: | :---: |
| $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ | -1442.977 | -1443.059 | -0.082 |
| $\mathrm{~B}_{2} \mathrm{O}_{3}-\mathrm{II}$ | -1443.258 | -1443.358 | -0.100 |

TABLE III. Comparison of bond lengths and angles between experimental structures and final optimized structures in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$-II.

|  | $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ |  |  | $\mathbf{B}_{2} \mathrm{O}_{3}-\mathrm{II}$ |  |
| :---: | :---: | :---: | :---: | :---: | ---: |
| Distances $(\AA)$ | Experiment $^{\mathrm{A}}$ | Calculation |  | Experiment $^{\mathrm{b}}$ | Calculation |
| $\mathbf{B}(1)-\mathrm{O}(1)$ | 1.404 | 1.354 | $\mathbf{B}(1)-\mathrm{O}(1)$ | 1.373 | 1.358 |
| $-\mathrm{O}(2)$ | 1.366 | 1.329 | $-\mathrm{O}(2)$ | 1.507 | 1.461 |
| $-\mathrm{O}(3)$ | 1.336 | 1.338 | $-\mathrm{O}\left(2^{\prime}\right)$ | 1.506 | 1.451 |
| $\mathrm{~B}(2)-\mathrm{O}(1)$ | 1.336 | 1.329 | $-\mathrm{O}\left(2^{\prime \prime}\right)$ | 1.512 | 1.507 |
| $-\mathrm{O}\left(2^{\prime}\right)$ | 1.400 | 1.355 | $\mathrm{O}(1)-\mathrm{O}(2)$ | 2.364 | 2.313 |
| $-\mathrm{O}\left(3^{\prime}\right)$ | 1.384 | 1.337 | $-\mathrm{O}\left(2^{\prime}\right)$ | 2.440 | 2.365 |
| $\mathrm{O}(1)-\mathrm{O}(2)$ | 2.387 | 2.327 | $-\mathrm{O}\left(2^{\prime \prime}\right)$ | 2.409 | 2.408 |
| $\mathrm{O}(2)-\mathrm{O}(3)$ | 2.388 | 2.329 | $\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$ | 2.428 | 2.366 |
|  | 2.409 | $-\mathrm{O}\left(2^{\prime \prime}\right)$ | 2.394 | 2.351 |  |
| $\mathrm{O}(3)-\mathrm{O}(1)$ | 2.333 | 2.331 | $\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime \prime}\right)$ | 2.389 | 2.350 |
|  | 2.309 | 2.284 |  |  |  |

Angles (deg)

| $\mathbf{O - B}(1)-\mathrm{O}$ | 119.0 | 120.3 | $\mathbf{O - B}(1)-\mathrm{O}$ | 110.2 | 110.2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 114.7 | 116.2 |  | 115.8 | 114.6 |
| $\mathbf{O - B}(2)-\mathrm{O}$ | 126.2 | 122.8 |  | 113.1 | 113.7 |
|  | 121.5 | 120.4 |  | 107.4 | 108.7 |
|  | 124.6 | 123.0 |  | 104.9 | 104.3 |
| $\mathbf{B - O}(1)-\mathrm{B}$ | 113.9 | 116.1 |  | 104.7 | 104.7 |
|  | 130.5 | 131.2 | $-\mathrm{O}(1)-\mathrm{B}$ | 138.6 | 135.1 |
|  | 128.3 | 131.2 | $-\mathrm{O}(2)-$ | 123.8 | 121.2 |
|  | 133.3 | 133.5 | $-\mathbf{O}\left(2^{\prime \prime}\right)-$ | 114.7 | 115.7 |
|  |  |  | 118.9 | 118.9 |  |

${ }^{\text {a }}$ Reference 15.
${ }^{\mathrm{b}}$ Reference 16.
values for the total energy as a function of cell volume were fitted using least-square techniques to Murnaghan's equation; ${ }^{20}$
$E_{\text {tot }}(V)=B_{0} V / B_{0}{ }^{\prime}\left[\left(V_{0} / V\right)^{B_{0}{ }^{\prime}} /\left(B_{0}{ }^{\prime}-1\right)+1\right]+$ const,
where $B_{0}$ and $B_{0}{ }^{\prime}$ are the bulk modulus and its pressure derivative at the equilibrium volume $V_{0}$; both $B_{0}$ and $B_{0}{ }^{\prime}$ were fitted.
As each calculation of ionic relaxation requires a large amount of CPU time, only six points were calculated for
both polymorphs. The cell volume was isotropically varied and then internal coordinates relaxed in each case. The relation between the cell volumes and the corresponding total energies is shown in Table IV. The calculated bulk moduli and the curve fitted to Murnaghan's equation are shown in Table $V$ and Fig. 3. The estimated bulk modulus is 26 GPa for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and 126 GPa for $\mathrm{B}_{2} \mathrm{O}_{3}$-II.

No experimental data of bulk modulus are available at present. The prediction of the bulk modulus is generally more difficult than that of lattice constants, and it is also very difficult to evaluate the error of these estimations.

TABLE IV. Relation between cell volume and total energy in $\mathrm{B}_{2} \mathrm{O}_{3}$-I and $\mathrm{B}_{2} \mathrm{O}_{3}$-II. (Each relative cell volume is the ratio to the corresponding optimized cell volume.)

| Volume ratio | $\mathbf{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ <br> Total energy <br> $\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ | Difference | $\mathrm{B}_{2} \mathrm{O}_{3}$-II |  |
| :---: | :---: | :---: | :---: | :---: |
| Total energy |  |  |  |  |
| $\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ | Difference |  |  |  |
| 0.6 | -1440.68 | +2.38 | -1438.10 | +5.26 |
| 0.8 | -1442.44 | +0.62 | -1442.65 | +0.71 |
| 1.0 | -1443.06 | $\pm 0$ | -1443.36 | $\pm 0$ |
| 1.1 | -1442.99 | +0.07 | -1443.12 | +0.24 |
| 1.2 | -1442.75 | +0.31 | -1442.58 | +0.78 |
| 1.3 | +0.70 | -1441.83 | +1.53 |  |

TABLE V. Experimental density and calculated bulk moduli in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$.

|  | $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}^{\mathrm{a}}$ | $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}^{\mathrm{b}}$ | Glass |
| :--- | :---: | :---: | :---: |
| Density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ <br> Bulk modulus <br> (GPa) <br> This work | 2.56 | 3.11 | $1.84-1.91$ |
| Empirical | 26 | 126 |  |
| Experiment |  |  |  |

## ${ }^{\text {a }}$ Reference 15.

${ }^{\mathrm{b}}$ Reference 16.
${ }^{\mathrm{c}}$ Empirical equation between density ( $\rho$ ) and bulk modulus ( $K$ ) was employed. Reference 21. $\sqrt{(K / \rho)}=-1.75+2.36 \rho$.

For the CASTEP calculation, the cell volume is only varied isotropically; furthermore, a more dense set of $k$ points would probably improve its accuracy. On the other hand, for the empirical equation detailed structural information is not taken into consideration.

## D. Structural transformation

The nature of the ionic relaxation for different cell volumes can be used to study the transformation between the two structures. The optimized cell volume was changed by $-40,-20,+10,+20,+30,+70$, and


FIG. 3. Calculated "Murnaghan" curve for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$-II. The relative cell volume is the ratio to the optimized $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ cell volume.
$+100 \%$ for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and changed by $-40,-20,+10$, +20 , and $+30 \%$ for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$. Their relaxed bond lengths and angles are summarized in Tables VI and VII. The structures calculated for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ are discussed for three ranges of the cell volume as follows.

TABLE VI. Comparison of bond lengths and angles at different cell volumes in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$. (Relative cell volume is the ratio to the optimized cell volume.)

| Volume ratio Lattice ratio | exp. | $\begin{gathered} 0.60 \\ 0.84 \\ \text { cal. } \end{gathered}$ | $\begin{aligned} & 0.80 \\ & 0.93 \\ & \text { cal. } \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 1.00 \\ & \text { cal. } \end{aligned}$ | $\begin{aligned} & 1.10 \\ & 1.03 \\ & \mathrm{cal} . \end{aligned}$ | $\begin{aligned} & 1.20 \\ & 1.06 \\ & \text { cal. } \end{aligned}$ | $\begin{aligned} & 1.30 \\ & 1.09 \\ & \text { cal. } \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 1.19 \\ & \text { cal. } \end{aligned}$ | $\begin{aligned} & 2.00 \\ & 1.26 \\ & \text { cal. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Distance ( A ) |  |  |  |  |  |  |  |  |  |
| B(1)-O(1) | 1.404 | 1.340 | 1.319 | 1.354 | 1.379 | 1.407 | 1.439 | 1.535 | 1.655 |
| -O(2) | 1.366 | 1.387 | 1.315 | 1.329 | 1.343 | 1.357 | 1.370 | 1.387 | 1.368 |
| -O(3) | 1.336 | 1.290 | 1.308 | 1.338 | 1.355 | 1.372 | 1.389 | 1.399 | 1.380 |
| -O(2) | 2.616 | 1.422 | 2.099 | 2.524 | 2.670 | 2.807 | 2.931 |  |  |
| $\mathrm{B}(2)-\mathrm{O}(1)$ | 1.336 | 1.338 | 1.314 | 1.329 | 1.344 | 1.358 | 1.371 | 1.390 | 1.368 |
| -O(2') | 1.400 | 1.340 | 1.320 | 1.355 | 1.379 | 1.407 | 1.440 | 1.542 | 1.656 |
| -O(3') | 1.384 | 1.289 | 1.305 | 1.337 | 1.354 | 1.371 | 1.388 | 1.398 | 1.379 |
| -O(1") | 2.636 | 1.423 | 2.119 | 2.529 | 2.675 | 2.812 | 2.935 |  |  |
| $\mathrm{O}(1)-\mathrm{O}(2)$ | 2.387 | 2.175 | 2.252 | 2.327 | 2.371 | 2.414 | 2.457 | 2.606 | 2.727 |
|  | 2.388 | 2.176 | 2.254 | 2.329 | 2.372 | 2.417 | 2.460 | 2.618 | 2.727 |
| $\mathrm{O}(2)-\mathrm{O}(3)$ | 2.409 | 2.271 | 2.332 | 2.331 | 2.346 | 2.414 | $2 . .457$ | 2.373 | 2.387 |
|  | 2.333 | 2.034 | 2.184 | 2.284 | 2.337 | 2.388 | 2.439 | 2.503 | 2.503 |
| $\mathrm{O}(3)-\mathrm{O}(1)$ | 2.309 | 2.030 | 2.184 | 2.285 | 2.339 | 2.372 | 2.441 | 2.504 | 2.502 |
|  | 2.409 | 2.273 | 2.335 | 2.343 | 2.347 | 2.358 | 2.370 | 2.375 | 2.387 |
| Angle (deg) |  |  |  |  |  |  |  |  |  |
| O-B(1)-O | 119.0 | 105.8 | 117.5 | 120.4 | 121.1 | 121.7 | 122.0 | 126.1 | 128.7 |
|  | 114.7 | 101.1 | 112.5 | 116.2 | 117.7 | 118.6 | 119.4 | 117.0 | 110.7 |
|  | 126.2 | 116.1 | 125.6 | 122.8 | 120.8 | 119.5 | 118.5 | 116.8 | 120.6 |
| $\mathrm{O}-\mathrm{B}(2)-\mathrm{O}$ | 121.5 | 105.8 | 117.7 | 120.4 | 121.2 | 121.8 | 122.2 | 126.4 | 128.6 |
|  | 124.6 | 116.3 | 126.1 | 123.0 | 120.9 | 119.5 | 118.4 | 116.9 | 120.6 |
|  | 113.9 | 101.3 | 112.6 | 116.3 | 117.6 | 118.5 | 119.2 | 116.7 | 110.8 |
| B-O(1)-B | 130.5 | 116.1 | 122.4 | 131.2 | 134.5 | 137.4 | 139.7 | 149.4 | 152.7 |
| -O(2)- | 128.3 | 116.3 | 122.4 | 131.2 | 134.5 | 137.2 | 139.1 | 149.2 | 152.8 |
| -O(3)- | 133.3 | 110.4 | 127.0 | 133.5 | 135.8 | 137.2 | 139.2 | 139.1 | 138.5 |

TABLE VII. Comparison of bond lengths and angles at different cell volumes in $\mathrm{B}_{2} \mathrm{O}_{3}$-II. (Relative cell volume is the ratio to the optimized cell volume.)

| Volume ratio Lattice ratio |  | 0.60 | 0.80 | 1.00 | 1.10 | 1.20 | 1.30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.84 | 0.93 | 1.00 | 1.03 | 1.06 | 1.09 |
|  | exp. | cal. | cal. | cal. | cal. | cal. | cal. |
| Distance ( $\AA$ ) |  |  |  |  |  |  |  |
| $\mathrm{B}(1)-\mathrm{O}(1)$ | 1.373 | 1.274 | 1.328 | 1.358 | 1.376 | 1.396 | 1.416 |
| -O(2) | 1.507 | 1.335 | 1.406 | 1.461 | 1.498 | 1.535 | 1.561 |
| -O(2') | 1.506 | 1.314 | 1.390 | 1.451 | 1.484 | 1.517 | 1.542 |
| -O(2') | 1.512 | 1.367 | 1.447 | 1.507 | 1.568 | 1.636 | 1.725 |
| $\mathrm{O}(1)-\mathrm{O}(2)$ | 2.364 | 2.142 | 2.234 | 2.313 | 2.376 | 2.446 | 2.507 |
| -O(2') | 2.440 | 2.202 | 2.305 | 2.365 | 2.402 | 2.450 | 2.499 |
| -O(2') | 2.409 | 2.205 | 2.319 | 2.408 | 2.464 | 2.530 | 2.604 |
| $\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$ | 2.428 | 2.125 | 2.257 | 2.366 | 2.428 | 2.489 | 2.539 |
| -O(2') | 2.394 | 2.179 | 2.281 | 2.351 | 2.403 | 2.466 | 2.525 |
| $\mathrm{O}\left(2^{\prime}\right)-\mathrm{O}\left(2^{\prime \prime}\right)$ | 2.389 | 2.080 | 2.230 | 2.350 | 2.415 | 2.489 | 2.567 |
| Angle (deg) |  |  |  |  |  |  |  |
| O-B(1)-O | 110.2 | 110.4 | 109.6 | 110.2 | 111.5 | 113.0 | 114.6 |
|  | 115.8 | 116.6 | 115.9 | 114.6 | 114.2 | 114.5 | 115.3 |
|  | 113.1 | 111.7 | 113.3 | 113.7 | 113.5 | 112.8 | 111.6 |
|  | 107.4 | 106.7 | 107.6 | 108.7 | 109.0 | 107.7 | 109.9 |
|  | 104.9 | 107.5 | 106.2 | 104.3 | 103.3 | 102.1 | 100.4 |
|  | 104.7 | 101.8 | 103.6 | 104.7 | 104.6 | 104.2 | 103.5 |
| B-O(1)-B | 138.6 | 104.5 | 117.6 | 135.1 | 141.7 | 145.4 | 148.9 |
| -O(2)- | 123.8 | 112.1 | 117.0 | 121.2 | 121.5 | 121.8 | 119.4 |
| -O(2)- | 114.7 | 111.1 | 114.3 | 115.7 | 115.7 | 115.8 | 116.0 |
| -O(2')- | 118.9 | 107.1 | 113.2 | 118.9 | 120.4 | 121.6 | 123.2 |

## 1. Relative cell volume $=0.80-1.30$

In the initial configuration, all the B-O bond lengths were varied in proportion to the cell-volume change. After optimization the intertriangle angles (O-B-O) do not change much, but the connecting angles (B-O-B) change considerably. Thus the shape of the $\mathrm{BO}_{3}$ triangle does not vary significantly; moreover, the B-O bonds expand by $5 \%$, so that they come close to the uncompressed values. The change in volume is accommodated largely by the change in the B-O-B connecting angles. Among the contributions to the volume change, the change in the B-O bond lengths contributes $28 \%$, while the change in the connecting angles contributes $72 \%$. The change in the B-O-B connecting angles therefore clearly dominates the deformation of the structure.

## 2. Relative cell volume $\boldsymbol{\sim} \mathbf{0 . 6 0}$

The most interesting result is that the $\mathrm{BO}_{3}$ triangular structural unit in the minimized structure for the $60 \%$ cell volume turns into a $\mathrm{BO}_{4}$ tetrahedron. This corresponds to a pressure-induced phase transition. Although the original cell is only isotropically compressed and the final structure is not completely the same as $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$, it agrees with the observed phase diagram in that the fourfold $\mathrm{BO}_{4}$ structural unit is more stable than threefold $\mathrm{BO}_{3}$ structural unit at high pressure. ${ }^{17}$

In the case of $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$, the structure at $130 \%$ volume does not exactly show the reverse structural transformation, but it shows the fourth B-O bond becoming much
longer than the other B-O bonds. Therefore, this suggests that this transformation is probably reversible at 0 K . On the other hand, it is interesting to note that no transformation from $\mathrm{B}_{2} \mathrm{O}_{3}$-II to $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ has been ever observed. ${ }^{22}$ There may be a barrier to the transformation due to entropic factors.

We now consider the manner of the transformation. We note first that the original structures of $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$-II are closely related. Considering the latter, if we define the B-O bond length as being shorter than $1.51 \AA$


FIG. 4. Relation between the cell volume and B-O bond length in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$.
then only the first three shortest B-O distances participate in the $\mathrm{B}-\mathrm{O}$ bonding; all boron atoms become threefold coordinated and all the oxygen atoms become threefold coordinated. These coordination numbers are the same as for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$. Conversely, when $\mathrm{B}-\mathrm{O}$ bonding is assumed to be within $2.7 \AA$ in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$, that is, the first four shortest B-O distances participate in B-O bonding, all the boron atoms become fourfold coordinate, and one-third of the oxygen atoms become twofold coordinated and the remaining two-third become threefold coordinated. These coordination numbers are the same as for $\mathrm{B}_{2} \mathrm{O}_{3}$-II. It is interesting that Berger's data, ${ }^{23,24}$ for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ which was shown by Strong and Kaplow, ${ }^{25}$ and by Gurr et al. ${ }^{15}$ to be incorrect, has the same distribution of coordination numbers if the cutoff in the B-O bonding is assumed to be $1.8 \AA$. Therefore, Berger's data are not far from those of the other two authors, although Berger concluded that $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ consists of $\mathrm{BO}_{4}$ tetrahedra.

With this background we can explain the observed manner of the transformation in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ as follows: As its cell volume is reduced, the $O(1)$ or $O(2)$ atom approaches the third new boron atom, $\mathbf{B}\left(2^{\prime}\right)$ or $\mathbf{B}\left(1^{\prime}\right)$, which lies on the other ribbon, and the oxygen and boron atoms start to bond. However, the $\mathrm{O}(3)$ atom, which cross links the different ribbons of the $\mathrm{BO}_{3}$ triangle, keeps it coordina-

(a) relative cell volume $=1.0\left(\mathrm{BO}_{3}\right.$ structural unit $)$

(b) relative cell volume $=0.6\left(\mathrm{BO}_{4}\right.$ structural unit $)$

FIG. 5. Schematic diagram for structural transformation.


FIG. 6. Various energy contributions to the total energy in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$. ( $E_{k}$ is the total kinetic energy; $E_{1}$ is the local pseudopotential energy; $E_{n l}$ is the nonlocal pseudopotential energy; $E_{h}$ is the Hartree energy; $E_{\text {excor }}$ is the exchange-correlation energy correction; $E_{c}$ is the Coulombic energy; $E_{\text {core }}$ is the core energy.)
tion. The change in the B-O bond distances is shown in Fig. 4. The pattern of the structural transformation is shown in Fig. 5.

The B-O coordination number changes from three to four smoothly without breaking any B-O bonds. It is interesting to note that Tsuneyuki ${ }^{26}$ also observed the smooth structural transformation from the $\mathrm{SiO}_{4}$ tetrahedron into the $\mathrm{SiO}_{6}$ octahedron in his MD study.

What is the driving force for this transformation? It is useful to analyze the individual energy contributions to the total energy, as was shown by Yin and Cohen. ${ }^{20}$ These are shown in Table VIII and Figs. 6 and 7. The contribution of the Coulombic energy ( $E_{c}$ ) is much larger than that of the others. When the cell volume is reduced, the Coulombic energy becomes larger, and as is well


FIG. 7. Various energy contributions to the total energy in $\mathrm{B}_{2} \mathrm{O}_{3}$-II. ( $E_{k}$ is the total kinetic energy; $E_{1}$ is the local pseudopotential energy; $E_{n l}$ is the nonlocal pseudopotential energy; $E_{h}$ is the Hartree energy; $E_{\text {excor }}$ is the exchange-correlation energy correction; $E_{c}$ is the Coulombic energy; $E_{\text {core }}$ is the core energy.)

TABLE VIII. Comparison of various contributions to the total energy in $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$-II. (Relative cell volume is the ratio to the optimized cell volume.)

| $\left(\mathrm{eV} / \mathrm{B}_{2} \mathrm{O}_{3}\right)$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Volume ratio | 0.6 | 0.8 | 1.0 | 1.1 | 1.2 | 1.3 | 1.7 |
| Total kinetic energy | 992.94 | 959.38 | 940.78 | 932.50 | 924.87 | 917.76 | 905.87 |
| Local potential energy | -1182.92 | - 1242.35 | - 1282.02 | - 1294.40 | -1303.78 | $-1310.85$ | -1341.47 |
| Nonlocal potential energy | 226.99 | 229.31 | 236.65 | 231.80 | 233.05 | 234.28 | 236.10 |
| Hartree energy | -270.55 | -351.10 | -428.66 | -461.61 | -490.83 | -516.67 | -635.58 |
| Exchange-correlation | 110.46 | 107.72 | 106.10 | 105.40 | 104.75 | 104.14 | 103.03 |
| Coulombic energy | -1336.11 | -1159.29 | -1021.02 | -966.76 | -920.05 | -879.56 | -715.43 |
| Pseudopotential core energy | 18.51 | 13.88 | 11.10 | 10.09 | 9.25 | 8.54 | 6.53 |
| Total energy | $-1440.68$ | - 1442.44 | -1443.06 | - 1442.99 | $-1442.75$ | $-1442.36$ | $-1440.94$ |
| $\mathrm{B}_{2} \mathrm{O}_{3}$-II (eV/ $\left.\mathrm{B}_{2} \mathrm{O}_{3}\right)$ |  |  |  |  |  |  |  |
| Volume ratio | 0.6 | 0.8 | 1.0 | 1.1 | 1.2 | 1.3 |  |
| Total kinetic energy | 1017.84 | 969.27 | 944.14 | 931.53 | 918.67 | 907.69 |  |
| Local potential energy | $-1128.88$ | -1188.96 | - 1231.32 | - 1241.91 | $-1247.78$ | $-1253.03$ |  |
| Nonlocal potential energy | 228.27 | 231.42 | 233.70 | 235.52 | 237.60 | 239.34 |  |
| Hartree energy | -202.41 | -280.21 | -363.06 | -391.71 | -410.45 | -427.25 |  |
| Exchange-correlation | 112.77 | 108.97 | 106.82 | 105.78 | 104.72 | 103.81 |  |
| Coulombic energy | $-1488.57$ | - 1300.32 | -1147.37 | - 1094.81 | -1056.79 | $-1023.15$ |  |
| Pseudopotential core energy | 22.89 | 17.17 | 13.74 | 12.49 | 11.45 | 10.57 |  |
| Total energy | $-1438.10$ | $-1442.65$ | -1443.36 | $-1443.12$ | $-1442.58$ | $-1441.83$ |  |

known this Coulombic energy favors high coordination. On the other hand, when the cell volume increases, the electronic kinetic energy $\left(E_{k}\right)$, the electron-electron Coulomb energy ( $E_{h}$ ), and nonlocal pseudopotential energy ( $E_{n l}$ ) are reduced. This favors the lower coordination state in which the valence electrons prefer to be uniformly distributed. The Coulombic contribution is clearly, however, the driving force for the transformation from the $\mathrm{B}_{2} \mathrm{O}_{3}$-I to $\mathrm{B}_{2} \mathrm{O}_{3}$-II structures.

## 3. Relative cell volume $\approx 2.0$

The $170 \%$ cell volume corresponds to the volume in the 1500 K molten state. However, even in the case of $200 \%$ cell volume, the structure still keeps the same structural units and the boroxol ring is not observed. It is interesting to note that one of the longest $\mathrm{B}-\mathrm{O}$ bonds is elongated, while the other two bonds begin to shorten. Although the longest bond is still thought not to be broken, its bonding is weakened and the other two bonds are strengthened. This means that the bonding state is changing from threefold to twofold coordination. This structural feature may be present in the molten state.

## IV. CONCLUSIONS

The application of first-principles total-energy calculations to $\mathrm{B}_{2} \mathrm{O}_{3}$ has given the following important results.
(i) A common set of pseudopotentials for boron and oxygen can reproduce two different crystal structures $\left(\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{I}\right.$ and $\left.\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}\right)$ well. With this pseudopotential, not only lattice parameters but also internal coordinates are adequately modeled.
(ii) The bulk modulus is estimated as 26 GPa for $\mathrm{B}_{2} \mathrm{O}_{3^{-}}$ I and 126 GPa for $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{II}$.
(iii) When the cell volume is reduced, the structural transformation from the $\mathrm{BO}_{3}$ triangular structural unit into the $\mathrm{BO}_{4}$ tetrahedral unit is observed. The manner of its transformation has also been elucidated.

The CASTEP program can be used for MD. In the near future, the structure of a large system, that is a super cell of a disordered system, will be simulated. At the moment the feasible number of atoms would be $50-60$ which when used would be difficult in realistically reproducing the vitreous structure. In subsequent papers, we will, however, show how the structure of glassy $\mathrm{B}_{2} \mathrm{O}_{3}$ may be modeled using MD simulation methods employing effective potentials.

[^0][^1]${ }^{10}$ M. C. Payne, J. D. Joannopoulos, D. C. Allan, M. P. Teter, and D. H. Vanderbilt, Phys. Rev. Lett. 56, 2656 (1986).
${ }^{11}$ M. J. Gillan, J. Phys. C 1, 689 (1989).
${ }^{12}$ M. P. Teter, M. C. Payne, and D. C. Allan, Phys. Rev. B 40, 12255 (1989).
${ }^{13}$ D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).
${ }^{14}$ H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
${ }^{15}$ G. E. Gurr, P. W. Mongomery, C. D. Knutson, and B. T. Gorres, Acta Crystallogr. Sec. B 26, 906 (1970).
${ }^{16}$ C. T. Prewitt and R. D. Shannon, Acta Crystallogr. Sec. B 24, 869 (1968).
${ }^{17}$ J. D. Mackenzie and W. F. Claussen, J. Am. Ceram. Soc. 44, 79 (1961).
${ }^{18}$ R. Nada, C. R. A. Catlow, R. Dovesi, and C. Pisani, Phys.

Chem. Miner. 17, 353 (1990).
${ }^{19}$ F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
${ }^{20}$ M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
${ }^{21}$ J. P. Poirier, Introduction to the Physics of the Earth's Interior (Cambridge University Press, London, 1991).
${ }^{22}$ D. R. Uhlmann, J. F. Hays, and D. Turnbull, Phys. Chem. Glasses 8, 1 (1967).
${ }^{23}$ S. V. Berger, Acta Crystallogr. Sec. 5, 389 (1952).
${ }^{24}$ S. V. Berger, Acta. Scand. 7, 611 (1953).
${ }^{25}$ S. L. Strong and R. Kaplow, Acta Crystallogr. Sec. B 24, 1032 (1968).
${ }^{26}$ S. Tsuneyuki, in Molecular Dynamics Simulations, edited by F. Yonezawa (Springer-Verlag, Berlin, 1992).


[^0]:    ${ }^{1}$ A. Takada, Ph.D. thesis, University College London, London, 1994.
    ${ }^{2}$ M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
    ${ }^{3}$ R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
    ${ }^{4}$ P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
    ${ }^{5}$ W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[^1]:    ${ }^{6}$ E. Wimmer, in Density Functional Methods in Chemistry, edited by J. K. Labanowski and W. Andzelm (Springer-Verlag, Berlin, 1991).
    ${ }^{7}$ J. C. Philips, Phys. Rev. 112, 685 (1958).
    ${ }^{8}$ V. Heine, Solid State Phys. 24, 1 (1970).
    ${ }^{9}$ J. S. Lin, A. Qteish, M. C. Payne, and V. Heine, Phys. Rev. B 47, 4174 (1993).

