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The purpose of the present work is to obtain a better atomic pseudopotential with respect to conver-
gence and computational eSciency while retaining reasonable transferability in the context of
electronic-structure calculations for solids using a plane-wave basis set. We introduce a systematic pro-
cedure for generating optimized nonlocal pseudopotentials by minimizing the high Fourier components
of the pseudo-wave-functions with the constraints of normalization and continuity of first and second
derivatives of the wave function at the core radius. This is based on the recent ideas of Rappe et al.
(RRKJ) [Phys. Rev. B 41, 1227 (1990)],but overcomes certain difficulties which we have found with the
RRKJ scheme. For computational efficiency this optimized nonlocal pseudopotential is transformed
into a Kleinman-Bylander (KB) form. To ensure the transferability we first compare the logarithmic
derivative of the all-electron wave function with that of the final KB form of the optimized nonlocal
pseudopotential over a wide range of energies. We then test the KB form of the potential in a number of
atomic environments. The structural properties of ZnS are calculated to demonstrate the reliability of
our optimized nonlocal separable ab initio pseudopotential and its total-energy convergence.

I. INTRODUCTION

The theoretical study of solid-state materials using
electronic-structure calculations is currently an extremely
active field of research in solid-state physics. One of the
most popular methods is within the local-density approx-
imation of density-functional theory using the pseudopo-
tential approximation and plane-wave basis sets. In par-
ticular, with the development of the Car-Parrinello
molecular-dynamics scheme and conjugate gradient
methods, it has become possible to study very large sys-
tems. But, even with modern computer technology, the
application of this method to some more problematic ma-
terials, such as those containing first-row elements or
transition metals, is still very difficult due to the fact that
an enormous number of plane waves are needed to
represent the sharply peaked valence states arising from
the strongly attractive pseudopotentials. Furthermore,
the pseudopotentials of these elements are strongly non-
local, and handling the nonlocality can result in computa-
tional inefficiency in the electronic-structure calcula-
tions. Therefore the possibility of generating much
smoother and more efficacious forms of nonlocal pseudo-
potentials for a wide range of applications has attracted
much interest recently. '

By following a method for producing optimized norm-
conserving pseudopotentials introduced by Rappe, Rabe,
Kaxiras, and Joannopoulos (RRKJ), some improvement
in the convergence of pseudopotential total-energy calcu-
lations with respect to plane-wave cutoff can be easily
achieved. This immediately led us to try to generate opti-
mized nonlocal pseudopotentials of RRKJ-type and
transform them to Kleinman-Bylander (KB) (Ref. 5) form
in order to improve both convergence and computational
efticiency. However, we experienced technical difficulties
when we tried to use the RRKJ scheme, and these in turn
prevented us from constructing smoother nonlocal pseu-
dopotentials in KB form. Also, it was realized that much

wider tests of the transferability of the KB form of the
optimized nonlocal pseudopotential are necessary to al-
low its use in different solid environments. In fact, gen-
erating a good pseudopotential has been a bit of a black
art.

In this work, we improve the RRKJ scheme and devel-
op a much more systematic procedure to generate an op-
timized and smooth nonlocal pseudopotential. The po-
tential is then transformed into KB form, and its
transferability is tested. In Sec. II, we briefly review the
optimized pseudopotential scheme of RRKJ, describe the
technical problems we met when using this scheme, and
show how we overcame them to achieve both conver-
gence and smoothness. The resulting potential turns out
to converge much better than a recent "smooth" pseudo-
potential of Troullier and Martins. In Sec. III, we re-
view the KB form of nonlocal pseudopotentials, and then
we discuss testing the transferability of our optimized
nonlocal pseudopotentials in KB form. Finally, in Sec.
IV, the structural properties of ZnS are investigated to
demonstrate the success of our optimized and transfer-
able nonlocal separable ab initio pseudopotential and its
total-energy convergence.

II. OPTIMIZING PSEUDOPOTENTIAI. S
FOR CONVERGENCE AND SMOOTHNESS

Recently RRKJ proposed that the convergence of the
total energy of a solid with the cutoff energy for the
plane-wave basis set mirrors the convergence of the total
energies of the isolated pseudoatoms which comprise the
solid. Also, by using scaling arguments they proved that
total-energy convergence and kinetic-energy convergence
are very similar in the limit of large cutoff energies.
These two statements led them to design a scheme in
which the kinetic energy in the high Fourier components
of the pseudo-wave-functions is minimized to achieve op-
timal convergence.
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A brief description of the RRKJ scheme is as follows.
First, the pseudo-wave-function +I(r) inside core radius
(r, ) is expressed as

j/(q, r, ) . QI(r, )
4'((r ) = g a, j((q, r ) with

i =1 j& q, r, &(r,
(2.1)

Here +I(q) is the Fourier transform of %&(r). Third, the
optimized pseudopotential V&(r) is then constructed by
directly inverting the radial Kohn-Sham equation with
the optimized pseudo-wave-function %1(r) in order to
generate the pseudopotential operator VsL(r) in the usual
so-called "semilocal" form

VsL(r)= g VI(r)PI
I

= V„,(r )+ g b, V, (r )P, ,
I

bVI(r)= VI(r) —V&„(r) for r (r, ,

(2.3)

(2.4)

where P& is a projection operator onto angular momen-
tum l and V~„ is a local potential which is chosen arbi-
trarily. We use atomic units e =6=m =1 except that en-
ergies are given in Rydbergs (Ry).

From a practical point of view, what matters is how to
choose the three parameters r„q„and n. RRKJ pro-
posed the following procedure which we shall refer to as
"the RRKJ scheme":

(i) The r, should be chosen to ensure transferability.
(ii) For n, they suggested using ten or even more spher-

ical Bessel functions.
(iii) The q, is determined iteratively by reducing the

convergence error EEk in the kinetic energy to just below
some prechosen tolerance.

We have found some practical problems with all stages
of this procedure. First, the minimization of AEI, in (2.2)
can be very difficult to perform if there are q s included
in (2.1) which are much larger than q, . In such a case, we
find the resulting optimized pseudopotential has strong
short-wavelength oscillations. This problem has also
been pointed out by Troulier and Martins. However, one
has to have n large enough to give a good pseudopoten-
tial which is accurate over a reasonable energy range.
Second, from the point of view of transferability there is
often an advantage in having r, as small as possible, but
we have found there is very little gain from the optimiza-
tion procedure if r, is chosen too small. Moreover, we

in which the jl(q;r) are spherical Bessel functions with
(i —1) zeros less than r„and PI(r) is the all-electron
wave function. Second, Lagrange multipliers are used to
constrain the normalization and the continuity of the first
two derivatives of the wave function at r„and the
coefficients a; are determined by minimizing the kinetic
energy beyond the cutoff q„which can be expressed as

b,Ek(a„a2, . . . , a„,q, )

d r+&*(r)V' +&(r)—I d qq ~WI(q)~

(2.2)

TABLE I. The first ten wave vectors (q s) of the spherical
Bessel functions of angular momentum 2 determined by fitting
the logarithmic derivative to that of 3d all-electron wave func-
tion (2.1) at core radii of 2.00 and 1.50 bohr, respectively.

q, (Ry)'"

q2

q3

q4

qs

q7

q IO

r, =2.00 (bohr)

2.236 36
3.842 30
5.422 46
6.994 43
8.562 75

10.129 12
11.694 31
13.258 75
14.822 68
16.386 24

r, =1.50 (bohr)

2.935 70
5.140 64
7.287 45
9.416 79

11.538 43
13.655 98
15.771 11
17.884 67
19.997 16
22. 108 89

have used a simple method of testing the transferability
of the pseudopotential by mimicking changes in solid-
state environment by changes in atomic configuration.
We shall illustrate each of these points with the numeri-
cal example presented below. By showing how these
three parameters r„q„and n interact, we shall demon-
strate how to change the process of determining of opti-
mized pseudopotential from a somewhat black art to a
more rational procedure, at least as far as the optimized
generation is concerned.

We now take Zn as an example to demonstrate the
technical problems we described above. Due to the lack
of inner core d states, Zn represents one of the most
difficult transition metals to converge with respect to the
cutoff energy for the plane-wave basis set in a pseudopo-
tential total-energy calculation. However, only the 3d
eigenstate has to be optimized to improve the conver-
gence. The Zn valence neutral state with configuration
3d' 4s' 4p has been used to generate 3d pseudopo-
tentials with core radii of 2.0 and 1.50 bohr. By match-
ing of the logarithmic derivative of the spherical Bessel
functions with that of the all-electron wave function at
the two different values of r„ the wave vectors q; have
been determined and these values are shown in Table I.
From Table I it is clear that the larger the value of r„ the
smaller the wave vectors q, . Now we generate the opti-
mized pseudo-wave-function based on the RRKJ scheme,
except that the q, is chosen as q4, and transform this op-
timized pseudo-wave-function into Fourier space. Figure
1 shows the high Fourier components of the optimized
pseudo-wave-function of the RRKJ scheme with n =10,
and compares it with an unoptimized pseudo-wave-
function generated with the Kerker scheme. As expect-
ed, RRKJ optimization more or less cuts out the high
Fourier components with q & 7. However, a small oscil-
lating tail remains. The effect of the latter is much more
apparent in the pseudopotential shown in Fig. 2, where
sharp oscillations also are seen at r (r, .

We have seen that taking n too large results in un-
necessary short-wavelength oscillations in the pseudopo-
tential and actually detracts somewhat from the smooth-
ness. On the other hand, we have to choose n large
enough in order to give a good pseudopotential that is
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FIG. 1. Kerker pseudo-wave-function (dashed line), opti-
mized pseudo-wave-function with n =4 and q, =q4 (dash-dotted
line), and optimized pseudo-wave-function with n = 10 and

q, =q4 (dotted line) in Fourier space for the Zn 3d eigenstate
with a core radius of 2.00 bohr.

transferable, i.e., valid over a wide range of energies.
What matters here is that the pseudopotential has the
right shape to give a good logarithmic derivative, not
only at the atomic eigenvalue used to generate the pseu-
dopotential but over a reasonable range of energy. To
solve this conflict, we first investigate how many con-
straints are needed to generate our pseudopotential. Due
to the fitting of the logarithmic derivative of the spherical
Bessel functions with that of the all-electron wave func-
tion at r„we need three constraints, i.e., normalization
and continuity of the first two derivatives of the wave
function at r„ to generate the norm-conserving pseudo-
potential. After adding the fourth requirement of mini-
mizing the kinetic energy beyond q, in Fourier space in
(2.2), we need at least four spherical Bessel functions, and
hopefully this will be enough to generate a good opti-
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FIG�.

2. Kerker pseudopotential (dashed line), optimized
pseudopotential with n =4 and q, =q& (dash-dotted line), and
optimized pseudopotential with n =10 and q, =q4 (dotted line)
generated for the Zn 3d eigenstate. The core radius is 2.00
bohr.

mized pseudopotential. At the same time, it is easy to
show that the smoothness can become worse by increas-
ing n, which introduces unwanted oscillations as already
discussed. Furthermore, the q, cannot be reduced arbi-
trarily as envisaged in the RRKJ scheme, because it is
essentially determined by the highest Fourier component
in the pseudo-wave-function, effectively by the highest q,
which is q4 for four spherical Bessel functions. We then
expect good convergence with an energy cutoff at q 4 Ry.
Thus we predict from Table I that total-energy calcula-
tions for Zn using 3d optimized pseudopotentials with
core radii of 2.00 and 1.5 bohr should converge around
50 and 90 Ry, respectively, as was indeed found in the
calculation on ZnS in Sec. IV. These results also demon-
strate that there is a limit to what can be gained from the
optimization scheme if r, is chosen too small.

Following the above considerations, we can now
present our modified scheme for generating an optimized
pseudopotential, which we believe is more systematic
than the RRKJ scheme. Moreover, the optimized pseu-
dopotential is much smoother. We use the same equa-
tions and steps in (2.1) to (2.4): the difference lies in the
practicalities of how we use them and set r„n, and q, .
We replace (i), (ii), and (iii) above in the RRKJ scheme by
the following scheme.

(a) The r, is set as large as possible, consistent with sa-
tisfactory transferability of the pseudopotential. What
constitutes "satisfactory" depends on the physical system
in question: it is a complicated question that arises in any
use of pseudopotentials, but has nothing to do directly
with optimization of the potential ~ However, one can use
changes of atomic configuration to mimic changes in
solid-state environment and hence to test transferability.

(b) We set n =4 to avoid any tail of high-energy
Fourier components.

(c) We set q, =q4 because the energy cutoff is really
controlled by q4 and cannot be varied at will.

We want to emphasize that our scheme is now similar
in its practical application to the scheme of Kerker and
Hamann, Schliiter, and Chang (HSC), ' and certainly it is
no more difficult to implement. The point is that we have
four equations to solve for the four constants a, in (2. 1) in
order to satisfy the three constraints on the wave func-
tion (the first two derivatives at r, and normalization)
plus the minimization of (2.2).

Using our new procedure we have generated the 3d
nonrelativistic optimized pseudo-wave-function of Zn in
the same non-spin-polarized valence-state configuration
as above with an r, of 2.0 bohr. For comparison, we have
also constructed the 3d nonrelativistic pseudo-wave-
function of Zn using the Kerker scheme with the same
configuration. As can be seen very easily from Fig. 3, the
maximum of our optimized pseudo-wave-function moves
substantially outwards with respect to that of the all-
electron wave function and the Kerker pseudo-wave-
function. The effect of this displacement on the transfer-
ability of the KB form of the nonlocal pseudopotential
turned out to be very small, as was indeed found in the
test of transferability in Sec. III. The Fourier com-
ponents of the resulting pseudo-wave-functions are
shown in Fig. 1. As expected, the kinetic energy con-
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FIG. 3. All-electron wave function (solid line), Kerker
pseudo-wave-function (dashed line), and optimized pseudo-
wave-function (dash-dotted line) in real space for the Zn 3d
eigenstate. The core radius is 2.00 bohr.

verged at roughly qua=50 Ry for our optimized pseudo-
wave-function, in contrast to 140 Ry for the Kerker one.
The corresponding pseudopotential shown in Fig. 2 is
also much smoother and shallower than the RRKJ and
Kerker ones, which presumably accounts for the better
convergence and smoothness.

Incidentally, Fig. 2 shows that our optimized pseudo-
potential (dash-dot curve) has a small wiggle in real space
at r = 1.8 bohr. This is introduced by the optimization
process, and can be understood as follows in terms of
what is sometimes called the Gibbs phenomenon. If we
have a Fourier series for, say, a repeated rectangular step
function, and truncate the Fourier series at a finite point,
then the corresponding real function has sprouted some
overshoot wiggles near the sharp edge. They result from
setting all Fourier components equal to zero beyond the
cutoff. Of course the wiggles introduce some high
Fourier components, but their amplitude and sign are
such as to cancel the high Fourier components from the
rest of the function, or in our case from the rest of the
pseudopotential.

(2.3), and V~„(r) is a local potential which again is
chosen arbitrarily.

When we tried to transform the optimized pseudopo-
tential generated with the RRKJ scheme into the KB
form (3.1), we found problems of numerical instabilities.
We traced the problem to the short-wavelength oscilla-
tions of the pseudopotential inside r„already discussed
in connection with Fig. 2. Fortunately, by employing the
new optimized pseudopot ntial scheme described in Sec.
II, we always generated very smooth optimized pseudo-
potentials. This allows us to construct b, V&(r) potentials
which do not have strong-wavelength oscillations, and
hence transform to KB form (3.1) without any difficulty.

It is important to ensure that the problem associated
with "ghost states" can be controlled when using the
KB form of pseudopotential. Gonze, Kackell, and
Schemer" have given a prescription for overcoming this
problem, which has been used by Troullier and Martins
in constructing their soft pseudopotentials in KB form.
We have also avoided, successfully so far, the problem of
"ghost states" by following the same prescription.

Now we should consider the transferability of our opti-
mized pseudopotential in KB form. There is no automat-
ic way to predict or control transferability: one has to test
any pseudopotential that has been generated, and if
necessary modify it using one's general understanding of
the factors that control transferability. When the poten-
tial is constructed, we only ensure that it will reproduce
the all-electron calculation in the reference configuration.
In practice, we want to use this potential in a wide range
of atomic environments. To achieve this it is necessary
for the potential to reproduce the all-electron results (a)
for different valence electron densities on the atom and
(b) over as wide a range of energies as possible for a fixed
density. We can test this in two different directions.
First the logarithmic derivative of the optimized KB
pseudo-wave-function has been constructed and com-
pared with that of the all-electron wave function. In Fig.
4, we have plotted the logarithmic derivatives of our 3d
optimized and Kerker KB pseudo-wave-functions of Zn
in comparison with that of the 3d all-electron wave func-
tion. As can be seen from Fig. 4, the scattering proper-

III. KLEINMAN-BYLANDER POTENTIALS
AND THEIR TRANSFERABILITY

For computational efficiency, when performing pseu-
dopotential total-energy calculations with plane waves,
the semilocal form (2.3) of the pseudopotential operator
VsL(r ) is usually transformed into the separable nonlocal
form suggested by Kleinman and Bylander,

(3.1)

20
0.0

—2.0

—6, 0
—B.O

—2.0

E (Ry)

0.0

b, VI(r)= V((r) —V), (r) for r ( r, . (3.2)

Here V&(r ) is constructed by directly inverting the radial
part of the pseudo-wave-function O'I(r) to generate the
semilocal form of the pseudopotential operator VsL(r ) in

FIG. 4. The logarithmic derivatives of the all-electron radial
wave function (solid line), Kerker (dashed line), and optimized
(dash-dotted line) Kleinman-Bylander pseudo-wave-functions
for 3d eigenstate of Zn with a core radius of 2.00 bohr. The
atomic eigenvalue is —0.912 941 Ry.
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ties of both the optimized and the Kerker KB form of the
nonlocal pseudopotential are almost identical over a wide
range of energies. Also, if we compare the curve of the
KB form of the nonlocal optimized pseudopotential with
that of all-electron potential, it can be seen that the
transferability of the KB form of the nonlocal pseudopo-
tential is still quite good given that the 3d electrons do
not participate strongly in chemical bonding and will
only be important over a small range of energies.

The all-electron logarithmic derivative at high energy
is not reproduced as well as by the pseudopotential of
Troullier and Martins. Nevertheless the deviation given
by our potential is within the range of other pseudopoten-
tials that have been tested and found satisfactory in
solid-state applications. Pseudopotentials of several oth-
er atoms have been generated by the present scheme and
tested by various groups in Britain.

However, the logarithmic derivative results are calcu-
lated with the assumption of constant screening by the
valence electrons, and this is not the case when the envi-
ronment of an atom changes in the solid. Therefore it is
necessary to take a second step and test the KB form of
the nonlocal optimized pseudopotential in a variety of
atomic configurations. The principle is well established.
The free-atomic configuration of Si is of course 3s 3p,
but in the diamond structure it is formally 3s3p, to give
tetrahedrally directed valence orbitals in the usual way.
Compression of the solid will also tend to promote elec-
trons into higher 3p orbitals. In reality, the sp transfer x
in the configuration 3s "3p + was found to vary be-
tween about x =0.2 and 0.6 over three different struc-
tures and a reasonable range of distances. ' Thus one can
mimic a change in solid-state environment by a change in
atomic configuration. One generates a pseudopotential
with one configuration, calculates with it a different
configuration, and compares the energy eigenvalues of
the second one with the corresponding all-electron calcu-
lation. Results of tests of this type of the KB form of the
3d nonlocal optimized pseudopotential and Kerker pseu-
dopotential in different atomic configurations are present-
ed in Table II. Both the semilocal form (2.3) and the KB
form (3.1) of the optimized pseudopotentials yield almost
the same eigenvalues as the all-electron calculations in all
the atomic configurations. The difference in eigenvalues
between the KB forms of the optimized and the Kerker
pseudopotentials is almost negligible. When transferred
to the different atomic configurations, the eigenvalues of
the KB form of the optimized pseudopotential differ from
those of the all-electron potential by only a small amount,
quite small enough for normal physical applications.

IV. RESULTS FOR ZnS

We first investigated the total-energy convergence for
cubic ZnS to verify that convergence occurred at the
same energy as the atomic kinetic energy of the Zn pseu-
doatom. Since the 3d pseudopotential of Zn will control
the total-energy convergence of cubic ZnS even after op-
timization, there is no need to optimize the 4s and 4p
pseudopotentials of Zn or the 3s, 3p, and 3d pseudopoten-
tials of S. We used the 3d optimized pseudopotential of
Zn as described in Sec. II for this study. The 4s and 4p
pseudopotentials for Zn were constructed using the
3d' 4s' 4p configuration and the Kerker scheme
with an r, of 2.00 bohr. We also generated 3s and 3p
Kerker pseudopotentials for S in the 3s ' 3p
configuration with core radii of 1.32 and 1.46 bohr, re-
spectively, and a 3d Kerker pseudopotential for S in the
3s ' 3p

' 3d configuration with an r, of 1.53 bohr.
We then transformed these nonlocal pseudopotentials
into KB form with s-wave and p-wave components treat-
ed as local for Zn and S, respectively. The pseudopoten-
tial total-energy calculations were carried out in the
framework of the local-density approximation of
density-functional theory using Perdew and Zunger's'
parametrization of the exchange-correlation energy. The
electronic minimization was performed using the conju-
gate gradient technique. Two special Monkhorst-Pack'
k points were used for Brillouin-zone sampling. Results
for the total-energy convergence of cubic ZnS with a lat-
tice parameter of 5.40 A are shown in Table III. Indeed,
the pseudopotential total energy of cubic ZnS was almost
converged at a cutoff energy of 50 Ry, as we expected
from the atomic kinetic-energy convergence of the pseu-
doatom of Zn. Increasing the cutoff energy up to 100 Ry
decreased the total energy by only a further 0.07 eV. In
comparison with recent results' for cubic ZnS using the
soft pseudopotential of Troullier and Martins, in which
the cutoff energy of 121 Ry had to be used, our optimized
pseudopotential shows dramatically better convergence
even though a smaller core radius was used. We then cal-
culated the structural properties of cubic ZnS with a
cutoff energy of 55 Ry by fitting the Murnaghan equation
of state' to the calculated data points. Our results are
compared with experimental values' in Table IV. The
equilibrium lattice constant ao, bulk modulus Bo, and its
pressure derivative 80 are in very good agreement with
experiment. The overestimate of the cohesive energy E„
which arises from the use of the local-density approxima-
tion, is expected.

It is not difticult to appreciate that the improvement in

TABLE II. Kohn-Sham eigenvalues using the all-electron potential (AE), the semilocal optimized
pseudopotential (SOP), the Kleinman-Bylander form of the nonlocal optimized pseudopotential
(KBOP), and the Kleinman-Bylander form of the nonlocal Kerker pseudopotential (KBKE) for the 3d
eigenstate of Zn in different atomic configurations.

Configuration

4$1'274 0.733d '

4 2.03d 10.00

4 1.03d 10.00

4$1'004 1'003d 10'00

AE (Ry)

—0.912 941
—0.797 336
—1.502 393
—0.951 247

SOP (Ry)

—0.912 950
—0.790 282
—1.508 101
—0.953 925

KBOP (Ry)

—0.912 950
—0.790 290
—1.508 109
—0.953 926

KBKE (Ry)

—0.912 950
—0.793 908
—1.503 128
—0.952 661
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TABLE III. The calculated total energy for cubic ZnS per
molecular unit at different cutoff energies for the plane-wave
basis set.

Energy cutoff (Ry)

30
40
50
55
60
70
80
90

100

Total energy (eV)

—1667.1516
—1710.0554
—1713.4542
—1713.4942
—1713.5015
—1713.5137
—1713.5153
—1713.5204
—1713.5224

the convergence using our procedure is very sensitive to
the r, chosen for generating the pseudopotential. The
larger the r, we choose, the better the convergence we
obtain. But the r, for the pseudopotentials of first-row
elements of the Periodic Table very often cannot be
chosen to be very large. As a result, the improvement in
the convergence for first-row elements, even using our
new scheme, is not as good as that for transition metals.
But our calculated results for Mgo and diamond using
optimized pseudopotentials for 0 and C with core radii
of 1.50 and 1.60 bohr, respectively, show that the pseudo-
potential total energies for these systems still converge
around 65 and 60 Ry, respectively. These results suggest
that our optimized pseudopotentials give much faster
convergence than both Kerker and HSC pseudopoten-
tials. Nevertheless, there is some hope of systematically
improving the convergence even further by using only
three constraints, so that convergence is obtained at a
cutoff energy of q3 Ry rather than q4 Ry. The generation
of optimized pseudopotentials of first-row elements using
this idea is presently in progress.

V. CONCLUSIONS

We have set out to generate the better atomic pseudo-
potential with respect to convergence while retaining
good transferability and having computational efficiency.
The optimized pseudopotential scheme of RRKJ has
been modified into a more systematic procedure in order
to construct truly optimized pseudopotentials as regards

TABLE IV. Comparison of calculated structural properties
of cubic ZnS and experimental values.

ao (A)
B, (GPa)
B()
E, (eV)

Calculated

5.379
81.2
5.1

7.67

Experiment'

5.4041
76.9
4.91
6.33

'See Ref. 17.

convergence and smoothness. There are three new
features in this procedure. (i) The number of spherical
Bessel functions needed to expand pseudo-wave-functions
is restricted to being the same as the number of con-
straints applied to construct the optimized pseudopoten-
tial, namely, four. (ii) The cutoff q, is chosen as q&. (iii)
The convergence for total-energy calculations with an ex-
pansion of plane waves will then be achieved at an energy
of the order of q4 Ry, no matter what r, is chosen, where

q4 is itself proportional to r, '. The KB form of the opti-
mized nonlocal pseudopotential is employed to fulfill our
requirement of computational efficiency in electronic-
structure calculations. We have demonstrated the
transferability of our optimized pseudopotential in KB
form. Finally, the excellent and predictable pseudopoten-
tial total-energy convergence, as demonstrated by the cal-
culated structural properties of cubic ZnS, will allow
pseudopotential total-energy calculations with optimized
and transferable nonlocal separable ab initio pseudopo-
tential to be performed for a wide class of solid-state ma-
terials.
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