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The amorphous phase of MoS3, which has no crystalline counterpart, is prepared through the
thermal decomposition of ammonium thiomolybdate. The structure of this amorphous phase has
been analyzed through a combination of x-ray diffraction and computer calculation of model struc-
tures. Both the x-ray diffraction pattern and its Fourier transform, the pair distribution function,
were modeled. In r space there were four prominent distances whose positions and relative contri-

0

butions required fitting while in k space there was a prominent well-defined peak at —1 A togeth-
0

er with diffuse oscillations out to —15—16 A . Relevant spectroscopic and chemical data were

used to rationalize a consistent structure. A basic chainlike arrangement of dimerized Mo atoms
separated by triangularly coordinated S atoms with disulfur bonds, provided the starting point. The
final structure consisted of pairs of (coupled) chains with significant deviations or bendings from
parallel alignment. These paired flat chains could then be stacked as they would naturally be in the

0

material to produce the requisite planar correlations for the 1-A peak in k space. The final
overall fit in both k and r space was considered good.

I. INTRODUCTION

The structures of amorphous materials have been wide-

ly studied and are known, in most cases, to have some
type of short-range order among nearest-neighbor atoms. '

Many of the materials studied demonstrate structural
correlation well beyond the nearest-neighbor distances as
well. These intermediate-range structural correlations (in-
termediate between nearest neighbors and the long-range
order of crystals) are often observed as prominent diffrac-
tion peaks in the low-k region where k =4m. sin0/A, and 28
is the angle between the incident and scattered rays. In
our view, the characteristics of the intermediate structure
make the amorphous phase distinctively different from
the crystalline one and are essential for understanding the
properties of amorphous materials. It is the purpose of
this study to investigate this extended structure in a novel
material, amorphous (a-) MoS3.

Experimentally, the elucidation of the intermediate-
range structure of amorphous materials is difficult and
constitutes a challenge to our visualization of these ma-
terials. First of all, there is a lack of experimental
methods. Although many techniques can be applied to
probe the local structure in amorphous materials, includ-
ing EXAFS (extended x-ray-absorption fine structure),
NMR, XPS (x-ray photoelectron spectroscopy), Raman
and ir vibrational spectroscopies, Mossbauer spectroscopy,
and so forth, the most direct probe of the intermediate-
range structure remains the scattering Inethods with x
rays, neutrons, or electrons. An attendant complication
arises in the interpretation of the diffuse scattering inten-
sity from amorphous bodies, however, which is often not

straightforward. In this regard, it is understandable that,
although many structural models of amorphous materials
have been constructed, the connections between these
models and the "true" structure remain mostly to be test-
ed. We pursue this course with a-MoS3 using a ball-and-
stick model building technique to interpret the diffraction
data in both r space and k space. The results prove to be
both unusual and nonintuitive and confirm our belief that
r space and k space fitting provide important complemen-
tary information.

Amorphous MoS3 is an interesting material which,
along with MoSe3, WS3, and WSe3, can be prepared only
in the amorphous form while the analog crystalline tri-
chalcogenides of the neighboring groups IVB (Ti, Zr, Hf)
and VB (Nb, Ta) are known to have chainlike structures.
More recently, a-MoS3 was found to have interesting elec-
trochemical properties. It can react readily and reversi-
bly with three lithium atoms per MoS3 unit at room tern-
perature which is a substantially better capacity than
shown by, say, crystalline ZrS3 which reacts with only one
lithium per ZrS3 unit. It would therefore be additionally
interesting to investigate the extent of similarity between
amorphous and crystalline trichalcogenides from a
structural point of view.

In this work, computer calculations on model structures
of a MOS3 are compared with x-ray diffraction data
presented in both k space and r space. The results show
that Q MOS3 possesses a rather unique structure which
may be termed a ribbonlike arrangement of paired dimer-
ized chains with appropriate intrachain and interchain
connections to conform to the chemical, spectroscopic,
and structural data.

Q~1984 The American Physical Society
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where k=4m sin0/A, and 28 is the scattering angle be-

tween S and So.
For scattering from a real amorphous sample, a general

treatment is usually applied by introducing a density func-
tion p (r„), such that p (r„)dV„ is the number of
atom centers in volume element dV„at the position r„
relative to atom m, and by neglecting the small-angle-
intensity contribution to give the usual amorphous scatter-
ing expression. This neglects both voids in the sample and
the shape transform of the entire sample.

If only one kind of atom is present, then spherical
averaging allows the expression to be reduced to the usual
form6 as

I,'„/N —fi(k)=

1.0 2.0 3.0 4.0 5.0 6.0
= f [p(r) p, ] —4rrr dr (3)

K (A -')
0

FIG. 3. The normalized intensities of a-MoS3, k =0 to 6 A
The arrows indicate prominent diffuse peaks that wi11 require
consideration in the fitting procedure.

the calculated total independent intensity in the high-k re-
gion, where the oscillation of the total intensity about the
independent scattering curve is small. The total indepen-
dent scattering curve was calculated using

I, = g f,'+[I(CM)]„, .

The corrected and scaled intensity of a-MoS3 is shown
in Fig. 2 and in Fig. 3 for an expanded k scale. The
prominent features are evident as indicated by arrows.

III. DIFFRACTION THEORY

ki(k)=4m f [p(r) p, ]sin(kr)—r dr

where ki (k) is the partially reduced intensity, usually re-

ferred to as the interference function; p(r)=p~(r„~), the

average is over all p (r) within the sample that are a dis-
tance r from an origin atom at n (p, is the average densi-

ty); and I,'„/N is the intensity per atom with the small-
angle term omitted.

B. Method of pair function
I

For a system with more than one kind of atom, an exact
method that leads to the pair-distribution solution has
been developed by Finbak and recorded by Warren. The
pair functions are given by

P,J(r) =Q;J(r r,j ) Q,J(r+—r~/)—

A. General theory

The process of diffraction is such that the diffracted
waves represent the complex transform of the real-space
distribution of scattering centers. The x-ray intensity I,„
in electron units is given by

I,„=gg f f„exp[(2mi/A, )(S—So) r „],
m n

where f is the scattering factor of atom I, S is the

scattering vector of diffracted beam, So is the scattering
vector of incident beam, and rm„=rm —r„, rm is the po-
sition vector of atom m.

We consider our sample to be any form of matter in
which there is a random orientation of scattering units.
This includes gases, liquids, amorphous solids, and small
crystalline powders. The average unmodified intensity
from an array of atoms which takes all orientations in
space is then given by the familiar Debye scattering equa-
tion:

k

Q;, (x)= —,
' f,' '-e —""'cos(kr)dk .

g (k)

Q;J (r +r,j ) is usually small enough to neglect and the rest
defined as follows: r,J is the interatomic distance between
an atom of type i and an atom of type j; k is the largest
k value recorded in the experiment; g(k) is the sharpening
factor, which decreases with increasing k and has the
value of 1.0 at k=0 (it normally takes the form of
g„,f /g„, Z~) (where Z~ = the atomic number, uc in-

—a2k2 ~

dicates unit composition); and e is the arbitrary con-
vergence factor, (it usually takes the value such that
a k =1.0).

In terms of the pair functions, Eq. (7) presents the final
form of the pair-distribution solution, where the right-
hand side (rhs) is called D(r) here:

D(r) = g g — P(J(r)
uc i iJ

I-=ggf f. (2)
k

=2m rp, g ZJ + f F(k)sin(kr )dk, (7)
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where N~ is the average number of atoms in shell i at a
distance r J from an atom of type j;p, =(N/V) g„,/ZJ is
the average electron density [N is the number of unit com-
positions (uc) in the sample]; F(k)=ki(k)e " is the
reduced intensity function; and i(k) =(I,„/N
—Q„,f,' )/g'. (k).

This method of pair functions is especially useful in
cases where discrete intramolecular (chemical) distances
exist in an amorphous solid which shows local chemical
order and longer-range topological disorder. An excellent
application was the study of Mozzi and Warren on Si02.
We do not take full advantage of this method in our
modeling, however, because we do not calculate separate
pair functions for all of our separate pairs. of atoms. We,
nonetheless, represent our transformed data as the func-
tion D(r), which weighs the near-neighbor coordination
properly.

C. Computer calculation of models

In most structural modeling studies, physical ball-and-
stick models have been used in which the directly recorded
coordinates of the atoms were entered into the computer
for structural computations. The diffraction intensity was
then directly calculated using the Debye formula [Eq. (2)].
Manipulation of the models and reentering of the coordi-
nates were repeated systematically until satisfactory re-
sults were reached. While this is not a widely used
method for crystalline solids, it has advantages for a ran-
dom aggregate of very small crystallites and for disor-
dered materials. The computation is straightforward but
rather time consuming. In this work, the computation
was performed on a Honeywell 1130 computer, located at
the University of Houston, as well as on a PDP 11-23
computer at the Exxon Corporate Research-Science
Laboratories. The computing time was about four hours
for a typical aggregate consisting of about 200 atoms,
where the computation was carried out at a total of 110
values of the scattering wave vector.

Using this physical modeling approach, we have recent-
ly studied the structure of poorly crystalline (pc-) MoS2.
In that case, since the basic layered structure is main-
tained, the modeling was aimed at studying essential crys-
talline parameters such as layer extent, the layer-stacking
sequence, and the number of layers in a stack as well as
the regularity (or disorder) in the layer stacking. We were
able to obtain excellent agreement between experimental
and calculated diffuse-intensity profiles of pc-MoS2. In
the case of amorphous MoS3, the models have been con-
structed in a more complicated fashion. A large number
of rotations were used to simulate the possible bending
and twisting of the prismatic of atoms as shown in a later
section. Extreme care was taken when the disordered
chains were coupled, since an interchain distance of no
less than 2.8 A between the sulfur atoms had to be
preserved to remain consistent with almost all transition-
metal chalcogenides. It may perhaps appear somewhat ar-
bitrary to calculate interference and radial distribution
functions until the fit with experiment is deemed success-
ful. However, these models are always rationalized and
constrained by all known chemical and spectroscopic data

and the fits, which are often rather hard to obtain, are
treated as plausible rather than unique. Clearly, not to
make such comparisons may limit severely the usefulness
of a structural conjecture.

IV. RESULTS OF DATA ANALYSIS

The earlier studies on MoS3 suggested that this amor-
phous compound was not an independent compound but a
mixture of MoS2 and noncrystalline sulfur. ' ' Later,
from an analysis of the x-ray radial distribution functions,
Diemann' concluded that a-MoS3 was a genuine com-
pound, although ambiguities remained concerning its de-
tailed structure. Recently, a chainlike structure similar to
that of the crystalline trichalcogenides of the neighboring
IVB and VB elements was proposed by Liang and co-
workers. ' In this study, the dimerization of the metal
atoms along the chain was inferred through radial distri-
bution field (RDF) analysis of diffraction and EXAFS
data, while XPS studies revealed the presence of a shorter
disulfide bond, where the ratio of the number of shorter
bonds to the normal sulfur bond was 1:2. More recent
EXAFS (Ref. 15) results and magnetic measurements'
are basically consistent with this structural model.

We will first examine here the nearest-neighbor coordi-
nations of a-MoSi in more detail using the pair-function
analysis. We will then compare the results of the compu-
tations on various models, in both r space and k space,
with the experimental data. Finally, we will see that not
only has the Fourier-transforined r-space pattern been fit-
ted out to the fourth peak, but also the k-space pattern has
been fitted throughout the region where the experimental
data was collected. These two fits are complementary em-

phasizing the shorter-range (low-r-space) and longer-range
(low-k-space) regimes.

A. Profile of the diffraction pattern

It is interesting to inquire, as with pc-MoS2, if we are
able to gather any information simply by looking at the
profile of the diffraction pattern directly (Figs. 2 and 3).
It consists of a prominent first peak at 1.0 A ', a double
peak at around 2.8 A ', a shoulder immediately follow-
ing the double peak at 4.0 A ', and a broad peak at 5.5
A '. It is quite common to have a sharp first peak for an
amorphous material, although the precise origin of this
prominent feature is often not well understood. The fact
that the stacking of the sandwiched layers in pc-MoS2
successfully produced a prominent peak at 1.0 A ' (Ref.
9) suggests treating a-MoS& in a similar way. But the en-
suing well-defined layer-related peak at 4.0 A ' cannot
then be made to disappear and the layered structure will
therefore not be discussed further. However, a type of re-
stricted planar (or quasiplanar) correlation will still be
posited as the probable origin of the prominent first peak.

B. Pair-function analysis

We now examine the r-space pattern, which is Fourier
transformed from the reduced intensity. The reduced-
intensity curve, Ii(k), shown in Fig. 4 is obtained accord-
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8000 TABLE I. Nearest-neighbor {NN) atoms estimated with
Gaussian distribution.

4000—

Peak
Position Assumed Number of NN atoms

(A) pair for Mo

—4000—

2.47
2.90
3.39
3.8S

Mo-S
Mo-Mo
Mo-Mo
Mo-Mo
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1.48
2.48
2.63

0.15
0.09
0.16
0.10

—8000
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12.0 16.0 C. Model calculation

K(A )

FIG. 4. The reduced intensity F(k) of a-MoS3, including a
damping factor exp( —a k ) to reduce the significance of the
less accurate high-k data.

0
0

I

1.0
I

2.0
I

3.0

r (A)

I

4.0 5.0

FIG. S. The experimental radial pair-distribution function
D{r) for a-MoS3. The arrows indicate prominent interatomic
distances whose contributions must be rationalized. Beyond the
first four, oscillations are considered due to combinations of dis-
tances of different interatomic pairs.

ing to Eq. (3). Its Fourier transform D(r) reveals a flat
region and four peaks, located at 2.47, 2.90, 3.39, and 3.85
A, in Fig. 5. Lying under the shoulder of the first peak,
the second peak we believe to consist of mainly Mo-Mo
pairs. The prominent first peak will be unmistakably as-
signed as a Mo-S peak. The Mo—S bond length 2.41 A in
crystalline MoS2 is comparable to our value of 247 A.
However, we find that the Mo—S bond length can vary
between about 2.45 and 2.60 A as found in many coordi-
nation crystals containing Mo and S atoms, ' which gives
a passible explanation for the broadening of the first peak
[full width at half maximum (FWHM) =0.15 A, Table I].
The estimation of the area of the first peak, shown in
Table I, suggests about six sulfur atoms around each
molybdenum atom. The third and the fourth peaks could
be partly generated by Mo-Mo pairs, where the source of
broadening of the peaks is at present unclear. The missing
indication of the disulfide bond at 2.05 A is thought to be
caused by the cancellation between the ripples of the first
peak and the weak contribution due to the small scattering
factor of the sulfur atoms. The continuous increasing
background in the region beyond 4.2 A indicates signifi-
cant disorder. Therefore, it would be unrealistic to discuss
that region without building a larger model.

Before going into the details of the computations of the
chainlike model, we should note that a three-dimen-
sionally (3D) coordinated random network model involv-
ing sixfold-coordinated Mo and twofold-coordinated S is
not possible in this material, because it would require the
number of next nearest Mo-Mo neighbor atoms to be six.
That would imply that the second, third, and fourth peaks
of the RDF were all due to this Mo-Mo shell.

The computations for each model have first been car-
ried out in k space using Eq. (2) after which r space values
are obtained by Fourier transforming the k space results
as in Eq. (7). In order to avoid ambiguities arising from
the treatment of the data, such as truncation effects, the
analysis parameters including integration region, sharpen-
ing factor, convergence factor, etc., have been applied to
both the experimental reduced intensity and the calculated
intensities in an identical fashion. The S atoms to form
the disulfide bonds are specially distinguished and labeled
in this study. While they do not contribute markedly to
the derived pair function, the disulfide bonds must be
treated with great care to ensure a physically reasonable
structure.

1. Basic chain structure

The basic chain structure is constructed based on the
previous work by Liang et al. ' except that the disulfide
species are placed between the Mo dimers to be consistent
with most known Mo-S coordination structures. ' Dif-
ferent bond lengths of Mo-S pairs have been assigned in
the model calculations in order to simulate the first peak
at 2.47 A in r space. The normal Mo—S bond is assigned
to be 2.40 A, where the distinguished ones are at 2.60 A.
Each molybdenum atom is surrounded by six sulfur
atoms. Along the chain, a bond length of 2.8 A is as-
signed to the Mo dimer while the normal Mo-Mo distance
is 3.4 A. The two different Mo-Mo distances (2.8 and 3.4
A) are arranged alternately along the chain where three
sulfur atoms form a plane bisecting every Mo-Mo pair. In
this way, a prismatic configuration has been arranged
about each malybdenum atom and six surrounding sulfur
atoms as shown in Fig. 6. The disulfide bonds are initially
introduced into every other sulfur plane.

The k-space patterns of a straight-chain model with
various numbers of molybdenum atoms along the chain
are shown in Fig. 7. The sharpening of the peak at 4.1

A ' is caused by the increasing of the length of the chain.
The large background in the small-k region (k & 1.0 A ')
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FIG. 9. Radial pair-distribution function D(r) of an arbitrari-

ly bended (12') single-chain model compared to experiment.

2. Microcrystalline MX3 model

As stated previously, the structural model employed in
our RDF analysis is mainly based on the crystalline tri-
chalcogenides of groups VIB and VB.' In these crystal-
line compounds, the structures exhibit extensive interchain
coupling where the coupled chains may form a pseudolay-
ered structure. We therefore investigate models based on
these structures. Schematics of the models studied are
shown in Fig. 10 with the calculated intensity patterns
shown in Fig. 11 for straight chains with four Mo atoins
per chain.

The calculated diffraction patterns of coupled chains
are compared in Fig. 11 with the single chain and with ex-
periment. In the case of two coupled chains [Fig. 10(a)],
the results reveal a double peak at about 2.8 A ', a small
peak at 4.1 A ' immediately following the double peak,

0 i

0

K (A -')

FIG. 11. The calculated intensities of coupled chains of four
Mo atoms of models (a) and (b) of Fig. 10.

0

and a peak at 5.4 A ' in a way suggestive of the experi-
mental data. The 3.2-A ' peak develops only through the
coupling of two chains. When two more chains are added
[Fig. 10(b)], however, the diffuse structure is too enhanced
both at 3.2 and 5.3 A '. We therefore conclude that the
interchain correlation cannot go beyond two chains.

Finally, we also investigated several versions of the
crystalline MX3 model to include coupled chains as a
pseudolayer and a van der Waals gap between the layers.
One of these examples are shown in Fig. 10(c). A low an-

gle peak —1 A ' is generated in this case through the in-
terferences associated with the distance d of the model.
But the sharp structures of the interference function can-
not be successfully removed without severe bending or dis-
tortion to a degree that the order can no longer be con-
sidered as microcrystal. We therefore conclude that a mi-
crocrystalline version of MX3 is not satisfactory.

3. Ribbonlike model

(c)

FIG. 10. Schematics of the structural models involving cou-
pled chains as in the crystalline trichalcogenides.

Through the modeling work discussed so far, we realize
that the order along the chain should not be extended
beyond four Mo atoms and the correlation between the
chains should not go beyond two chains in order to elim-
inate sharp features of the calculated patterns. Our goal
now is to construct a model structure with these require-
ments in disorder and yet to produce the satisfactory fits
in both k-space and r-space experimental data.

Our calculation starts with a basic model with two
chains coupled together. However, with the disulfide
bond at the location shown in Fig. 6, we find that it is dif-
ficult to fit the k-space pattern and construct a physically
reasonable model at the same time. By this we mean that
joint requirement of bending and coupling cannot be met.
We note, however, that the disulfide bonds may be located
sideways as in the molecular structure of anions such as
[Mop(NO)4S3(S2)5] . ' Therefore, a new model is con-
structed as shown in Fig. 12.

In this new model, with the disulfide bond formed by
two sulfur atoms between two separate triangular sulfur
planes, we are able to provide room for the coupling of the
chains. This essential coupling is made possible only be-
cause some of the sulfur atoms are shared by the molybde-
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FIG. 12. A model of two coupled chains. The coordinates of

the atoms are given in Table IV.

num atoms of the neighboring chain, as in the case of the
chain11kc transition-1Tlctal trichalcogenidcs. Thc length
of this type of Mo—8 bond is assigned to be about 2.6 A.
The interchain molybdenum distances are now about 3.85
A. In order to keep intcrchain S-S distances within a
reasonable range (greater than 2.8 A), it is necessary to
have two chains separate after coupling for about 6 A;
in other words, the coupling of the chains will be turned
on and off constantly as the model extends, while chains
curve through the space. It is quite clear that two coupled
chains, without bending or spreading, would generate, as
noted earlier, excessively sharp structure and too large a
fourth peak in the r-space pattern. In addition, the model
may be extended with more freedom simply through the
sharing of the corner molybdenum atoms of the structure
shown in Fig. 12.

Before we discuss various k-space calculations, the radi-
al pair distribution of the model may be examined to see if
enough pairs for thc f11st four peaks can bc generated, as
we only deal with the relatively small model of Fig. 12 in
our k-space calculations. The radial pair distributions of
this model, collected through a Fourier transformation of
the calculated k-space data, can only provide us with a
general view on that account. Therefore, the radial pair
distribution D(r) along a single chain of extended length
(eight Mo atoms) is calculated and shown in Fig. 13 (curve
A), while curve 8 in Fig. 13 shows the D(r) contributed by

TABLE III. The coordinates of the atoms of the proposed
model shown in Fig. 12. I goes from top to bottom of thc left
chain, then the right chain.

1

2
3

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0.000
—0.418

1.694
1.019
2.047
0.338
1.732
3.322
2.047
0.143
1.552
3.420
2.047

—0.531
1.432
1.651
7.538
7.955
5.842
6.522
5.491
7.302
5.803
4.219
5.491
7.397
5.983
4.120
5.491
8.070
6.104
5.839

0
—0.579
—1.684

1.949
0
0.973

-1.665
1.116
0
1.084

—1.885
1.384
0
0.160

—1.642
1.590
0
0.580
1.581

—1.951
—0.063
—0.974

1.122
—1.122
—1.093
—1.084

1.883
—1.389
—0.003
—0.159

1.640
—1.553

0
—2.500

0.237
—0.950
—1.910
—3.610
—3.610
—3.610
—5.310
—6.710
—6.710
—6.710
—8.110
—8.486
—9.749
—9.899

1.700
—0.800

1.463
0.740

—0.210
—1.910
—1.910
—1.910
—5.010
—5.010
—9.010
—5.010
—6.410
—6.708
—8.049
—8.199

A """ intrachain contribution

1 I

3.0

FIG. 13. The calculated r-space pattern from a pair of chains
sholvn in Fig. 12 compared to the experimental onc.

intercItain pairs, in which only pairs of short distances are
included. The estimations of the nearest-neighbor atoms
of the calculated model are compared with the corre-
sponding expectation values in Table IV. While curve C,
the combination of curves 2 and 8, in Fig. 13 shows fairly
good agreement with the experimental data (curve D), the
calculated peaks are too sharp because only discrete values
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0
0

I

1.0

r(A)

FIG. 17. The comparison between the experimental r-space
pattern and that of a stacked pair of coupled chains with 1.4 rad
of rotation.

V. SUMMARY AND CONCLUSIONS

In this study of the structure of a-MoS&, we have em-

ployed a consistent r-space and k-space fitting process in

ribbons is compared to the experimental pattern, which
here is unsmoothed. Discrepancies still exist. But, with a
model of this size, a quantitative perfect fit is not manage-
able because of the large molecular disorders involved in
the amorphous material and the difficulty of incorporat-
ing the full range of this disorder. Figure 17 shows the
comparison between the calculated pattern (1.4-rad rota-
tion of stacked ribbons) and the experimental one in r
space. The calculated pattern falls short, as expected, on
some aspect as far as the area is concerned, but the
demonstration shows nonetheless the essential ingredients
of the "real" structure. Actually, the calculated r-space
pattern would take the form of curve C in Fig. 13 with the
extension of the chainlike network.

which small r corresponds to large k and vice versa.
Eventually we were able to reach a rather satisfactory re-
sult which is consistent with not only the local order ob-
tained previously froin RDF, '" XPS, ' EXAFS, ' and
magnetic measurements' but also the intermediate-range
structural correlations observed as prominent features in
the low-angle region of the x-ray diffraction pattern.
However, the postulated sideways location of the disulfide
bond may seem somewhat surprising. The domination of
the crossover of the pairs of the chains had not been previ-
ously anticipated. ' An important finding is that the
prominent first peak in k space may be generated by a
narrow (ribbonlike) planar correlation, made possible
through a suitable stacking of the chain pairs of the
model. During the process of investigation, quite often a
one-sided (i.e., an agreement either in k space or in r
space) result has been obtained. Since an exact fitting is
out of the question, the one-sided fitting soon proved to be
unsatisfactory in other respects. To fit both k-space and
r-space patterns reasonably well with a physically sound
model provides us, we believe, with substantial structural
information on this material. To that extent we believe
that both our process and results on a-MoS3 have been
successful.
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