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Exact Solution of a Deterministic Sandpile Model in One Dimension
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We present an exact solution of a one-dimensional sandpile model for which sand is dropped along the
wall and %=2 grains of sand fall over the neighboring downhill sites when the critical slope is exceeded.
The slopes of /V consecutive sites organize into a local state. The time evolution of the local states along
the spatial direction shows a natural tree structure. As a result, various multifractals can be identified.
The spatial two-point correlation function decreases exponentially with a correlation length of the order
of the lattice spacing.

PACS numbers: 05.40.+j, 05.70.Jk, 05.70.Ln

Sandpile models originally proposed by Bak, Tang, and
Wiesenfeld [1] are perhaps the simplest models that cap-
ture the essence of many nonlinear dissipative systems.
As such, they have attracted the attention of many' physi-
cists. In particular, in searching for scaling and univer-
sality, Kadanoff, Nagel, Wu, and Zhou [2] have studied
many models in one and two dimensions numerically.
We should try to adhere to their convention and terminol-
ogy. Hence, the model we discuss is the "limited, " "non-
local" model with N=2 in one dimension. In most of the
investigations on the sandpile models so far, sand is
dropped randomly on the various sites. It is important,
however, to distinguish the effect of this "random pertur-
bation" from a potential stochasticity that may arise as a
result of the intrinsic nonlinear dynamics. In this respect,
we should mention that Wiesenfeld, Theiler, and
McNamara [3] had investigated numerically a two-
dimensional "Abelian" model [4] in which sand is added
only at the center. They concluded that randomness in
the sand drops is not an essential element in order for a
system to show self-organized critical behavior.

Consider a one-dimensional lattice and let i =0, . . . , L
label the lattice sites. The number of sand grains at site i
is denoted by h(i). We should focus on the slope variable
o(i) =h(i) —h(i+1) and interpret cr(i) to be the num-
ber of "particles" at site i. The dynamics can then be de-
scribed in terms of the creation and annihilation opera-
tors a; and a;. Specifically, dropping a sand grain at site

i, which causes the change h(i) h(i)+1 in the height
variables and the changes o(i) o(i)+1, cr(i —1) cr(i
—1)—

1 in the slope variables, is given by the "kinetic
term"

a;a; —~,

while an avalanche triggered at site i, which causes the
changes h(i) h(i) N, h(i + I) h—(i + I )+ I, . . . ,
h (i +N) h (i +N) + 1 in the height variables when
h (i) —h (i + 1) & N and the changes cr(i —1) o(i
—1)+N, cr(i) a(i) —N —1, a(i+N) o(i+N)+I

in the slope variables when o(i) & N, is described by the
"interaction term"

(a ) )

~at+

tva~+�
'e(a(i) N), —(2)

+pa; a;-~, 0~ p; ~ 1, gp; =1, (3)

where 8(x) =1 for x & 0 and vanishes otherwise. We
shall investigate the "strong-coupling limit, " i.e., the hop-
ping term (1) will be treated as a perturbation and for
each hopping the interaction term (2) will be applied any
number of times until further application of it no longer
produces an eAect. The boundary conditions are such
that particles can leave the system from the left edge but
not from the right edge. Thus if a particle tries to hop
beyond site L, it lands on site L [5]. In general, one may
consider the hopping term
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but we shall choose pp=1 in the following, so that parti-
cles are injected one by one from the left edge corre-
sponding to sand being dropped one by one at site i =0.
We call each particle injection a time step. Starting from
any given configuration, the system will reach a "limit cy-
cle" after a finite number of time steps. The period of the
limit cycle is N . The states in the limit cycle are charac-
terized by two conditions: (1) For any N consecutive
sites, there is at least one site i such that a(i) =N. (2)
Let o(L) =k; then k ~ 1 and there exists at least one site
i such that cr(i) =N for L —k ~ i (L. Thus the system
organizes into intervals of N consecutive sites. For N=2,
we assume I.=2K for simplicity so that there are K inter-
vals. By condition (1) above, there are five allowed states
for each interval, namely, u) =(02), u2=(12), w =(22),
v) =(21), and v2=(20) where the integers in the brack-
ets give the particle number of the two consecutive sites.
A state in the limit cycle is described by a sequence
[z~z2 zk.], where z; C [u~, u2, w, v), v2], with the con-
straints that (1) z; =u) or u2 implies z; —) =u), u2, or w,

(2) z; =v~ or v2 implies z;+~ =v), v2, or w, and (3)
z~&v2. We shall consider sequences of lengths other
than K. An "allowed sequence" is one such that condi-
tions (1) and (2) are satisfied. In particular, u;, w, and v;

may be regarded as allowed sequences of length one. It is

easy to show that the number of allowed sequences
[z~z2 zk] of length k is nk —

~
if zk =u ~, u2 or z~ =v), v2

and is mk —] if zk =w, v], v2 or z [ =u ~, uq, w, where

(22k+)+1) ~ (22k+2 1) (4)

To describe time evolution of the system, we introduce
integer-valued "time functions" tj defined on the allowed
sequences. For sequences of length one, we have

t, (u )=)0, t~(u2) =n~, t~(w) =2n~,

r, (v)) =n, +), r)(v2) =n, +)+m, .

In general,
k

rp([z)z2 . zk ] ) = g tz )(uz'), —

(s)

k

tI([z)z2 zk]) —g t&+i )(u~) . —

It can be shown that p(r[ z)'z'2' z)r]) provides time or-

dering for the states in the limit cycle. For a given al-

lowed sequence [z)z2 zk], we denote its "next se-
quence" by [z)z2 zk]+1 which is defined by the rela-
tion

rp([z)z2 ' ' ' zk]+1) =rp([z)z2 ' ' ' zk])+1 . (7)

Then we have

[u; ]+1=[u;+1 ],
[ww ]+1=[v)w ],
[wv( ]+ I =[v) v; ],

rp([z }z2 ' ' ' ZI] ) =rp([z )z2 ' ' zk] )

+rk ([zk+) ' ' ' zl] ),
which in fact describes the "scaling" property of the time
evolution. In plain words, the time evolution of a state at
the kth interval is given as follows. Each state of u [ or u2
will last nk —

~ times steps and that of v[, v2, or w wi11 last
mk —[ times steps. If we ignore this repetition of a given
state, the time evolution of the kth interval is described
by the time evolution of an allowed sequence of length
K —k+1. Consider the Kth interval. The four states u [,
uq, w, and v ~ appear in this order and each repeats n~ —[,
n~ —[, m~ —[, and m~ —[ time steps, respectively. At the
(K —1)th interval, there are sixteen time intervals corre-
sponding to the sixteen allowed sequences [zk )zk] with

z~&vq. The time ordering of the sixteen intervals is
determined by tp([zk )zeal). T—hus we see that, in gen-
eral, the state [z ~z2. . . zk] in the limit cycle corresponds
to a path in a tree. It is now possible to identify a mul-

tifractal along the time axis. We rescale the time vari-
able so that each time step is of length 6'=2 and the
duration for a limit cycle fits into the time interval [0,1].
Consider the states [z)z2 . zk. ] in the limit cycle which

contain N~ u~'s, N2 up's, Np w's, N~ & ]'s, and N2 v2's.

The corresponding time steps for such states form a frac-
tal in the interval [0,1] with the fractal dimension

[wu; ]+1=[u)u;+1. ],
[v) ]+1=[v2+1 ]

[v2 v2[ ]]+1= [u) u) [ ]+1].

In the last relation of Eq. (8), the number of consecutive
v2's is the same as that of consecutive u ['s. It is instruc-
tive to note the relation

1 42+gof(41 42 40 41 (2) = 4) I» + + 42 ln
2 ln2

where g; =N;/K, g; =N;/K, go =Np/K, and satisfy P;(g;
Denoting the time average by angular brackets ( . ),

(cr(2i —1))= —', —1/2 ', (a(2i)) = —', —1/2 '+'.

1+ +(oin 1+ +g;
42 4o

+g;)+go=i.
we find

(10)

For the two-point function, we get, for example,
1 1 3 1 1

&a(2i —I )o(2j —1))—(o(2i —I))&o(2j —1))=— 2(. , )
——

2,
. —

2)
. (12)
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Neglecting the boundary effect, we see that the two-point
function decreases exponentially with a correlation length

g =a/ln2, where a is the lattice spacing.
For each injection of a particle from the left edge, a

number of consecutive local states will be aAected. We
define the corresponding affected number of sites to be
the cluster size. Then one can show that the distribution
of the cluster size decreases exponentially with the
characteristic length g. A similar result holds when we
consider the distribution of the durations of avalanches if
we define the duration of an avalanche to be the number
of times the interaction term in Eq. (2) is applied [6l.

We conclude that for one dimension, the deterministic
sandpile model does not show the "self-organized critical-
ity" in the sense of a power-law distribution for, say, the
cluster size [7]. The conclusion may very well be other-
wise when a random perturbation is applied [2]. We do
observe an interesting tree structure in the time evolution
of the system. This "ordering, " however, is not reflected
either in the two-point correlation function or in the dis-
tribution of the cluster size.
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