Ho and Hosotani Reply: Hagen and Sudarshan (HS) claim that Eq. (6) of Ref. [1] is incorrect and that their new solution (2) of Ref. [2] implies the nondynamical nature of nonintegrable phase θ_{j} 's. We show that the argument in Ref. [1] is correct and consistent, and that HS's solution has inconsistencies, leading to nonvanishing commutators of $\left[P^{1}, P^{2}\right]$ and $\left[P^{j}, H\right]$ even in physical states.

In Ref. [1] Chern-Simons theory is formulated by first eliminating unphysical degrees of freedom. Dynamical variables are $\psi(x)$ and θ_{j} 's. There are four ingredients: (i) the Hamiltonian given by (5) and (6), (ii) equal time commutation relations among ψ, ψ^{\dagger}, and θ_{j} 's, (iii) physical state condition (9), and (iv) boundary conditions (BC) on a torus (3).

The theory thus formulated is equivalent to the original theory described by (1)-(3). Our Eq. (6) contains the field equation $(\kappa / 4 \pi) \varepsilon^{\mu \nu \rho} f_{\nu \rho}=j^{\mu}$, except for three relations. Two of them are equations for θ_{j} 's, which in this formulation follows from $i \dot{\theta}_{j}=\left[\theta_{j}, H\right]$. The third one is the relation between Q and Φ, which does not follow from (i) and (ii), but is imposed as a physical state condition. The last point has not been fully appreciated in the earlier Letter [3].

Although HS state that there are "errors" in Ref. [1], there is no error and the argument in Ref. [1] is perfectly consistent. What HS do is to propose their "new solution" with different BC, whose validity and consistency we shall now check.

HS's solution (2) of Ref. [2] is explicitly

$$
\begin{align*}
a_{0}(x)= & \sum_{k=1}^{2} \frac{x_{k}}{L_{k}}\left\{\dot{\theta}_{k}+\alpha \epsilon^{k l} \frac{2 \pi}{\kappa L_{l}} J^{l}\right\} \\
& +\frac{2 \pi}{\kappa} \int d \mathbf{y} \epsilon^{k l} \nabla_{k}^{x} D(\mathbf{x}-\mathbf{y}) j^{l}(y), \\
a_{k}(x)= & \frac{\theta_{k}}{L_{k}}+\frac{\epsilon^{k l} x_{l}}{2 L_{1} L_{2}} \frac{2 \pi Q}{\kappa} \tag{A1}\\
& +\frac{2 \pi}{\kappa} \int d \mathbf{y} \epsilon^{k l} \nabla_{l}^{x} D(\mathbf{x}-\mathbf{y}) j^{0}(y),
\end{align*}
$$

where $J^{k}=\int d \mathbf{x} j^{k}(x)$. We have introduced a parameter α in the expression for a_{0}. HS's solution gives $\alpha=\frac{1}{2}$. Insertion of (A1) to $f_{0 k}$ yields $(\kappa / 2 \pi) \epsilon^{k l} f_{0 l}(x)=j^{k}(x)+$ $(\alpha-1) J^{k} / L_{1} L_{2}$, so that the equations are not satisfied unless $\alpha=1$. Note that $\Delta D(\mathbf{x})=\delta(\mathbf{x})-\left(L_{1} L_{2}\right)^{-1}$.

The comparison of (A1) with (6) of Ref. [1] shows two differences. (a) (A1) has an additional term $\sum\left(x_{k} / L_{k}\right)\{\cdots\}$ in the expression for a_{0}, which vanishes on shell for $\alpha=1$. (b) In the second term in the expression for a_{k}, (A1) has an operator $2 \pi Q / \kappa$, whereas ours has a c number $-\Phi$. [Note that $\int d \mathbf{y} \nabla_{l} D(\mathbf{x}-\mathbf{y})=0$.]

HS's solution satisfies different BC. In Eq. (3) of Ref. [1], $\beta_{j}=\beta_{j}^{\mathrm{HS}}=\epsilon^{j k} x_{k} \pi Q / L_{k} \kappa$, for $\alpha=1$ on shell.

For $\alpha=\frac{1}{2}, \beta_{j}^{\mathrm{HS}}$ contains an additional term. In either case β_{j}^{HS} is an operator satisfying $\left[\beta_{j}^{\mathrm{HS}}, \psi\right] \neq 0$. This BC must be respected in order that physical gauge invariant operators be single valued on a torus.

The most serious problem in HS's solution arises in commutators of P^{j} and H. We have evaluated the commutators in the nonrelativistic theory by adopting Eq. (5) of Ref. [1] with HS's solution for $a_{k}(x)$ in (A1) substituted. HS also claim that θ_{j} 's are not dynamical. So we have evaluated the commutators in two ways, by taking $\left[\theta_{1}, \theta_{2}\right]=2 \pi i / \kappa$ (as in Ref. [1]) or $\left[\theta_{1}, \theta_{2}\right]=0$.

The evaluation is straightforward, but requires extra care on the ordering of operators. The result is

$$
\begin{align*}
& {\left[P^{j}, P^{k}\right]=\epsilon^{j k} \frac{2 \pi i}{\kappa L_{1} L_{2}}[Q \text { or } Q(1-Q)]} \tag{A2}\\
& {\left[P^{j}, H\right]=\epsilon^{j k} \frac{2 \pi i}{\kappa L_{1} L_{2}}\left[J^{k} \text { or } J^{k}(1-Q)\right]}
\end{align*}
$$

This contradicts HS's statement that all commutators vanish. (A2) casues a serious problem. P^{j} 's and H do not commute with each other even in physical states except for $Q=0=J^{k}$, or $Q=1$.

The correct commutators (11) and dynamical nature of θ_{j} 's are important in establishing the connection to anyon quantum mechanics [1]. With (A2) such connection cannot be achieved. Hence the argument in Ref. [1] is correct, whereas HS's solution leads to inconsistency.

This research was supported in part by Republic of China Grant No. NSC 83-0208-M032-017 (C.-L.H.) and by the U.S. Department of Energy under Contract No. DE-AC02-83ER-40105 (Y.H.).

Choon-Lin Ho
Department of Physics,
Tamkang University
Tamsui, Taiwan 25137, Republic of China

Yutaka Hosotani

School of Physics and Astronomy,
University of Minnesota
Minneapolis, Minnesota 55455
Received 28 March 1994
PACS numbers: 11.15.-q, 05.30.-d
[1] C.-L. Ho and Y. Hosotani, Phys. Rev. Lett. 70, 1360 (1993).
[2] C. R. Hagen and E. C. G. Sudarshan, preceding Comment, Phys. Rev. Lett. 74, 1032 (1995).
[3] Y. Hosotani, Phys. Rev. Lett. 62, 2785 (1989); 64, 1691 (1990).

