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Operator Algebra in Chem-Simons Theory on a Torus
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We consider Chem-Simons gauge theory on a torus with both nonrelativistic and relativistic matter.
It is shown that the Hamiltonian and two total momenta commute among themselves only in the physi-
cal Hilbert space. We also discuss relations among degenerate physical states, degenerate vacua, and
the existence of multicomponent Schrodinger wave functions.
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Chem-Simons field theory with matter coupling has at-
tracted intense interest in recent years, owing to its
relevance to condensed matter systems such as quantum
Halll systems, and possibly high-T, superconductors [1].
Setting aside such physical applicability, Chem-Simons
theory is in itself very interesting in view of its rich and
beautiful mathematical structures. As such, various as-
pects of this theory deserve a careful study. Many recent
eAorts have been directed towards the issue of consistent
quantization of the theory [2,3].

While the majority of works in the field is concerned
with planar systems, Chem-Simons field theory on com-
pact Riemann surfaces has also captured considerable in-
terests [4-14]. It has even richer structures which, being
topological in nature, are absent in planar systems.
Among them are the multicomponent structure of many-
body wave functions [9,11,14] and the degeneracy of
physical states [5]. Moreover, the analysis on a torus is
mathematically rigorous, being free from infrared diver-
gences and ambiguity in boundary conditions at space
infinity on a plane.

We extend our previous analysis [14], examining alge-
braic relations among various operators, especially the
Hamiltonian 0 and total momenta I', with an eye on
whether translation invariance is maintained or broken in

the presence of matter. We shall also discuss a possible
link between degeneracy of physical states and the mul-
ticomponent structure of wave functions.

It has been argued by Chen et al. [15] that the micro-
scopic translation invariance of the anyon superconduc-
tivity model is broken in the mean field approximation,
and is restored in the random phase approximation
thanks to the presence of the phonon mode. Our con-
sideration is at the microscopic level. We shall show that
0 and P do not commute with each other as operators,
whereas they do commute in the physical Hilbert space.
Therefore, if an eA'ective theory is formulated in terms of
physical excitations, the translation invariance must be
maintained manifestly in each mode. Similar arguments
have been given by Iengo, Lechner, and Li [13] on a
torus, and by Banerjee [16] on a plane. Our argument,
however, differs from theirs in detail.
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ry in the presence of matter requires that the coe%cient
of the Chem-Simons term tc be a fractional ratio, K =%/
M, where % and M are coprime integers [7,8]. The fun-
damental domain of the torus is given by 0 ~ x~ ~ L~,

j=1,2. Boundary conditions of the fields are then [4, 14]

a„[TI(x)]=a„[x]+t)„P,(x),
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.
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where TI:x~ xl+LI (j=1,2). That is, the fields return
to their original values up to gauge transformations after
translations along noncontractible loops. The require-
ment of smoothness of the field operator y(x) in the
covering space, y[T| T2(x)] =y[Tq T~(x)], leads to
quantization of the Chem-Simons fiux, +=fdxf~2
=2trm (m: integers), and a constraint on the PI's:
[Pl (Tqx) —P((x)] —[P2(T|x)—P2(x)J = —2trm. Typi-
cal p, 's which solve this constraint are p, (x)
= —e~"ttmxk/Lk, which will be taken in the rest of the
paper.

Canonical energy-momentum tensors, T,"', derived
from (1) and (2) are not gauge invariant, and therefore
are not well defined on a torus in view of the boundary
conditions (3). The gauge-invariant energy-momentum
tensors Tf' are obtained by adding the term (tc/4tr)
&& t)~(e " a a") to T,"' and making use of the equations of
motion [3]:

We consider two models, Chem-Simons gauge theories
on a torus with a nonrelativistic matter field and with a
relativistic Dirac field. We shall find algebraic relations
universal in both theories.

We first analyze the nonrelativistic case. The La-
grangian is given by
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where the upper (lower) entries in the square brackets
give the p =0 (p =k) component of TI'. From (4) we
obtain the Hamiltonian and total momentum operators

H = dx(Dk 1/f) (Dk ((()'),

(5)
P = —

I, dx ytak y.
To quantize the theory we note that the Chem-Simons

field equation (x/4') c""~f,~ =j" implies that Chern-
Simons fields a„(x) are determined by the matter field
except for nonintegrable phases of Wilson line integrals
along noncontractible loops on a torus. Solving the field
equations in the radiation gauge diva =0, one finds [4]

0, (r)a'(x) =
L~

cJkxk +a'(x),
2L|L2

'k x 0aj(x) = J dy cj"VkG(x —y) j (y)+ (6)
K' 2zL )L2

ao(x) = — dyG(x —y)(8(j2 —tl~'')(y),

where j =y y, j = (&/2m)[y Dk(if —(Dk(ig) y], and
G(r) is the periodic Green's function on a torus, satisfy-
ing BG(r) =B(r) —(I/L|L2).

The constant parts 0~ are nonintegrable phases of the
Wilson line integrals. Residual gauge transformations
that respect the boundary conditions (3) are given by a
gauge function A(x) = —(g&2nnlxj/Lz)+A(x) where
n~'s are integers and A(x) is periodic. The degree A(x)
has been made use of to obtain (6), whereas the rest of
A(x) constitutes large gauge transformations inducing
0~ 0~+ 2zn~. The invariance under large gauge trans-
formations must be imposed on physical quantities.

In quantum theory, physical degrees of freedom are the
matter fields y (taken to be fermionic), and the nonin-
tegrable phases 0J's. y's satisfy [y(x), yt(y)[ =6(x —y)
in the fundamental domain of the torus. 01 and 02 are
canonical conjugates of each other (Refs. [4,5]), [0(,02]
=2'/x', as the Lagrangian contains (x/4x)(020~ —0102).
In writing the Hamiltonian (5) in terms of these variables
with the aid of (6), there arises an ordering ambiguity.
We shall take the ordering of y and yt as it is in (5).

The equation of motion for 0~ is

0 =—[0,H] = —cJ" J~ 1 k 2z (7)

where I"—:fdx j". For IJg(x)

g(x) =(I/2m)(2x/K) dy[VkG(x —y)] y y(y) .

Equation (8) differs from the classical equation by the
g(x) term [14]. (See also Ref. [3] for an analogous re-
sult on a plane. )

It is important to recognize that the expression (6) is
not completely equivalent to the Chem-Simons field
equations (x/4n)c""~f„~ =j". Insertion of (6) into a„'s in
the equations yields two nontrivial relations, one Eq. (7)
and the other

Q+ @=0, (9)
27K

where Q =fdx j . N is the IIux fixed by the boundary
conditions (3) with the given PJ(x)'s, and Q is conserved
as a consequence of Eq. (8). Since the relation (9) does
not follow from the Hamiltonian and commutation rela-
tions, it has to be imposed as a constraint. We have
adopted the notation = to signify this.

We now compute commutators of P" and H. Note
that since fdx yta" y=O,

f
P = —

/ dxp Dkp ——l dxp DI tref,

where

Dk =6k i(0k/Lk)+—i(c xl@/2L)L2) .
It follows that

[p" y(x)] =iDk y(x), [p",0J] = —c" ' Q. (10)
x'Lk

In particular, the change in a gauge-invariant operator
generated by P is a total derivative. For instance,
[P",(i(t((()(x)] =i8k jy y(x)]. With the aid of (10) com-
mutators among the operators P and H are found to be

[pJ pk] ' Jk Q Q+
L)L2 27K

[PJ,H] =&'cJk J" Q+ e
~L )L2 2x

Note that J"=P"/m in nonrelativistic theory.
P 's and H commute among themselves only up to the

constraint (9). Hence in the physical Hilbert space these
operators commute, and translation invariance is main-
tained. Our conclusion diA'ers from Iengo, Lechner, and
Li's claim [13] that H and P" commute among them-
selves as operators. Jackiw and Nair's construction of
relativistic wave equations of anyons [17] and Banerjee's
analysis of Poincare algebra in Chem-Simons theory [16]
are in harmony with ours.

There are two other sets of important operators, Wil-
i8)son line operators W~ =e ' and generators of large gauge

transformation,

UJ=exptic ir0k —2ni dx(x~/LJ)y y(x) '.

1361



VOLUME 70, NUMBER 10 PHYSICAL REVIEW LETTERS 8 MARcH 1993

[U/ is well defined. If the coefficient of the integral were
a fraction of 2+i, there would arise inconsistency in

U/y(x)U/ ' combined with (3).]
Uj and Wj satisfy dual relations W] W2 =e

&& W2Wi, UiU2=e '"U2Ui, and [Wk, U/] =0. Also
[U, ,P"] =[U/, H)=0, as P" and H are gauge invariant.
Commutator relations among Wj, P, and H are, howev-
er, nontrivial:

[W, , P"] =e&" gW, ,
XLk (i2)

[W H] =e/k (JkW + W Jk)
KL,K' J J

In the nonrelativistic theory I"=P"/m so that W/'s map
an eigenstate into another eigenstate corresponding to
different momenta and energy.

Most of the above results can be directly carried over
to Chem-Simons gauge theory coupled to a Dirac field.
In place of' (2) we have

+mauer = [yT Dpy (Dpy) )'

The current is given by j"= yy "y. Gauge-invariant
energy-momentum tensors are given by Tf'=(i/2)
x [yy"D'y —(D'y) y" y] It follow. s that

H= dxy( iy Dk+m)—y,
r

P = —i „dx ytok y.
Note that in the Dirac case J and P are independent
quantities.

Most of the relations obtained for the nonrelativistic
case remain valid for the Dirac case with the substitution
j"=yy"y being made. The only change to be made is
the equation for y: iy=y ( —iy"Dk+m+aoy )y(x).
The relation (6) and the constraint (9) remain intact.
Direct computations confirm (7), (10), and particularly
the fundamental algebraic relations (11) and (12). J" is

not conserved even in the physical Hilbert space, howev-
er. Therefore 8'j no longer maps an eigenstate of H into
another.

We stress that the relations (11) and (12) are univer-
sal. They are independent of details of theories.

We now return to the nonrelativistic theory and consid-
er the representation of P and H in the corresponding
quantum-mechanical anyon system. The case of an
integer x =N has been analyzed in Ref. [14]. There
are N degenerate vacua ~0, ) (a =0, . . . , N —1). q-body
Schrodinger wave functions are given by

y. (xi, . . . , xq, r) =(q!) '/2(0. ~ny(x)) . . y(xq)~eq),
where

0 =exp' —i x] 0] I ] + x2 02 I pj=l
The operator 0 is necessary to insure invariance under
large gauge transforrnations. %'ave functions must have
N components as a consequence of the vacuum degenera-
cy. They realize the braid group algebra on a torus.
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The Hamiltonian H is [14]

(i 4)

H=— [v,"—-f (r, )]',
2@1j=1

(x'/' x,"')—+a,'&'G(r, r, ) —.
x

'
p~, 1 2gil,

PL

It is obvious that all P and H commute with each other.
The same conclusion has been reached by Iengo, Lechner,
and Li [13] in a different formulation in which the nonin-
tegrable phases appear explicitly in the expressions of P
and H. Equations (14) and (15) do not contain the 0/'s.

For the general case where ir is fractional, x =N/M
(N, M coprime), it is known that there are NM degen-
erate vacua [7,8]. At present there are two approaches of
interpreting the nature of these vacua.

Following Polychronakos [8], one might consider, of
the NM possible vacua, only N distinct physical vacua,
each having I gauge copies as generated by Uj. Hence
one considers a fixed combination of these gauge copies to
represent a physical vacuum. This can be seen as a sort
of "gauge fixing. " Adopting the same procedure to our
case, we will still have a multicomponent wave function,
but now ~O~) and ~0, ) (a =0, . . . , N —1) are linear com-
binations of M different gauge-equivalent physical states
and vacua, respectively.

The situation is different, however, if we do not regard
Uj as operators of gauge transformation, but instead as
physical operators generated by some physical tunneling
processes. Such consideration is particularly appropriate
when the model defined by (1) and (2) represents an
effective theory of, for instance, fractional quantum Hall
effect (FQHE) (with external magnetic fields added).
This leads to the conclusion that physical states must be
degenerate as emphasized by Wen and Niu [5]. What we
have seen here is that, not only must physical states be
degenerate, but their wave functions must also have mul-

tiple components.
To be precise, let us denote the NM degenerate vacua

by ~O,b) (a =0, . . . , N —1; b =0, . . . , M —1). Noting
that U~ and U2 commute with each other, we choose
them to be eigenstates of U;: U; ~O,b) =e' '~O, b) (j
=1,2). Then in the Oi representation one finds [18] that..b(~i) -(iiilO. b)

ibO.2+ive, )/M+ik, ei/2aM~ [0 + (~ 2 M )/N]

Actions of the U;, W/ on ~O,b) are

The representation of P,
P"y. —= (q!) '/'(O. ~ny( ) y(, )P"~e, ),

is found by permuting P to the left of the y's and O.
The result is simple:
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U2IOab& =e IOa, b —l&,

~2IO b& =e"'"IO.—I,b& .

(16)

commute with Ul and U2, U; 'i+& is also a physical
state with the same eigenvalues. But as Ui and U2 do not
commute, the states generated by them must be degen-
erate. It follows from UiU2=e ' U2Ui that the M
degenerate states i+ "&(k =0, . . . , M —I ) satisfy [5]

U, 'i+ )=e Iil & U2 'ie &=e Iie l& (17)

We require the physical states +& to be invariant un- In general, a q-particle state i+q& can be constructed
der U;™as well, U;™i+&=e'' +&. Since Ul and U2

i

from the vacua iO, b& satisfying (16) by

g„dxi dxqy, b(xl, . . . , Xq, t)tlr .(xq) lit (xl)n iO,b&/(O, biO, b&,
q 1 a, b

(18)

where

tltab(Xl ~ ~ Xq t ) (q l) (Oab I n lit(X l ) lit(Xq ) I +q & .

To satisfy (17), however, i+q& can only involve iOaq&, i.e.,
b =k, since iO, b& pick up diff'erent phases for diA'erent

values of b under the action of Ul '. Furthermore, (i)
vt, = —() l +2trNk )/M, vt, = —X2/M; (ii) tip, b =0 for b &k
and tlt, t, +l =(b,"t, ', and (iii) toi = —)l/. So states are M-
fold degenerate, and their wave functions take the form
of (lV&&M)-component matrices (b,"b with nonvanishing
entries only in the kth column.

Particularly, in the le= I/M case, which is of relevance
to FQHE, elementary particles have statistics 8, = —Mtr
and therefore they are either bosons or fermions depend-
ing on whether M is odd or even. Many-body states are
nevertheless M-fold degenerate, and their wave functions
have M components. Implications of these degenerate
multicomponent wave functions in the braid group struc-
ture of quasiparticles have yet to be studied. In any case,
independent of the two approaches just discussed, P and
H are represented by (14) and (15), respectively.
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