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ABSTRACT 
The conventional genetic algorithm encodes the searched parameters as binary strings. After applying the 
basic genetic operators such as reproduction, crossover and mutation, a decoding procedure is used to 
convert the binary strings to the original parameter space. As the result, such an encodingldecoding 
procedure leads to considerable numeric errors. This paper proposes a new algorithm called modulus 
genetic algorithm (MGA) that uses the modulus operation to resolve this problem. In the modulus genetic 
algorithm, the encodingldecoding procedure is not necessary. It has the following advantages: 1) the 
evolution can be speeded up; 2 )  the numeric truncation error can be avoided; 3) the precision of solution 
can be increased. 

The proposed MGA is applied to resolve the key problem of fuzzy inference systems - rule acquisition. 
The fuzzy system with MGA as learning mechanism forms an ‘Intelligent fuzzy system”. Based on the 
proposed approach, the fuzzy rule base can be self-extracted and optimized. Such an intelligent fuzzy 
system has a general-purpose architecture. It can be applied to many kinds of fields. 

INTRODUCTION 
Genetic algorithms (GAS) are parallel and global search techniques, which take the concepts from evolution 
theory and natural genetics. They emulate biological evolution by means of genetic operations such as 
reproduction, crossover and mutation. Usually, genetic algorithms are used as optimization techniques [ 11- 
[SI. Although there is no necessary and sufficient condition on the hnctions which are optimizable by 
genetic algorithms, it has been shown that GAS perform well on multimodal functions (the functions which 
have multiple local optima). Moreover, various studies have shown that whenever GAS failed to find the 
optimal solution on a function, other known techniques failed as well [2 ] .  

Conventionally, a genetic algorithm works with a set of artificial elements (binary strings, e.g. 10101 OlO), 
called a population. An individual (string) is referred as a chromosome, and a single bit in the string is 
called a gene. GA generates a new population (called offspring) by applying the genetic operators to the 
chromosomes in the old population (called parents). An iteration of genetic operation is referred as a 
generation. A fitness function, i.e. the function to be maximized, is used to evaluate the fitness of an 
individual. One of the important purposes of GAS is to reserve the better schemata, i.e. the patterns of 
certain genes, so that the offspring may yield higher fitness than their parents. Consequently, the value of 
fitness function increases from generation to generation. In most of genetic algorithms, mutation is a 
random-work mechanism to avoid the local optimum trapping problem. As a result, GAS, theoretically, can 
find the global optimal solution. 

The basic disadvantage of the conventional genetic algorithm is that it encodes the searched parameters as 
binary strings. After applying the basic genetic operators such as reproduction, crossover and mutation, a 
decoding procedure has to be used to convert the binary strings to the original parameter space. As the 
result, such an encodingldecoding procedure leads to considerable numeric errors. This paper proposes a 
new algorithm called modulus genetic algorithm (MGA) that uses the modulus operation to resolve this 
problem. In the MGA, the encodingldecoding procedure is not necessary. It has the following advantages: 
1 )  the evolution can be speeded up; 2 )  the numeric truncation error can be avoided; 3) the precision of 
solution can be increased. 
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The MGA is applied to resolve the key problem of fuzzy logic systems -- rule acquisition [SI. The fuzzy 
system with MGA as learning mechanism forms an “intelligent fuzzy system”. Based on the proposed 
approach, the fuzzy rule base can be self-extracted and optimized. Such an intelligent fuzzy system has a 
general-purpose architecture. It can be applied to many kinds of fields, such as hzzy  control, fuzzy image 
processing, fuzzy decision making, and fuzzy pattern recognition . . . etc. 

This paper is organized as follows: Section 1 is an introduction. Section 2 ‘describes the detail of the MGA. 
In Section 3, the MGA is used to build an intelligent fuzzy inference system. Section 4 applied the MGA- 
based fuzzy inference system to the field of fuzzy control. Conclusions are drawn in Section 5. 

THE MODULUS GENETIC ALGORITHM 

Reproduction of MGA 
The Darwinian “survival of the fittest” is the underlying spirit of reproduc:tion. This operation, actually, is 
an artificial version of natural selection. 

Let F be the fitness function, and F, denote the value of fitness function associated with the individual 
string i in the current population. Reproduction is a process in which individual strings in the current 
population are copied according to their fitness function values F, . A higher F value indicates a better fit 
(or larger benefit). To perform reproduction, first, F, ‘ s  are calculated. Next, the current individual strings 
are probabilistically selected and copied into a mating pool according to their fitness value. The 
arrangement allows the strings with a higher fitness to have a greater probability of contributing a larger 
amount of offspring in the new population. The easiest way of implementing a reproduction operator is to 
create a biased roulette wheel. The slot size of it is proportion to the fitness value of each individual in the 
current population. Let ps, denote the probability of selection of the individual i, and A4 be the population 
size, then an individual string will get selected with the following probabihy: 

1. 

Crossover of MGA 
Crossover provides a mechanism for individual strings to exchange information via a probabilistic process. 
Once the reproduction operator is applied, the members in the mating pool are allowed to mate with one 
another. The binary-coded GA takes the following step to accomplish the crossover: First, two parents are 
randomly selected from the mating pool. Then, a random crossover point is picked up. Finally, exchange 
the parents’ genetic codes (binary digits) following the crossover point. This random process provides a 
highly efficient method to search the string space to find a better solution. 

In MGA, the parameters lie in the original space rather than binary space Hence, the crossover operation 
has to be modified to work with parameters themselves rather than their binary codes. 

Let {a, 6) and {a’, b’} be the parent and offspring parameter pair, respectively. The search space of them is 
in the range of [X,, , X,, 1 c_ R . The crossover of MGA is proposed as follows: 

U’= ( U  - U, + b o )  MOD A + X,, 
b’= (b - bo + U , )  MOD A + X,, 

2. 

where MOD means the modulus operator. It is the reason why the proposed approach called “modulus” 
genetic algorithm. The meaning of other notations in (2) are: A = X,, - X,, , and 

a, = uMODOA 
6, = b M O D d  

in which, a E [0,1] is called the crossover factor. 
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Especially, the crossover of a binary-coded GA is a special case of (2) with the following a,  and 6, : 
a,  = a MOD 2' 

bo = b MOD 2' 
where c denotes the bit number of crossover point. 

Mutation of MGA 
In the genetic algorithm, the mutation operation introduces new genes into the populations such that the 
problem of trapping in local optimal points may be avoided. The gene of individual is subject to a random 
change with probability of the pre-assigned mutation rate. In the binary-coded case, a mutation operator 
changes a bit from 0 to 1 or vice versa. In MGA, mutation is a random work mechanism. It simply replaces 
a parameter, say a, with an arbitrary value, say a', in the search space [X,,, , X,, 1 .  

MGA-BASED INTELLIGENT FUZZY SYSTEM DESIGN 
Suppose that a fuzzy inference system described by the following rule base [6]: 

RI : IF x is X I  ( m , , o ,  ) THENy is Y, (cp, ) 3. 

where j = 1,2,K , N , and N is the number of rules; X i ' s  and Y,'s are the input and output linguistic 

labels [lo], respectively. Especially, in this paper X j  ' s  are simply assigned as Gaussian-shaped functions, 

i.e.. p,, (x) = e x p [ - [ y ) -  1, and Y,'s are assigned to be fuzzy singletons, i.e., py, (U) = 

Suppose that the singleton fuzzification and the weighted average defuzzification methods are applied [SI, 
then the output of (3) is given by: 

Y = $p(x) 4. 

Px, (x> wherecp - =[(P1,(P2 ,... > cpNITandp - =[p,,p, ,..., p,lTinwhich p,(x)= c Px, (x) 
,=I 

Constructing a parameter space to be searched by MGA required transferring the fuzzy rule base (3) to a 
parameter representation. Clearly, the output of the rule base (3) is uniquely determined by a set of 
parameters which is unionized by the parameters of IF part and THEN part. Hence, the parameter vector to 
be learned by genetic algorithm, e ,  is defined as: 

5. 

Assume that X,, , X, , X, are the search space of ml ' s , ~ ,  's,cpI 's , respectively; Mis  the population size; 
h is the number of generation. The details of learning procedures of MGA-based fuzzy system are 
described in the follows. 

T T T  e=[mT5? cp - 1 = [ m , m , A  m"I(32A O,cplcp,A 9,lT 

STEP I: Initially, set h = 0 and randomly generate 3Minitial parameter vectors, 
- m'"(h) = [rn,"'(h) m2'')(h)A rnN"'(h)]' 

E'') ( h )  = [o , ' I )  ( h )  (z 2(f  ) (h) A 0 ,(') (h)] 

cp - ( I )  (h) = [cp,'" (h) cp , ( I )  ( h )  A cp , ( I )  (h)lT 

where m,'"(h)c X n , , o l " ) ( h ) ~  X, andcp,")(h)E X ,  ( i =  1,2, ..., M , j =  1,2, ..., N). 

If the i-th candidate of MGA-based fuzzy inference system is denoted by FIS"' . Then the fuzzy rule base 
of FIS'" can be created as: 
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RI'" : 1Fxi~X,"'(~~'",~,'")THEN y i s  ~ ( ' ) ( c p l ( ' ) )  
Rz( ' )  : IFxisX,"'(m,'",o,'") THEN y i s  Y,(')(cpz('') 

RN") : IF x is Xh,") (mN(" ,  0 N ( " )  THEN y is Yh,'('' (qfi ( I ) )  

M 

s are linguistic labels to be learned, and nz,'" ' s , ~ , " )  'sandcp,'" 's  are their where X I ( ' )  'sand Y,") ' 
parameters. 

FIS") : 

STEP 2: Construct the parameter vector of the i-th individual, 
e '"(h)  = [ e , (" (h)A  8 , ' " ( h ) b  , , ,+,(')(h)A e2*("(h)~"+,'"(h)A 03x(')(h)]'  

= (h )  h a p r  (h)W (f'7 (h)]  - 

STEP 3:  Establish the population in the generation h, P(h), 
P(h) = {e (')(h),e '2'(h),K ,e '" '(h)) 

. 

STEP 4: Evaluate the fitness value, F(" , of each individual. 

STEP 5:  Apply the modulus genetic operators, i.e. reproduction of MGA, Icrossover of MGA and mutation 
of MGA, to generate a new population P(h+l), which is always known as tlhe offspring of P(h). 

STEP 6: Keep the elitist. That is, 1 )  pick up the best fitted individuals inP(h) and P(h+l); 2 )  compare their 
fitness; 3) if the best individual ofP(h) has a better fitness value than that of P(h+l), then randomly replace 
an individual in P(h+l) with the elitist. 

STEP 7: Use the parameters to calculate the outputy of the fuzzy system. 

STEP 8: Set h = h + 1 ;  go to Step 2 and repeat the procedure until F 2 ITM or h 2 H . Where FM and H 
denote an acceptable fitness value and a stop generation number, respectively, as specified by the designer. 

AN APPLICATION EXAMPLE 
The proposed MGA-based intelligent fuzzy system has a general-purpose ;architecture. It can be applied to 
many kinds of fields, such as fuzzy control, fuzzy image processing, fuzzy decision making, and fuzzy 
pattern recognition . . . and so on. In this section, an example of MGA-based fuzzy control system is used to 
demonstrate its practicability. Consider a class of nth order nonlinear sysi.ems, which is expressed by the 
following error dynamics [12]: 

6 .  

where 5 = [xI x2 K x,IT E 32" is the state vector; U E 32 is the control input;f(.) is an unknown continuous 
function with known upper bound, i.e. I f 11 f "  ; A.) is an unknown positive definite function with known 
lower bound, i.e. 0 < g ,  5 g . Actually, equation (6) represents a general uncertain nonlinear dynamic 
system. The chief objectives are: 

1 )  Apply MGA for self-extracting an optimal fuzzy control rule-base, to minimize the following 
quadratic cost function: * 

7. 

where QE SnXn and R E 32 are two positive definite weighting matrices. 



673 

2) Guarantee the stability of the control system: 
Ixi  I IF i , i=1 ,2  ,..., n 8. 

To simplify the system design, the fuzzy sliding mode control (FSMC) [12] is adopted as the control 
scheme. Based on our previous work [14], the control law can be represented as: 

where U is obtained from the following fuzzy control rule-base: 

RJ :IFsisS,(m,,oJ)THENuf i s U , ( q , )  

9. 

10. 
n 

where s(x) = g T ~  = c c , x ,  is a sliding function and gT = [c, c2 K c,] E 37" is the coefficient vector of s. 
,=I 

The optimal coefficients of sliding function can be determined by the criterion we proposed in [14]. 

Notice that the rule base (10) is in the form of (3). Therefore, the approach described in the previous section 
can be directly applied to find the parameter vector of (lo), that is [m,  m, A mhr 0, 0, A oh, cp, (p2 A cpn,lT . 
To minimize the quadratic cost hnction (7), the fitness function can be defined as: 

= )(Js + E , )  

K 
in which J ,  = t,v + (s' + Ru * ) . Where t ,  denotes the reach time of sliding mode; k = int(t / At)  denotes 

the iteration instance; At is the sampling period; int(.) is the round-off operator; K = int(t, / At)  denotes 
the number of iterations in each run; t,, is the running time in one run. 

k=l 

Moreover, the hitting control law in (9), u , ~ ,  is designed to guarantee system stability. If U,, given by [ 131: 

uh = -sign(s)[g,-'(f'+ I F'x I +q)] 1 1 .  

in which C = [c, c2 K c,,-,] and X = [x, x2 K x,,-,]~. Then the sliding condition, s.sK -q I s 1 ,  is satisfied as 
1 s 12 S , and the control system is stable in the sense that all system states x, (i = 1,2, ..., n) are bounded by: 

For example, consider an underwater vehicle whose simplified model is represented as [l  11: 

;si = x 2  
;si =-$x21x21++u 

where x l ,  x, represent the position error and velocity error of the vehicle, respectively; u is the control 
force; m is the mass of the vehicle; d denotes the drag coefficient. The parameter values that used in [l  11 
are also adopted in the following simulations, i.e. m = 3 + 1.5 sin(( x 2  I t )  and d = 1.2 + 0.2 sin(1 x 2  I t )  . 

, R = 0.1 ; the population size, the Suppose that the weighting matrices are selected as Q = 

crossover rate and the mutation rate are selected as 10, 0.8 and 0.03, respectively. Based on [14], the 
optimal coefficients of sliding function can be derived as 4 = [1.4142 1]1 . Six h z z y  rules are created in 
this simulation. Fig. 1 shows the evaluation result of cost function and Fig. 2 shows the final state space 
response after learning. 

- [ 0.5 2 0.51 1 
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CONCLUSION 
In this paper, a new approach called modulus genetic algorithm was described. The numeric error, which 
arisen by the encodingtdecoding procedure in conventional GAS, was avoided. In the modulus genetic 
algorithm, the encoding/decoding procedure is not necessary. It has the following advantages: 1) the 
evolution can be speeded up; 2) the numeric truncation error can be avoi’ded; 3) the precision of solution 
can be increased. 

The MGA was applied to resolve the key problem of fuzzy logic systems - rule acquisition. The fuzzy 
system with MGA forms an “intelligent fuzzy system”. Based on the proposed learning step, the fuzzy rule 
base can be self-extracted and optimized. Such an intelligent fuzzy system has a general-purpose 
architecture. It can be applied to many kinds of fields, such as fuzzy control, fuzzy image processing, fuzzy 
decision making, and fuzzy pattern recognition, etc. 
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