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Abstract - In this paper, we propose a self-tuning controller 
with a grey system for on-line process controls. The self-tuning 
mechanism is designed basing on a group of input-output data 
obtained from the process. The grey system in the tuning 
mechanism is utilized to reduce the random variation of the 
input-output data. The self-tuning mechanism is integrated into 
an internal model control, and the developed control system is 
applied to control the temperature distribution in a thermal 
barrel of plastic molding processes. From the experimental result, 
we conclude that the usage of the grey system can filter out the 
noise in the process and reduce the number of input-output data 
required in the tuning mechanism. 

I. INTRODUCTION 
In process control, we need to establish an accurate 
mathematical model for the physical process, and design the 
process controller basing on the model. For a complex 
procedure, such as temperature control of plastic molding 
process, a controller with a linear model provides accurate 
results only in some application range and is not appropriate 
for precision process control. On the other hand, a controller 
with a nonlinear model costs too much time in calculation and 
is not applicable for on-line control. 

Linear discrete models with self-tuning mechanism are 
simple and approximate methods, which can highly represent 
the properties of nonlinear systems and easily integrate a 
priori knowledge of data obtained from the processes. 
However, for a conventional self-tuning control, the tuning 
mechanism is suffered from the noise of the input-output data. 
In this paper, we propose a self-tuning controller integrated 
with a grey system for on-line process controls. The 
self-tuning mechanism is designed basing on a group of 
input-output data obtained from the process. The grey system 
in the controller is utilized to reduce the random variation of 
the input-output data. 

We established two types of self-tuning mechanism for the 
purpose of comparison, one without any filter and the other 
with a filter based on the grey system theory. In order to 
compare the performance of these two controllers, we 
integrate the tuning mechanism into Internal Model Control 
(IMC) [Sousa et aZ. 19971 for temperature control of a 
thermal barrel in plastic molding processes. The systems are 
subjected to a step input and the responses will depict the 
dynamic performance of the controllers. The basic concept of 
IMC is to generate the command basing the inversion of the 
system model. If the mathematical model is accurate enough, 
the difference between the outputs of the mathematical model 
and the physical system will vanish, and the transfer function 
of the system is a unity function. Otherwise, if the model is 
slightly different from the physical system, a large difference 
will exist between the IMC output and the reference input. 

Therefore, the IMC is an appropriate tool that can be used to 
evaluate the accuracy of a mathematical model. We will show 
that the self-tuning model with a grey system presents a better 
control performance than that without any filter. 

11. SELF-TUNING INTERNAL MODEL CONTROL 
In plastic extrusion and injection molding processes, the 

particle polymer is fed into the thermal barrel and heated 
continuously. The mechanism forcing the polymer moving 
forward is a rotating screw in the thermal barrel. The 
configuration of a thermal barrel in plastic injection-molding 
machines is shown in Figure 1. Around the surface of the 
thermal barrel, several pairs of heaters are equipped to supply 
energy to the system. In the container of the barrel, the 
polymer is heated by the heaters in different zones. 
Meanwhile some melt polymer will mix with un-melt particle 
polymer. 

Figure. 1 Thermal barrel of plastic product processes 
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Figure 2 Model configuration of a thermal barrel 

We divide the thermal barrel into four different 
temperature zones, as depicted in Figure 2, and analyze the 
thermal behavior in each zone separately. The thermal 
equation for each zone can be derived by the concept of 
thermal equilibrium of the system, 
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where C, is the thermal capacitance of zone i; T‘{t) is the 
temperature of zone i in centigrade (“C); g,(t) and q,(t) 
represent the input and output heat rate, respectively. In 
general, Equation (1) is a nonlinear function that can be 
expressed as 
x = f (x ,u , t )  (2) 
where x and U are the state and input variables of the system, 
respectively; and f is an nonlinear hnction of the input and 
state variables. A linear approximation of Equation (2) can be 
written as 
X = A,x+ B,u (3) 
y = C C x + D c u  (4) 
where y is the output of the system; A,, B,, C,, and D, are 
constant matrices. We can derive a discrete model as follows 
for Equations (3) and (4)[Phillips and Nagle 19951, 
~ ( k )  = h ( k  - 1) + Bu(k - 1) ( 5 )  
y(k)  = Cx(k - 1) + Du(k - I) 
In these equations, the coefficient matrices are determined by 
A = Q(t,) = eArfs 

B = 65 Q(t, - s)dt B, 

c = c, 
D=D, 
where ts is the sampling time of the discrete system. The 
coefficients of the discrete model are estimated basing on a 
group of input and output data. Rearrange Equation (5) to be 
a homogenous equation 
x = W h  (6) 
where x is a vector contains the state variables at t=k; W is a 
matrix contains the input and state variables at gk-1; h is a 
vector of undetermined coefficients in matrices A and B. 
These vectors and matrix can be expressed as the follows. 
x = [XI@) Q ( k )  ... X,(k)]T 

rxl(k-I)  ... x , ( k - ~ )  0 0 
x l ( k - 1 )  ... x , ( k - 1 )  , w = j  y 0 

0 
0 

1 .  0 0 x , ( k - I )  ” ’  x , ( k - I )  

0 

0 
0 0 

0 
u , ( k - I )  ... u , ( k - I )  

u, (k - I )  ... u,,,(k-I) . 

~ ~ ( k - 1 )  ... u,(k-I )  

h = [a , ,  ... a , , ;  a21 ... azn; ..’ ; a,, ... a n n  ; 
b,, ... b lm;  b,, .‘. b,,; ..* ; bn, ... b n n ]  

The coefficient vector, h, in Equation (6) can be determined 
using a pseudo-inverse matrix method 

I;=(WTW)-lWTx (7) 
The caret denotes the estimated valued of h. We can see that 
the model coefficients are tuned basing on a group of input 
and output data. The estimated coefficients fi i i(k) and 

bi j (k)  can be substituted into Equation (5) to get a linear 

approximate model for a nonlinear physical system. 

In order to evaluate the control performance of the 
developed discrete model, we construct an internal model 
controller (IMC) [Sousa et al. 19971 as shown in Figure 3. In 
the block diagram, the wiggle and caret represent the 
reference input and the estimated output, respectively. We 
calculate the output difference, Ay, between the output 
measured from the real system and that estimated from model. 
This output error represents the inaccuracy of the discrete 
model. This error value is fed back to the controller to 
compensate the command. In the controller, we use an inverse 
model to generate the control command, u(k), and the 
command is sent into the real system and the discrete 
mathematical model simultaneously. A new output can be 
obtained at the outlets of the system and model. If the 
difference between the system and the model vanishes, i.e. the 
mathematical model matches the real system exactly, there is 
no feedback signal, and the IMC become an open-loop 
feed-forward controller. 0n.the other hand, if the model and 
the system are slightly different, the output difference, Ay, 
will not disappear. Therefore, according to the characteristic 
of IMC, the output, y(k+l) ,  will not follow the reference input 
exactly. 

i v + l )  + 
Model L,’- ‘c iil Ay(k+l )  

Figure 3 Self-tuning Internal Model Control 

111. SELF-TUNING WITH A GREY FILTER 
In this section, we apply Grey System theory [Deng 1982, 

Wong et al. 20011 to predict the output of the real system and 
filter out the random variation of the output. Instead of using 
linear approximation, we imitate the relationship between the 
input and output by a so-called grey differential equation 
based on the grey system theory [Wong et al. 20011. 
According to the grey system theory [Deng 1982, Wong et al. 
200 13, we define two data-generating operations, namely, 
Accumulated Generating Operation (AGO) and mean 
operation (MEAN). Let y“) be a non-negative original data 
sequence 

y(0)  = {y(O)(I),y(0)(2), . . . , y (o) (~~)} ,  n 2 4 (8) 
The number “0” in the parentheses on the superscript 
indicates the original data sequence. Define the AGO on y(O) 
by the operation 

y( ’ ) (k )  = AGO0 y“) = ~ ~ , l y ( o ) ( m ) ,  (9) 

The number “1” in the parenthesis on the superscript denotes 
the first-order AGO. Then we define the MEAN operation on 
y(l) as 

k = 42 ,..., n. 

~ ( ” ( k )  = MEANoy(’) = 0.5y( ’ ) (k)+ 0.5y( ’ ) (k- I ) ,  k = 2,3, ..., n. 
(10) 
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We can see that the AGO operation will filter out the random 
variation of the raw data and generate a regular sequence $ I ) . .  

We now can begin to create a grey system model. In the grey 
system theory [Deng 19891, a dynamic grey model is denoted 
by GM(ij) which contains a group of differential equations, 
where i and j  indicate the order and the number of variables of 
the differential equation, respectively. A grey model GM( 1 ,w 
is represented.as the following equation 

N 

i=2 
y (O)(k)+az( ' ) (k)  = Cbi&) (11) 

where y"'(k) is the output of the system; U is called the 
development coefficient; bi are the input coefficients; x:')(k) 
are (N-1) grey inputs in first-order AGO form which is 
expressed as the following equation 

x j ' ) (k )  = AGO 0 x!" = ~ ~ ! ~ ' ( m ) ,  

The (N-1) input variables are 

xi(') = { ~ ~ ' ( 1 ) , ~ ~ ~ ) ( 2 )  ,..., x?'(n)}, 

k 

m=l 
k = 42 ,..., n. 

n 2 4 ,  i = 2 , 3  ,..., N 

Equation ( I  1) can be expressed in homogenous form 

y=wh . (12) 
The vectors and matrices in Equation (12) are denoted as 
follows: 

- 
- P ( 2 )  u p ( 2 )  ... 4 ( 2 )  

-$)(3) @(3) ... U i ) ( 3 )  
. .  . .  w =  . 

-.z('j(n) u$'(n) ... ug'(n) 

h=[U b2 ... bN]' 
The coeficients a and bi can be determined according to the 
input and output data. They can be solved by means of the 
pseudo-inverse matrix method as in Equation (7). The 
first-order ordinary differential equation 

is called the whiten equation corresponding to the grey 
differential equation (1 1). A general solution of the whiten 
equation is 

N-l 

i=2 
y( ' ) ( t )  = e-a' I 1 b. rxi ( I )  e "d t  + Ce-" (14) 

where C is a coefficient to be determined by substituting the 
initial condition into Equation (14). Assuming known quantity 
of inputs xi,  the solution will become 

It is proved that the solution of the corresponding grey 
differential equation can be expressed by 

where the parameter p is the forecasting step-size and the 
caret indicates that the value i is a predicting value of y.  To 
get the prediction output at time t=n+p, we take the inverse 
AGO (IAGO) on y('). The corresponding IAGO is defined 

i ( O ) ( k )  = ZAGOoy(lj =j( ')(k)->( ')(k-l) ,  k=2,3,  ..., n. 

Then we can obtain the prediction output at t=n+p, expressed 
as the follows: 

by 

( e') ,  n>4(17)  1 [ 1-2 a 

N-I b x ( ' )  
j $ O ) ( n + p ) , =  y ( o ) ( l ) -  c 5 e-'(n+P-l) L- 

We conclude that the grey system composed of the 
operations AGO, IAGO and GM(ij) can be constructed by 
j ( O )  = ZAG0 o GM(i, j )  o AGO o y(O) 
This grey system can be utilized to estimate the output of a 
real system. 

We propose a modified self-tuning IMC basing on the 
input-output data obtained by the grey system. The control 
block diagram is shown in Figure 4. We apply a grey system 
to reduce the random variation of input-output data of the 
system, and a estimator to tuning the coefficient matrices, A 
and B, basing on the filtered data. 

y(k  + 1) 
System + Model 

IV. 

U 

Figure 4 Intemal Model Control with a grey system 

THERMAL CONTROL IN PLASTIC MOLDING 
PROCESSES 

We construct an experimental setup for temperature control 
of the thermal barrel in the plastic molding processes. In the 
setup, four thermocouples are used to measure temperature at 
each temperature zone of .the thermal barrel. Then the 
measured signal is converted to digital signal by an ADC 
interface, PCL-818HG [Advantech 19941, and fed back to the 
PC-based controller. We can employ a temperature control 
algorithm to calculate the heat rate command basing on the 
feedback temperature. In order to increase the efficiency of 
the heating device, the heat rate command is sent to the heater 
using PWM format through a PWM interface PCL-836 
[Advantech 19941. 

We use the linear discrete model in Equation ( 5 )  to 
estimate the temperature output. For the discrete model, the 
coefficients a0{k) and b,(k) in matrices A and B can be 
determined by a parameter estimation method. We can see 
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that the model coefficients are estimated basing on a group of 
input and output data. The estimated coefficients ( k )  and 

bij(k) can be substituted into Equation (5) to get a linear 

approximate model for a nonlinear physical system. The 
resultant model is determined [Wang et al. 19991 as 

1.0718 -0.0625 0 
-0.0862 0.9463 0.1485 

0 

0.06430 0 0 
0 0.08838 0 

0 

0.1005 0 0 
0 0.0089 0 

0 

(19) 
Where the heat-transfer delay time is measured to be eight 
sampled periods (d=8). 

The proposed self-tuning IMC can be utilized to control the 
temperature distribution in the thermal barrel of plastic 
molding processes. We compare the control performance of 
the self-tuning IMC in Figure 3 and the self-tuning IMC with 
a grey system in Figure 4. The control results for temperature 
Zone 3 and 4 are plotted in Figures 5 and 6. We can see that 
the controllers without any filter involve with steady-state 
error, while the controllers with grey system have better 
performance. 

time Mn 
Figure 5 Self-tuning hd for Zone 3 

J 
20 (B ‘ a  

Figure 6 Self-tu:; k% for Zone 4 

v. CONCLUSION REMARK 
In this research, we establish a self-tuning mechanism with 

a grey system and apply to control the temperature 
distribution in a thermal barrel of plastic molding processes. 
In conventional self-tuning control, the tuning mechanism is 
suffered from the noise of the input-output data. The usage of 
the grey system can reduce the random variation of the 
input-output data, and the tuning mechanism can estimated 
the system ‘parameters basing on a least number of data 
obtained from the process. 

In order to compare the control performance, we integrate 
the self-tuning mechanism into an intemal model controller 
and apply to thermal control in plastic molding processes. 
The systems are subjected to a step input and the responses 
depict the different dynamic performance of the controllers. 
The IMC with linear discrete model has large steady-state 
errors, while the control with grey system has better 
performance, even though it has oscillation in Zone 3 and 4 at 
steady state. 
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