
323

EMBEDDING A COMPLETE BINARY TREE INTO A FAULTY
SUPERCUBE

Haun-Chao Keh and Jen-Chih Lin
Department of Computer Science and Information Engineering

Tamkang University, Tamsui, Taipei, Taiwan 251, R.O.C.
*Contact Author e-mail:g3320195~ower. c s . tku.edu. t w

Abstract
The supercube is a novel interconnection network that is derived from

the hypercube. Unlike the hypercube, the supercube can be constructed
for any number of nodes. That is, the supercube is incrementally expand-
able. In addition, the supercube retains the connectivity and diameter
properties of the corresponding hypercube. In this paper, we consider
the problem of embedding and reconfiguring binary tree structures in
a faulty supercube. Further more, for finding the replaceable node of
the faulty node, we allow %expansion such that we can show that up to
(n - 2) faults can be tolerated with congestion 1 and dilation 4 that is
(n - 1) is the dimension of a supercube.

Key words: supercube, hypercube, embed, complete binary tree,
fault tolerance

1 Introduction

Embedding a given guest graph G into a host graph H means mapping the
nodes of G to the node of H such that the edges of G also map to paths
of H . Four costs associated with graph embedding are dilation, expansion,
load and congestion. The dilation of an embeddiiig is the maximum distance
in the host between the images of the adjacent guest graph. The expansion
is the ratio of total number of nodes of G to total number of nodes of H .
The load of an embedding is the maxiniuni number nodes of the guest graph
that are embedded in any single node of the host graph. The congestion of
an embedding is the maxiniuni nuniber of edges of the guest graph G tha t is
embedded using any single edge of the host graph H .

The hypercube has a significant drawback; it is not incrementally extensi-
ble. We consider the supercube a novel interconnection network derived from
the hypercube that can be constructed for any number of nodes. The super-
cube has the same connectivity and diameter of the corresponding hypercube.
The supercube is shown t o have the following desirable charade-ristic?: (1)
adding a new node to an existing network is easy; it, doesn’t need reorganization
of existing edges. (2) the nodes connectivity of a 1V-node supercube is at least
Llog, N] (3) the node degree of a N-node supercube is between (k - 1) and

(0-7803-4229-1/97/$10.00 1997 IEEE)

http://tku.edu

324

(2k - 2), where k = [logz N I , (4) and the diameter is of a N-node supercube
at most Llogz NJ .

In a multiprocessor system, there are two fault models are considered?.
One is total fault model tha t is the computation and the communication fails.
The other is partial fault model that is only the communication fails. In this
paper, our fault model is partial model. That is, when the computation nodes
are fault, the communication links are well. Only the faulty node is remapped.
We t ry t o embed the complete binary tree into the faulty supercube with unit
load. Further more, for finding the replaceable node of t he faulty node, we
allow expansion is equal t o 2 such that we can show that up to (n - 2) faults
can be tolerated with congestion 1 and dilation 4 that is (n- 1) is the dimension
of t he supercube.

The remainder of this paper is organized as follows. In the next section,
we introduce the necessary notation and definitions. At t he same time, we
describes how to embedding a complete binary tree into a hypercube. In
section 3, we embed a complete binary tree into a faulty supercube. In t h e
last section 4, we give the conclusions of the paper and discuss further research
problems.

2 Preliminary

In this section, we briefly describe notations and definitions of the supercube.
The following formal properties of the supercube graph are from Se2. The
supercube is constructed as follows. The topology of a supercube is represented
by a n undirected graph S, = (VI E) , where V is the set of processors (in t h e
following called nodes) and E is the set of bidirectional communication links
between the processors (called edges). Assume that V contains N nodes, which
is numbered from 0 t o (N - 1). Then, let n is defined 2"-l 5 N 5 2". Each
node can be expressed by an n-bit binary string z,-l ... io where i, E (0,l) .

Define2.19 Suppose S, = (V,E) is an (n - 1)-dimensional supercube,
then the node set V can be divided into three subsets VI , V2, V3, where

V3 = ($1 z E V, ic = lu, where U is a (n - 1) - bit sequence},
VZ = ($1 z E V , z = Ou, l u $! VI where u is a (n - 1) - bit sequence},
V, = ($1 z E VI z = Ou, l u V , where u is a (n - 1) - bit sequence}.
Before we defined the edge set E , let ns define a term called Hamming

Define 2.2 The Hamming distance, H.D.(a, b), is given by the number of
bit positions where the nodes of a and b differ. In other words, H.D.(a, b), is
t h e number of bits set in the resulting sequence of t he bitwise X O R of a and
b.

distance.

325

Define 2.9 Suppose SN = (V, E) is a n (n - 1)-dimensional supercube,
then the edge set E is the union of El, Ez, E3 and E4, where

El = {(z,y)l z,y E v, z = uu, y = Ov,
where U , v are (k - 1)-bit sequences and H.D.(z,y) = l},

E2 = {(z,y)I z,y in V3, 2 = lu, y = lv ,
where U , v are (k - 1)-bit sequences and H.D.(z,y) = l},

E3 = {(z,y)l z in V3, y in V2,z = lu, y = Ov,
where U , v are (k - 1)-bit sequences and N.D.(z,y) = l},

E4 = {(z,y)J z in V3, y in V l , s = lu, y = Ou.,
where U are (IC - 1)-bit sequences}.

The dimension of the supercube is (n- 1) and the Dimension of two nodes
z and y is denoted by Dzm(z,y). Dzm(z,y) is eqpal to i(z 5 (j - 1)) if and
only if H.D.(s ,y) = 1 and z, # yz.

In Aulettd , although a complete binary tree of height h can be embedded
into a 2h+1-node supercube with dilation 1 and load 1, the supercube can’t find
the replaceable node of the faulty node. We can obtain recursive construction
of a mapping of a double-rooted complete binary tree into a hypercube with
dilation 2 and load 13.

Lemma3.1 A double-rooted complete binary tree can be contained in a
hypercube with dilation 2 and load 1.

3 Embedding a complete binary tree into a faulty supercube with
2- expansion

In this section, we infer the method of the embeddling from the section 2. The
method of the embedding is proved by theorem 3.1.

Theorem 3.1 A complete binary tree of height h can be embedded into
a (2h+2 - 2)-node supercube with dilation 2, expansion 2 and load 1.

Proof. For finding the replaceable node of the faulty node, we suppose
expansion is equal to 2. The total number of nodes of a complete binary tree Th
is 2h+1 - 1. The total nuniber nodes of a supercube are 2* (2h+1 - 1) = Zhf2-2.
By section 2, the node set V of the supercube& partitioned into three subsets
VI, Vz and V,. The set VI which is the union of VI and Vz has 2h+1 nodes.
and a complete binary tree can be embedded into a supercube with 2h+1 nodes
using a double-rooted complete binary tree. Therefore, a complete binary tree
of height h can be embedded into a (2 h f 2 - 2)-node supercube with dilation
2, expansion 2 and load 1.

Define 3.2 A (2h - 2)-node supercube is lack o f two nodes, we called them
virtual nodes.

326

We describe our algorithms for embedding a complete binary tree into a
faulty supercube as follows.

searching - path(r)
1 We can search the node m

/* m E Vs, H.D.(r,m) = 1, Dim(r ,m) = (n - I)*/.
2 if the node m is faultily then
2.1 2 = 0
2.2 while i # (n - 2) do
2.2.1 we can search the node k

2.2.2 i f node k is not virtual node and it is free then
2.2.2.1 node r is replaced by node IC
2.2.2.2 exit the whale-loop
2.2.5 a = i + 1
2.3 i f i = (n - 2) then
2.3.1 declare the replaceable node of searching is faultily.
2.3.2 exit the searching - path()

/* IC E V3, H.D.(m,k) = 1, Dim(m,k) = i*/.

v - searching - path(r)
l i = O
2 while i # (n - 2) do
2.1 we can search the node k

2.2 i f node IC is not virtual node and it is free then
2.2.1 node r is replaced by node k
2.2.2 exit the whale-loop
2.3 i = i + l
3 i f 2 = (n - 2) then
3.1 declare the replaceable node of searching is faultily.
3.2 exit the v - searching - path()

/*k E V,, H.D.(r, k) = 2, Dim(r, k) = (n - l,z), E(r, IC) E E3*/

Algorithm searching - rule:
1 2f the root r is faultily then
1.1 search the spacer node S
1.2 i f the spacer node S is faultily then return the root r
1.3 else
1.3.1 node r is replaced by node S.

327

1.3.2 exit t he algorithm searching - rule
2 i f r E VI then searching - path(r)
3 i f r E V2 then v - searching - path(r)
4 if the other node p is faultily then
4.1 zf the node p E VI then searching - path(1p)
4.2 af the node p E V2 then v - searching - path(p)

Theorem 3.3 The finishing of a searching path is including (n- 2) nodes
at least and the rule is right.

Proof. Each node can be expressed by an ?%-bit binary string in-l...iO
where i, E (0, l}, so we can change a bit in sequence. We can get n different
nodes. By define 3.2, we have two virtual nodes. Therefore, the finishing of
searching path is including (n - 2) nodes at least By S a d and Schulti?, we
infer t he edges of the searching-rule exist. We can get the result of t h e rule is
right

Theorem 3.4 If the root of the tree is faultily and the number of faulty
nodes is < (n - l), we can find the replaceable node of the root after (n + 1)
times of search at most.

Proof. We assunie we can’t find the replaceable node of the faulty node.
Tha t is, all of nodes on the searching path are already used or fault. By
theorem 3.3, we show each node can be expressed by a n n-bit binary string
z n - l ... i o where i, E (0, l}. Now there are two conditions can be considered.
First, if the root r E VI, the searching path is inclluding only one virtual node
at most. If the searching path is including the virtual node with i o = 0, it
must be not including io = 1 by the searching-rule and vice versa. Second, if
the root T E V2, t he searching path is including two virtual nodes at most. We
can search (n - 1) nodes after (n + 1) times of search at least. Because t h e
number of faulty nodes is < n, we can find the replaceable node by pigeonhole
principle. The originally assume is wrong. We ciin find the replaceable node
of the root T after (n + 1) times of search at most.

Theorem 3.5 If a node of a subtree is faultily and the number of faulty
nodes is < (n - 2), we can find the replaceable node of the faulty node after n
times of search at most.

Proof. We assunie we can’t find the replacedde node of the faulty node.
Tha t is, all of nodes all on the searching path is already used or fault. By

i,_l ... io where i, E (0,l). Now there are two conditions can be considered.
First, if t he faulty node p E VI, the searching pathi is including only one virtual
node at most. If the searching path is including the virtual node with i o = 0,
it must be not including io = 1 by the searchingrule and vice versa. Second,

theorem 3.3, we show each node can be expressed by an n-bit binary string

328

if the faulty node p E Vz, the searching path is including two virtual nodes at
most. We can search (n - 2) nodes after n times of search at least. Because
the number of faulty nodes is < (n - a), we can find the replaceable node
by pigeonhole principlt?. The originally assume is wrong. We can find the
replaceable node of the node p after n times of search at most.

Theorem 3.6 There are O (n) faults can be tolerated.
Proof. By theorem 3.4, there are (n - 1) faults can be tolerated. By

theorem 3.5 , there are (n-2) faults can be tolerance. To sum up, we can show
that O(n) faults can be tolerated.

Theorem 3.7 The result holds dilation 4, congestion 1, expansion 2 and
O(1) load.

Proof. We show that we can embed a complete binary tree of height h
into a (2hf2 - 2)-node supercube using nodes of VI U fi with dilation 2 by
section 2. There are two cases t o be considered.

Case 1. First, if the faulty node p , p E V,, we can search the node m,
H.D.(p,m) = 1, m E V3, E (p , ~ n) E E4 by the searching - path(). Sec-
ond, if the node is used or fault, we can search the other nodes k , k E V3,
H.D.(m, IC) = 1, E(m, k) E E2 by the searching -pa th () . At last, we can get
the dilation 2 at most.

If the faulty node p , p E V2, we can search the nodes m,
H.D.(p, m) = 2, m E V3, E(p , m) E E3 by t h e U - searching -path() . We can
get the dilation 1 a t most.

rule and %a&, we can get congestion 1 and load 1. For finding the replaceable
node of the faulty node, we allow 2-expansion. Therefore, when root node and
spacer node are faultily, it is a worst case the dilation= 2 + 2 = 4 a t most, the
dilation is 2 in others condition. The other three costs associated with graph
embedding are congestion 1, expansion 2 and O(1) load.

We illustrate three case of finding a replaceable node as shown in Figure
1, 2 and 3 .

Case 2,

Because every replaceable path is only one path by the algorithmsearching-

4 Conclusion

In this paper, finding the replaceable node of the faulty node, we allow 2-
expansion such that we can show that up to (n - 2) faults can be tolerated.
Furthermore, we can prove them and present some algorithms t o solve them.
The result implies that any complete binary tree can be embedded into a
supercube with congestion 1 and dilation 4 that is (n - 1) is the dimension of
the supercube. By the result, we can embed the parallel algorithms developed

329

Figure 1:

The searching-path h g(lOO1) 4s E(lm0) 4 s I1(1011) 0 13(l101)

Figure 2:

.I , I
..........

(.",.".I

-.__

The squenrr 0- -P44IU@ * 13l11011
9 11(110l)

(."II"III

Figure 3:

330

by the structure of a complete binary tree into a supercube. This method of
embedding enables extremely high-speed parallel computation.

After a complete binary tree can be embedded into a supercube with faulty
nodes, it would be interesting to generalize our results t o unbound expansion,
the embedding of an arbitrary binary tree and multi-dimensional meshes into
a supercube with faulty nodes.

References

1. V. Auletta, A.A. Rescigno, and V. Scarano, “Embedding Graphs onto
the Supercube,” IEEE Daizs. on Computers, Vol. 44, No. 4, pp. 593-
597, April 1995.

2. V. Auletta, A.A. Rescigno, and V. Scarano, “Fault Tolerant Routing in
The Supercube,” Parallel Processing Letters, Vol. 3, No. 4, pp. 393-405,
1993.

3. Diniitri P. Bertsekas and John N. Tsitsiklis, “Parallel and Distributed
Computation: numerical methods,” Prentice Hall, Englewood Ciffs, New
Jersey, 1989.

4. Bethany M. Y . Chan, Francies Y. L. Chin, Senior member, IEEE, and
C.-K. Poon, “Optimal Simulation of Full Binary Trees on Faulty Hyper-
cubes, ”IEEE Pans. on parallel and distributed systems, Vol. 6, No. 3,
pp. 269-286, March 1995.

5. Y. Saad, and M. Schultz, “Topological properties of Hypercube,” IEEE
Pans. on Computers, Vol. 37, No. 7, pp. 867-871, July 1988.

6. C. Seitz, “The Cosmic Cube,” Commun. ACM, Vol. 28, pp. 22-33, 1985.
7. A. Sen, “Supercube: An Optimally Fault Tolerant Network Architec-

ture,” Acta Informatica, Vol. 26, pp. 741-748, 1989.
8. A. Sen, A. Sengupta, S. Bandyopadhyay, “On the routing problem in

faulty supercubes,” Information Processing Letters, Vol. 42, pp. 39-46,
1992.

9. A.‘ Sen, A. Sengupta, S. Bandyopadhyay, “Generalized Supercube:
An incrementally expandable interconnection network,” Proceedangs of
the Third Symposium on Frontiers of Massively Parallel Computation-
Frontiers’90, pp. 384-387, 1990.

10. H. Sullivan, T. Bashkow, “A large scale, homogeneous, fully distributed
parallel machine, I,” in Proc. 4th Symp. Computer Architecture, ACM,
pp. 105-177, March 1977.

11. S.-M. Yuan, and H.-M. Lien, “The Shortest algorithm for Supercube,”
Proceedings of National Computer Symposium, pp. 556-561, 1991.

