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Abstract 
The supercube is a novel interconnection network that is derived from 

the hypercube. Unlike the hypercube, the supercube can be constructed 
for any number of nodes. That is, the supercube is incrementally expand- 
able. In addition, the supercube retains the connectivity and diameter 
properties of the corresponding hypercube. In this paper, we consider 
the problem of embedding and reconfiguring binary tree structures in 
a faulty supercube. Further more, for finding the replaceable node of 
the faulty node, we allow %expansion such that we can show that up to 
(n - 2) faults can be tolerated with congestion 1 and dilation 4 that is 
(n - 1) is the dimension of a supercube. 
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1 Introduction 

Embedding a given guest graph G into a host graph H means mapping the  
nodes of G to the node of H such that the edges of G also map to paths 
of H .  Four costs associated with graph embedding are dilation, expansion, 
load and congestion. The dilation of an embeddiiig is the maximum distance 
in the  host between the images of the adjacent guest graph. The  expansion 
is the ratio of total number of nodes of G to  total number of nodes of H .  
The  load of an embedding is the maxiniuni number nodes of the guest graph 
that  are  embedded in any single node of the host graph. The  congestion of 
an  embedding is the maxiniuni nuniber of edges of  the  guest graph G tha t  is 
embedded using any single edge of the host graph H .  

The hypercube has a significant drawback; it is not incrementally extensi- 
ble. We consider the supercube a novel interconnection network derived from 
the hypercube that can be constructed for any number of nodes. The super- 
cube has the same connectivity and diameter of the corresponding hypercube. 
The  supercube is shown t o  have the following desirable charade-ristic?: (1) 
adding a new node to  an existing network is easy; it, doesn’t need reorganization 
of existing edges. (2) the nodes connectivity of a 1V-node supercube is at least 
Llog, N ]  (3) the  node degree of a N-node supercube is between ( k  - 1) and 
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(2k - 2), where k = [logz N I ,  (4) and the  diameter is of a N-node supercube 
at most Llogz NJ . 

In a multiprocessor system, there are two fault models are considered?. 
One is total fault model tha t  is the computation and the communication fails. 
The  other is partial fault model that  is only the communication fails. In this 
paper, our fault model is partial model. That is, when the  computation nodes 
are fault, the  communication links are well. Only the faulty node is remapped. 
We t ry  t o  embed the  complete binary tree into the  faulty supercube with unit 
load. Further more, for finding the replaceable node of t he  faulty node, we 
allow expansion is equal t o  2 such that we can show that up to (n - 2) faults 
can be tolerated with congestion 1 and dilation 4 that  is (n- 1) is the dimension 
of t he  supercube. 

The  remainder of this paper is organized as follows. In the  next section, 
we introduce the necessary notation and definitions. At t he  same time, we 
describes how to embedding a complete binary tree into a hypercube. In 
section 3, we embed a complete binary tree into a faulty supercube. In t h e  
last section 4, we give the  conclusions of the paper and discuss further research 
problems. 

2 Preliminary 

In this section, we briefly describe notations and definitions of the  supercube. 
The  following formal properties of the supercube graph are from Se2. The  
supercube is constructed as follows. The  topology of a supercube is represented 
by a n  undirected graph S, = (VI E) ,  where V is the set of processors (in t h e  
following called nodes) and E is the set of bidirectional communication links 
between the processors (called edges). Assume that V contains N nodes, which 
is numbered from 0 t o  ( N  - 1). Then, let n is defined 2"-l 5 N 5 2". Each 
node can be expressed by an n-bit binary string z,-l ... io where i, E (0,l) .  

Define2.19 Suppose S, = (V,E)  is an (n - 1)-dimensional supercube, 
then the node set V can be divided into three subsets VI ,  V2, V3, where 

V3 = ($1 z E V, ic = lu, where U is a (n - 1) - bit sequence}, 
VZ = ($1 z E V ,  z = Ou,  l u  $! VI where u is a (n - 1) - bit sequence}, 
V, = ($1 z E VI  z = Ou, l u  V ,  where u is a (n - 1) - bit sequence}. 
Before we defined the  edge set E ,  let ns define a term called Hamming 

Define 2.2 The Hamming distance, H.D.(a, b), is given by the number of 
bit positions where the nodes of a and b differ. In other words, H.D.(a, b), is 
t h e  number of bits set in the resulting sequence of t he  bitwise X O R  of a and 
b. 

distance. 
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Define 2.9 Suppose SN = (V, E )  is a n  (n - 1)-dimensional supercube, 
then the  edge set E is the union of El, Ez, E3 and E4, where 

El = {(z,y)l z,y E v, z = uu, y = Ov, 
where U ,  v are (k - 1)-bit sequences and H.D.(z,y) = l}, 

E2 = {(z,y)I z,y in V3,  2 = lu, y = lv ,  
where U ,  v are ( k  - 1)-bit sequences and H.D.(z,y) = l}, 

E3 = {(z,y)l z in V3, y in V2,z = lu,  y = Ov, 
where U ,  v are (k - 1)-bit sequences and N.D.(z,y) = l}, 

E4 = {(z,y)J z in V3, y in V l , s  = lu, y = Ou., 
where U are (IC - 1)-bit sequences}. 

The  dimension of the supercube is (n- 1) and the Dimension of two nodes 
z and y is denoted by Dzm(z,y). Dzm(z,y) is eqpal to i(z 5 (j - 1)) if and 
only if H.D.(s ,y)  = 1 and z, # yz. 

In Aulettd , although a complete binary tree of height h can be embedded 
into a 2h+1-node supercube with dilation 1 and load 1, the supercube can’t find 
the  replaceable node of the faulty node. We can obtain recursive construction 
of a mapping of a double-rooted complete binary tree into a hypercube with 
dilation 2 and load 13. 

Lemma3.1 A double-rooted complete binary tree can be contained in a 
hypercube with dilation 2 and load 1. 

3 Embedding a complete binary tree into a faulty supercube with 
2- expansion 

In this section, we infer the method of the embeddling from the section 2. The 
method of the  embedding is proved by theorem 3.1. 

Theorem 3.1 A complete binary tree of height h can be embedded into 
a (2h+2 - 2)-node supercube with dilation 2, expansion 2 and load 1. 

Proof. For finding the replaceable node of the faulty node, we suppose 
expansion is equal to 2. The total number of nodes of a complete binary tree Th 
is 2h+1 - 1. The total nuniber nodes of a supercube are 2* (2h+1 - 1) = Zhf2-2. 
By section 2, the node set V of the  supercube& partitioned into three subsets 
VI, Vz and V,. The set VI which is the union of VI and Vz has 2h+1 nodes. 
and a complete binary tree can be embedded into a supercube with 2h+1 nodes 
using a double-rooted complete binary tree. Therefore, a complete binary tree 
of height h can be embedded into a ( 2 h f 2  - 2)-node supercube with dilation 
2, expansion 2 and load 1. 

Define 3.2 A (2h - 2)-node supercube is lack o f  two nodes, we called them 
virtual nodes. 
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We describe our algorithms for embedding a complete binary tree into a 
faulty supercube as follows. 

searching - path(r) 
1 We can search the node m 

/* m E Vs, H.D.(r,m) = 1, Dim(r ,m)  = (n - I)*/. 
2 if the  node m is faultily then 
2.1 2 = 0 
2.2 while i # (n - 2) do 
2.2.1 we can search the node k 

2.2.2 i f  node k is not virtual node and it is free then 
2.2.2.1 node r is replaced by node IC 
2.2.2.2 exit the whale-loop 
2.2.5 a = i + 1 
2.3 i f  i = (n - 2)  then 
2.3.1 declare the replaceable node of searching is faultily. 
2.3.2 exit the searching - path() 

/* IC E V3, H.D.(m,k) = 1, Dim(m,k )  = i*/. 

v - searching - path(r) 
l i = O  
2 while i # ( n  - 2) do 
2.1 we can search the node k 

2.2 i f  node IC is not virtual node and it is free then 
2.2.1 node r is replaced by node k 
2.2.2 exit the whale-loop 
2.3 i = i + l  
3 i f  2 = (n - 2 )  then 
3.1 declare the replaceable node of searching is faultily. 
3.2 exit the v - searching - path() 

/*k E V,, H.D.(r, k )  = 2, Dim(r,  k )  = (n - l,z), E(r, IC) E E3*/ 

Algorithm searching - rule: 
1 2f the root r is faultily then 
1.1 search the spacer node S 
1.2 i f  the  spacer node S is faultily then return the root r 
1.3 else 
1.3.1 node r is replaced by node S. 
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1.3.2 exit t he  algorithm searching - rule 
2 i f r  E VI then searching - path(r) 
3 i f r  E V2 then v - searching - path(r) 
4 if the other node p is faultily then 
4.1 zf the  node p E VI then searching - path(1p) 
4.2 af the  node p E V2 then v - searching - path(p) 

Theorem 3.3 The finishing of a searching path is including (n- 2) nodes 
at least and the rule is right. 

Proof. Each node can be expressed by an ?%-bit binary string in-l...iO 
where i, E (0, l}, so we can change a bit in sequence. We can get n different 
nodes. By define 3.2, we have two virtual nodes. Therefore, the finishing of 
searching path is including (n - 2) nodes at least By S a d  and Schulti?, we 
infer t he  edges of the searching-rule exist. We can get the result of t h e  rule is 
right 

Theorem 3.4 If the root of the tree is faultily and the number of faulty 
nodes is < (n - l), we can find the replaceable node of the root after (n + 1) 
times of search at most. 

Proof. We assunie we can’t find the replaceable node of the  faulty node. 
Tha t  is, all of nodes on the searching path are already used or fault. By 
theorem 3.3, we show each node can be expressed by a n  n-bit binary string 
z n - l  ... i o  where i, E (0, l}. Now there are two conditions can be considered. 
First, if the root r E VI, the searching path is inclluding only one virtual node 
at most. If the searching path is including the virtual node with i o  = 0, it 
must be not including io = 1 by the searching-rule and vice versa. Second, if 
the root T E V2, t he  searching path is including two virtual nodes at most. We 
can search ( n  - 1) nodes after (n + 1) times of search at least. Because t h e  
number of faulty nodes is < n, we can find the replaceable node by pigeonhole 
principle. The originally assume is wrong. We ciin find the replaceable node 
of the root T after ( n  + 1) times of search at most. 

Theorem 3.5 If a node of a subtree is faultily and the number of faulty 
nodes is < (n - 2), we can find the replaceable node of the faulty node after n 
times of search at most. 

Proof. We assunie we can’t find the replacedde node of the faulty node. 
Tha t  is, all of nodes all on the searching path is already used or fault. By 

i,_l ... io where i, E (0,l). Now there are two conditions can be considered. 
First, if t he  faulty node p E VI, the  searching pathi is including only one virtual 
node at most. If the searching path is including the virtual node with i o  = 0, 
it must be not including io = 1 by the searchingrule and vice versa. Second, 

theorem 3.3, we show each node can be expressed by an n-bit binary string 
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if the  faulty node p E Vz, the searching path is including two virtual nodes at 
most. We can search (n - 2) nodes after n times of search at least. Because 
the number of faulty nodes is < (n - a), we can find the replaceable node 
by pigeonhole principlt?. The originally assume is wrong. We can find the  
replaceable node of the node p after n times of search at most. 

Theorem 3.6 There are O ( n )  faults can be tolerated. 
Proof. By theorem 3.4, there are (n - 1) faults can be tolerated. By 

theorem 3.5 ,  there are (n-2) faults can be tolerance. To sum up, we can show 
that  O(n) faults can be tolerated. 

Theorem 3.7 The result holds dilation 4, congestion 1, expansion 2 and 
O(1) load. 

Proof. We show that we can embed a complete binary tree of height h 
into a (2hf2 - 2)-node supercube using nodes of VI U fi with dilation 2 by 
section 2. There are two cases t o  be considered. 

Case 1. First, if the  faulty node p ,  p E V,, we can search the node m, 
H.D.(p,m) = 1, m E V3, E ( p , ~ n )  E E4 by the searching - path().  Sec- 
ond, if the node is used or fault, we can search the other nodes k ,  k E V3, 
H.D.(m, IC) = 1, E(m, k )  E E2 by the searching -pa th ( ) .  At last, we can get 
the dilation 2 at most. 

If the faulty node p ,  p E V2, we can search the nodes m, 
H.D.(p, m) = 2, m E V3, E(p ,  m) E E3 by t h e  U - searching -path() .  We can 
get the dilation 1 a t  most. 

rule and %a&, we can get congestion 1 and load 1. For finding the replaceable 
node of the faulty node, we allow 2-expansion. Therefore, when root node and 
spacer node are faultily, it is a worst case the dilation= 2 + 2 = 4 a t  most, the 
dilation is 2 in  others condition. The other three costs associated with graph 
embedding are congestion 1, expansion 2 and O(1) load. 

We illustrate three case of finding a replaceable node as shown in Figure 
1, 2 and 3 .  

Case 2, 

Because every replaceable path is only one path by the algorithmsearching- 

4 Conclusion 

In this paper, finding the replaceable node of the faulty node, we allow 2- 
expansion such that we can show that up to  (n - 2) faults can be tolerated. 
Furthermore, we can prove them and present some algorithms t o  solve them. 
The  result implies that  any complete binary tree can be embedded into a 
supercube with congestion 1 and dilation 4 that  is (n - 1) is the dimension of 
the supercube. By the result, we can embed the parallel algorithms developed 
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by the structure of a complete binary tree into a supercube. This method of 
embedding enables extremely high-speed parallel computation. 

After a complete binary tree can be embedded into a supercube with faulty 
nodes, it would be interesting to generalize our results t o  unbound expansion, 
the embedding of an  arbitrary binary tree and multi-dimensional meshes into 
a supercube with faulty nodes. 
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