
Energy-Efficient Mechanisms for Coverage Recovery in WSNs
Chih-Yung Chang, Sheng-Wen Chang, Ming-Hsien Li, and Yu-Chieh Chen

Dept. Computer Science and Information Engineering
Tamkang University, Taipei, 251, Taiwan

E-mail: cychang@mail.tku.edu.tw, swchang@wireless.cs.tku.edu.tw, 695410505@s95.tku.edu.tw, ycchen@wireless.cs.tku.edu.tw,

Abstract—In wireless sensor networks(WSNs), coverage of the
monitoring area represents the quality of service (QoS) related to
the surveillance. In literature, a number of studies developed
robot deployment and patrol algorithms. However, the efficiency
of existing repair algorithms can be further improved in terms of
time and energy consumption. Moreover, existing repair
algorithms did not consider the existence of obstacles and the
constraint of limited energy of the robot. This paper presents
novel tracking mechanism and robot repairing algorithm for
maintaining the coverage quality for a given WSN. Without the
support of location information, the tracking mechanism leaves
the robot’s footmarks such that sensors that are nearby the
failure region can learn better routes for sending repairing
requests to the robot. Upon receiving several repairing request
messages, the robot applies the proposed repairing algorithm to
establish an optimal route that passes through all failure regions
with minimal overhead in terms of the required time and power
consumption. In addition, the proposed repairing algorithm also
considers the remaining energy of the robot so that the robot can
be back to home for recharging energy and overcome the
unpredicted obstacles. Performance study reveals that the
developed protocol can efficiently maintain the coverage quality
while the required time and energy consumption are
significantly reduced.
Keywords—Deployment, Coverage Quality, Repair, Robot.

I. INTRODUCTION
Wireless Sensor Networks are composed of many sensor

nodes embedded with simple process, fewer memory, tiny
sensing material, and energy-limited battery. The accuracy of
sensing information depends on the coverage quality in the
monitoring region. In literature, previous works [1][2][4] use
robot to deploy sensors in a dangerous region that is unsuitable
for human deployment. Some researches [1][2][3][4] exploit
the robot to execute important tasks such as sensor deployment,
patrol, or hole repair. In [1], the robot deploys the sensors
according to the predefined direction priority of south, west,
north, and east. Each sensor counts the time interval that the
robot does not visit for each direction. The deployed sensors
may guide the robot’s movement by suggesting a suitable
direction with maximal time interval to the robot. However,
the approach can not guarantee full coverage and may cause
too much sensing redundancy if the robot encounters obstacles.
Furthermore, the developed robot movement policy did not
take into account the energy constraint of the robot.

Some other research [4] proposes an obstacle-free robot
deployment mechanism that deploys the monitoring region
with near-minimal number of sensors and likely achieves the
full coverage purpose. As shown in Figs. 1 and 2, the proposed
deployment algorithm deploys minimal number of sensors in
the environments with and without obstacles, respectively.
However, since sensor nodes are battery powered and
deployed in the outdoor environment, they might be failure
due to energy exhaustion or environmental influence, and
hence result in the WSN coverage-loss. In [4], no algorithm is
for the robot to cope with the network maintaining problem.

X

Y
Figure 1. The snake-like movement
deployment proposed in [4].

Figure 2. The OFRD deployment
algorithm [4] overcomes the different
shapes of obstacles.

Previous research [1] proposed a patrol algorithm that is
able to cope with the network-maintaining task. It assumes that
the robot equips with a compass and is able to detect an
obstacle. To guide the robot’s movement, each deployed
sensor maintains the time interval that the robot does not visit
for each direction of south, east, north, and west. When the
robot intends to make a decision of movement direction, it
communicates with the closest deployed sensor, and then
moves toward the direction that has the largest value of time
interval maintained in that sensor. Although the coverage
quality can be maintained by the robot, however, the
occurrence of failure sensors might not be related to the time
interval. For example, frequent events occurred at a region
might cause the sensors of that region energy exhaustion. As a
result, the failure region should passively wait for the robot’s
visiting. In addition, the robot did not leave the trajectory on
the deployed sensors and hence those sensors that are nearby
the failure regions are unable to send the repairing request to
the robot. Consequently, the robot might visit the failure
regions after a long period of time. The patrolling mechanism
proposed in [1] also employs a Home algorithm that enables
the robot going home for the energy recharge. However, the
remaining energy of the robot and the existence of obstacles
are not taken into consideration. Consequently, the robot might
exhaust its energy during the execution of repairing task.

In proportion to the abovementioned drawbacks, we seek to
propose novel tracking mechanism and robot repairing
algorithm. With the extension of the existing robot deployment
algorithm [4], the tracking mechanism is proposed to enable
the robot leaving the trajectory information on each deployed
sensor. According to this information, sensors nearby the
failure region can learn a better path to efficiently notify the
robot for repairing. Then the robot repairing algorithm
constructs a power-conservation repairing path after the robot
collecting the request notifications during a predefined period
of time. The proposed repairing algorithm considers the
existence of unpredicted obstacles and the constraint in robot’s
remaining energy. As a result, the proposed repairing
algorithm efficiently takes minimal time and consumes
minimal energy to recover the failure regions.

II. TRACKING MECHANISM
This paper considers a single robot that carries limited static

sensor nodes and is embedded with a compass through which
the robot is aware of its moving direction. We assume that a

978-1-4244-2202-9/08/$25.00 © 2008 IEEE 761

number of sensors have been deployed in the monitoring
region by applying the obstacle-free robot deployment
mechanism proposed in [4].

A deployed WSN might be coverage-loss due to the failure
of sensors in some region. Let the sensors that are nearby the
failure region be request initiators which are responsible for
sending the repairing requests to the robot. Since the robot
moves for executing the repairing task, its location is not
known by sensors. Therefore, a tracking mechanism is
essential for those sensors that are nearby the failure region to
track where the robot is and send the repairing requests to the
robot. This section proposes the tracking mechanism which
enhances the deployment algorithm OFRD [4] and aims at
helping all sensors learn better routes to deliver messages from
themselves to the robot. The basic idea behind the proposed
tracking mechanism is that the robot leaves footmarks on the
deployed sensors when it executes the deployment task. Two
types of footmarks are set up on each deployed sensor by the
robot. The first type of the footmark is a two-dimensional
coordinates which are constructed during the execution of
network deployment task. This type of footmark aims to create
a coordinate system which represents the physical location of
the monitoring region. A virtual two-dimensional coordinate
system will be established by the robot which gives each
sensor node a unique Virtual Coordinates (or VC in short).
According to the VC of each failure region, the robot can
move to the location for executing repairing task. Since the
robot is aware of its moving direction, the coordinates of the
first deployed sensor node are given by (0, 0) and the x-axis
and y-axis of the deployed sensor will be increased by one
when the robot moves and deploys a sensor in right and down
directions, respectively. Figure 3 shows the VC of the
deployed sensors based on the snake-like deployment
algorithm proposed in [4].

Figure 3. The robot leaves a footmark on each sensor. It assigns each
deployed sensor with coordinates and thus the VC system of the WSN is
constructed.

In addition to the VC, each sensor should additionally
maintain the second type of footmark, called Counter Value,
which provides tracking information and helps itself learn a
better route to the robot. The counter value is represented as
<Broadcast ID, Hops> where the Broadcast ID maintains the
number of broadcasts received by this sensor and the Hops
maintains the number of hops between the sensor and robot.
The initial value of the Broadcast ID is zero. Whenever the
robot deploys a sensor during the execution of the network
deployment task, the value of Hops of the deployed sensor is
increased by one. Furthermore, when the robot completes the
deployment task and moves around the monitoring region, it
should update the counter value of the visited sensor by
increasing the Hops value by one. As a result, in case that the
Broadcast ID is zero, a sensor with a larger Hops value
represents the robot is closer to that sensor node. Each sensor
should maintain its Counter Values and the neighboring
sensor with the largest Counter Value.

Each request initiator which detects the failure neighboring
sensor will utilize the Counter Value to trace the current robot

location and send the repairing request to the robot. The
repairing request packet consists of the VC of the failure
sensor and the ID of neighbor sensor node which has the
largest Counter Value. Upon receiving the repairing request
packet, the node with the ID defined in repairing packet will
be responsible for forwarding the packet. It simply forwards
the request packet to the neighbor that has the largest Counter
Value. Since a sensor closer to the robot maintains a larger
Hops value, the request packet will be delivered to the robot
step by step. The robot will wait for a predefined constant
time period to receive several request packets transmitted by
different request initiators. Then the robot applies the
proposed repairing algorithm to construct a repairing path that
passes through all failure regions and repairs the failure
regions along the constructed path.

A

B

Learned path
Robot trajectory path

d1

a d0

d2

d3

d4 d5

Figure 4. The route constructed according to the
trajectory path (solid path) of the robot is rugged
and inefficient. The proposed X-correction
mechanism enables the robot learns a better
route (dotted path) from itself to the robot.

Figure 5. The basic
concept of X-correction
mechanism.

2.1 X-correction Mechanism
Although the Counter Value can be used by all sensors to

trace the location of the robot, however, the tracking path may
be rugged and inefficient, as shown in Fig. 4. To help the
request initiators learn a better route, an X-correction
mechanism is proposed herein. After the robot completes the
deployment task, it will periodically transmit the X-correction
packet to adjust the Counter Value. Although the flooding
mechanism is the simplest way to enable all sensors to
maintain the up-to-date location of the robot, however, it raises
significant control overheads. The proposed X-correction
mechanism corrects the Counter Value along two cross-paths
and hence significantly reduces the control overhead. The
control packet broadcasted in the X-correction mechanism is
called X-correction packet which aims to reduce the inefficient
and rugged tracking path and raise fewer control overhead. Let
k be a predefined constant threshold. The robot will transmit
an X-correction packet to update the Counter Value when it
moves every k steps. Since each sensor node has six neighbors,
the robot will select four directions to broadcast the X-
correction packet and hence the packet will be forwarded
along X-shape paths. According to snake-like deployment
proposed in [4], each deployed sensor has six neighboring
sensors that are located in six different directions di, for all
0≤i≤6. Here, we assume that the robot moves along straight
line. Therefore, when a robot intends to move to a static sensor,
say a, it will be close to sensor a along direction di and then
leave sensor a along direction d(i+3)mod 6. The basic concept of
the X-correction mechanism is that the robot broadcasts the X-
correction packet along the four directions other than the
current entering and leaving directions di and d(i+3)mod 6. Figure
5 depicts the basic concept of the X-correction mechanism.
The robot is close to and leave sensor a along directions d1 and
d4, respectively. The broadcasted X-correction packet will be

762

transmitted along directions d0, d2, d3, and d5. As a result, the
trajectory of the X-correction packet is like an X-shape.

As shown Fig. 6, the X-correction packet consists of four
fields, including the current location (expressed by VC) of the
robot, Broadcast ID, Hops, and the moving direction. The
Broadcast ID represents the version of the X-correction packet
transmitted by the robot. The value of version is initialized by
zero and will be automatically increased by one whenever the
robot broadcasts an X-correction packet. The value of Hops is
initialized by k-1. Upon receiving the X-correction packet, a
forwarding sensor that applies the X-transmission Rule and
determines to rebroadcast the packet will replace its own
Broadcast ID and Hops values according to the corresponding
fields in the X-correction packet. Then the forwarding sensor
decreases the value of Hops in the X-correction packet and
subsequently rebroadcasts the revised packet.

<x, y>：Counter value (x, y)：VCL

Robot Location Moving Direction Hops Broadcast ID X-correction
Packet Format Robot Location Moving Direction Hops Broadcast ID X-correction
Packet Format

Figure 6. The X-correction packet format.

The following presents how each sensor that receives an X-
correction packet implements the X-correction mechanism. Let
the robot be nearby the sensor A whose VC value and counter
value are (s, t) and (0, k), respectively. The robot broadcasts an
X-correction packet. Upon receiving the X-correction packet,
any sensor s with VC=(x, y) will make decision whether or not
the packet should be forwarded. We classify the moving
directions of the robot into three cases to discuss which sensors
should rebroadcast the received X-correction packet. In case
that sensor s should broadcast the packet, it updates its own
counter value and the value of Hops field of the packet and
then rebroadcasts the updated packet. The following presents
the X-correction mechanism.

Let the robot broadcasts an X-correction packet near by the sensor A
whose VC value and counter value are (s, t) and (0, k), respectively.
Let node s receive X-correction packet = ((s, t), B ID, Hops, d)
Case d of

do,d3：if |x-s| = = |y-t| then flag = true
d1,d4：if (x-s = = -(y-t) or y = = t) then flag = true
d2,d5：if (x-s = = y-t or y = = t) then flag = true

If (flag = true)
{

replace VC of nodes with (B ID, Hops)
update X-correction packet : Hop = Hop – 1
transmit the packet

}

X-correction Mechanism

Figure 7 gives an example to illustrate the proposed X-
correction mechanism. As shown in Fig. 7(a), each deployed
sensor maintains its original VC and counter values which are
set up during the network deployment phase. For example, the
VC value and counter value of sensor a are (9, 3) and (0, 63),
respectively. We assume that that the robot moves close to
sensor a from the direction d1 and transmits an X-correction
packet at that location. The X-correction packet contains
location=(9, 3), Broadcast ID=1, Hops=62 and Directions=d1.
Upon receiving the packet, the neighboring sensor d does
nothing since it applies the X-correction mechanism and
results flag=false. On the other hand, the sensor b plays a
forwarder and replaces its counter value with (1, 62). Then
sensor b updates the value of Hops in X-correction packet by
61 and rebroadcasts the packet. Upon receiving the packet,

sensor c replaces its counter value with (1, 61). Figure 7(b)
depicts the resultant counter values of all sensors.

a

<0,11> <0,10> <0,9>

<0,20> <0,21><0,18> <0,19>

<0,63> <0,24> <0,23><0,29> <0,30>

<0,62> <0,61><0,32>

<0,38> <0,37><0,39>

<0,41>

(9,3)(7,3) (11,3)

(8,2) (10,2)

(8,4) (10,4)

(9,1)(7,1) (11,1)

(12,2)(6,2)

(5,3) (13,3)

(6,4) (12,4)

(7,5) (9,5) (11,5)

a

<0,11> <0,10> <1,61>

<1,62> <0,21><0,18> <0,19>

<1,63> <1,62> <1,61><1,61> <1,62>

<0,62> <0,61><1,62>

<0,38> <0,37><1,61>

<0,41>

(9,3)(7,3) (11,3)

(8,2) (10,2)

(8,4) (10,4)

(9,1)(7,1) (11,1)

(12,2)(6,2)

(5,3) (13,3)

(6,4) (12,4)

(7,5) (9,5) (11,5)

(a) (b)
Figure 7. An example for illustrating the X-correction mechanism. (a) The
original VC value and counter value maintained by each deployed sensor. The
robot broadcasts an X-correction packet at location (9, 3). (b) Sensors apply
the X-transmission Rule and update their own counter values.

：failure sensor

a

p

<0,0> <0,1> <0,2> <0,3> <0,4> <0,5> <0,6> <0,7>

<0,12> <0,11> <0,10> <0,9> <0,8><0,14> <0,13>

<0,15> <0,16> <0,20> <0,21> <0,22><0,18> <0,19>

<0,63> <0,24> <0,23><0,29> <0,30>

<0,31>

<0,62> <0,61> <0,35><0,32>

<0,38> <0,37> <0,60><0,39>

<0,41><0,44>

<0,42><0,45><0,51>

<0,47>

<0,48>
<0,49>

<0,50>

<0,52> <0,53> <0,54> <0,57> <0,58> <0,59><0,55> <0,56>

<x,y>：Counter value

<0,28>

<0,17>

(a)

a

<0,0> <0,1> <0,2> <0,3> <0,4> <0,5> <1,60> <0,7>

<0,12> <0,11> <0,10> <1,61> <0,8><0,14> <0,13>

<0,15> <0,16> <0,17> <1,62> <0,21> <0,22><0,18> <0,19>

<1,63> <1,62> <1,61><1,61> <1,62>

<0,31>

<0,62> <0,61> <0,35><1,62>

<0,38> <0,37> <0,60><1,61>

<0,41><0,44>

<0,42><0,45><0,51>

<0,47>

<0,48>
<0,49>

<0,50>

<0,52> <0,53> <0,54> <0,57> <0,58> <0,59><1,60> <0,56>

p

：failure sensor<x,y>：Counter value

b

c

d

<1,60>

(b)
Figure 8. An example that illustrates the benefit obtained by applying the X-
correction mechanism. (a) Without applying the X-correction mechanism,
the RR packet is forwarded to the robot along the trajectory of the robot,
which is rugged and inefficient path. (b) Applying the X-correction
mechanism to adjust the Counter Value of sensors, the RR packet is
delivered to the robot along an efficient route.

2.2 Tracking the Robot
In the previous subsection, an X-correction mechanism has

been presented to update the counter values of all sensors
located on the X-shape lines. This subsection introduces how
request initiators learn better routes for sending the repairing
request message to the robot.

To maintain the coverage quality, whenever a sensor detects
the absence of its neighboring sensor, it plays the request
initiator and intends to request the robot, asking for executing
the redeployment task. The request initiator will initiate a
repairing request packet or RR packet in short. The RR packet
contains the location of failure sensor in a format of VC. To
deliver the RR packet to the robot along a better route, the
request initiator forwards the RR packet to the neighboring
sensor that has the largest counter value. Upon receiving the
RR packet, the forwarder simply forwards the packet to the
neighbor that has the largest counter value. We notice that the
WSN applied the X-correction mechanism has the

763

characteristic that the robot is always located at the sensor with
largest counter value. Consequently, the RR packet can be
delivered to the robot along a better route.

Figure 8 shows an example that illustrates how a request
initiator learns a better route after the X-correction mechanism
has been applied on the WSN. In Fig. 8(a), the trajectory of the
robot’s movement is represented by the dotted line and the
robot broadcasts an X-correction packet nearby the sensor a.
We assume that sensor p detects the absence of its neighbor
and plays the role of request initiator. In Fig. 8(a), the solid
line denotes the route traversed by the RR packet in case that
the X-correction mechanism is not applied to the WSN. The
RR packet will be delivered to the robot by the forwarders that
have the largest counter value. In fact, the packet is forwarded
along the robot’s trajectory. As a result, the length of route
traversed by the RR packet is 11. However, by applying the
proposed X-correction mechanism in Figure 8(b), sensors b, c,
and d have updated their counter values. Therefore, sensor d
will forward the received RR packet to sensor c. Similarly,
sensor c subsequently forwards the RR packet to sensor b. As a
result, the length of route traversed by RR packet is 7. In
comparison, applying the X-correction mechanism saves 4
hops of route for delivering the RR packet to the robot.

III. POWER-CONSERVATION REPAIR MECHANISM
Upon collecting several repairing request packets from

different request initiators during a predefined time period, the
robot executes the redeployment task for repairing the failure
regions so that the monitoring quality can be maintained.
According to the virtual cooperates of the failure regions, a
repairing algorithm is proposed herein for the robot to
construct an efficient route that passes through all failure
regions and takes the obstacles and going home for energy
supply into consideration. The details of the designed repairing
algorithm executed in non-obstacle and obstacle environments
are presented in the following two subsections.

3.1 No obstacle environment
In the non-obstacle environment, the robot receives

repairing request packets and knows the distance from it’s
location to each failure region and the Home. A repairing
algorithm that applies dynamic programming scheme is
employed herein for the robot to construct the shortest
movement path. Figure 9 shows the algorithm. Lines 1-19 are
the operations that enable the robot to construct the shortest
movement path. If the robot has enough energy to pass through
all failure regions, it will repair the failure regions along the
constructed path. As shown in Fig. 10, the shortest repairing
path that passes through failure regions A, B, C, D and E is
constructed and is denoted by the solid line. In case that the
remaining energy of the robot is not enough to pass through all
failure regions, the home location should be visited before the
robot exhausts its energy. One simple method is to insert the
home location at the constructed shortest path. However, the
resultant path might be inefficient since the home location
might be far away the failure regions visited before and after
the home location. For example, inserting the home location
between failure regions B and D, the resulting path is
C→A→B→Home→D→E, as shown in Fig. 11(a), which
results in the inefficient segments B→Home and Home→D.
Lines 20-33 in Fig. 9 cope with the energy exhaustion problem
and construct an optimal path that prevent the robot from
energy exhaustion. Applying the proposed repairing algorithm,
an optimal movement path A→Home→B→D→E→C is
constructed, as shown in Fig. 11(b).

Void travel (int n, const number W[], minlength, Energy(R))
{

1 /* n: the number of nodes (including Home)
2 W[] : adjacency matrix
3 R: the location of Robot
4 V: set of all the nodes (including Home and R)
5 U=all subsets of V which includes Home
6 D[vi][A]＝length of a shortest path from vi to v1

passing through each vertex in A exactly once
7 Energy(R): the energy of Robot at R
8 */
9 index i, j, k
10 number D[1..n][subset of V-{R}]
11 for (i=2;i<=n,i++)
12 D[i][φ]=W[i][1]
13 for (k=1;k<=n-1;k++)
14 for (all subset A ⊆ V-{R} containing k vertices)
15 for (i such that i≠R and vi is not in A)
16 {
17 D[i][A]=minimum(W[i][j]+D[j][A-{vj}])

j:Vj∈A
18 }
19 minlength=minimum(D[j][V-R-Home])

j∈A,j≠R
20 if (Energy(R) <= minlength
21 {
22 minlength=minimum(D[j][V-R])
23 if (Energy(R) <= minlength
24 {
25 for (k= n-1;k>=1;k--)
26 for (all subset A ⊆ U-{R} containing k-1 vertices)
27 if (Energy(R) >= minlength
28 {
29 minlength=minimum(D[j][V-R])
30 break
31 }
32 }
33 }

}

Path Construction Algorithm_Without Obstacle

)

)

)

Void travel (int n, const number W[], minlength, Energy(R))
{

1 /* n: the number of nodes (including Home)
2 W[] : adjacency matrix
3 R: the location of Robot
4 V: set of all the nodes (including Home and R)
5 U=all subsets of V which includes Home
6 D[vi][A]＝length of a shortest path from vi to v1

passing through each vertex in A exactly once
7 Energy(R): the energy of Robot at R
8 */
9 index i, j, k
10 number D[1..n][subset of V-{R}]
11 for (i=2;i<=n,i++)
12 D[i][φ]=W[i][1]
13 for (k=1;k<=n-1;k++)
14 for (all subset A ⊆ V-{R} containing k vertices)
15 for (i such that i≠R and vi is not in A)
16 {
17 D[i][A]=minimum(W[i][j]+D[j][A-{vj}])

j:Vj∈A
18 }
19 minlength=minimum(D[j][V-R-Home])

j∈A,j≠R
20 if (Energy(R) <= minlength
21 {
22 minlength=minimum(D[j][V-R])
23 if (Energy(R) <= minlength
24 {
25 for (k= n-1;k>=1;k--)
26 for (all subset A ⊆ U-{R} containing k-1 vertices)
27 if (Energy(R) >= minlength
28 {
29 minlength=minimum(D[j][V-R])
30 break
31 }
32 }
33 }

}

Path Construction Algorithm_Without Obstacle

)

)

)

Figure 9. Robot Repairing algorithm that considers the remaining energy of the
robot but does not considers the existence of obstacles.

A

D

C

B

E

0A

D

C

B

E

0A

D

C

B

E

0

Figure 10. The comparison of the constructed paths by applying the greedy
algorithm and the proposed repairing algorithm. The proposed repairing
algorithm constructs a shortest path marked by the solid line.

A

D

C

B

E

Home

A

D

C

B

E

Home

A

D

C

B
E

Home

A

D

C

B
E

Home

(a) (b)
Figure 11. The challenge of developing a repairing algorithm in considering
the remaining energy. The developed repairing algorithm constructs a route
that prevents the robot from energy exhaustion. (a) Inserting home location in
a shortest route is not a feasible solution to prevent robot from energy
exhaustion. (b) The repairing algorithm takes into consideration the remaining
energy of robot. The robot can timely recharge the energy before the energy is
exhausted.

3.2 Obstacle environment
During the execution of deployment task [4], the robot can

detect the obstacles. However, the robot is not aware the
obstacles’ locations and shapes. This subsection presents the
path construction algorithm in considering the obstacle

764

environment. The challenge of path construction is that the
robot can not estimate the distance between any two failure
regions since there might exist obstacle between them.
Moreover, an improper estimation of distance might lead to the
energy exhaustion of the robot. Figure 12 proposes a path
construction algorithm that considers the existence of obstacles.
Firstly, an optimal path is constructed by applying the
algorithm designed for the non-obstacle environment.
However, the distance between any two failure regions might
be incorrect because of the existence of obstacle. To prevent
the robot from energy exhaustion, the robot should try to
estimate the distance of the two successive failure regions
scheduled on the constructed route. To accomplish this, the
robot initiates a probe packet before its movement, aiming at
to estimate the distance of the route for avoiding the energy
exhaustion problem. The probe packet will be transmitted
along the constructed path and pass through all failure regions.
When the probe packet arrives each request initiator, it collects
information including the number of hops from the previous
request initiator to the current initiator and the distance from
the current initiator to the home location. Regarding the
distance from the Home’s location to the request initiator, it
can be simply known by flooding another packet from home
location over the WSN. As soon as the probe packet returns to
the robot, it analyzes the collected distance information and
determines the actual route according to the remaining energy.
Figure 12 depicts the algorithm of probe packet transmission.
If the remaining energy of the robot can only reach failure
region vi, the robot goes back Home for recharging and the
segment vi→Home will be inserted in the constructed path.

Input：repair path(v0 ,v1,v2,…,vn-1) , v0=location of robot

1 if(obstacle_flag = true)
2 {
3 transmit a probe packet to simulate the repair path
4 simulate_energy = Energy(R)
5 i=0
6 for(i=0 ; temp < 0 ; i++)
7 {
8 simulate_energy = simulate_energy－energy of vi to vi+1
9 temp = simulate_energy－energy of vi+1 to Home
10 }
11 insert Home behind vi
12 repair path = v0,v1,…,vi, Home,vi+1,…,vn-1
13 }

Obstacle-Free Path Construction Algorithm

Figure 12. Algorithm of constructing a repairing path by initiating a probe
packet along the previously constructed optimal path for handling the obstacle
problem.

IV. PERFORMANCE STUDY
This section examines the performance study of the

developed tracking and repairing mechanisms. The proposed
tracking and robot repairing algorithm, called TRR in short, is
compared with previous work in [1] which is referred to CED.
Table I lists the parameters values which refer to the typical
parameters in Berkeley motes.

The robot is assumed to be equipped with a compass and a
constant number of Berkeley motes. The total energy and the
speed of the robot are 64800J and 3m/s, respectively. The
mobility cost is set by 8.267J/m which refers to previous
work[5]. The experimental environment is described in below.
The network size is 400*400m2. The home is located at the
left-top corner of the monitoring region and the start location

of the robot is home location. Each simulation result is
obtained from the average of 10 independent runs.

Table I：Simulation parameters

324J/hr
32400J (100hr)
0.025J/s
Value

Maximum energy
consumption in motes

Total initial energy
Idle cost
Parameter

0.030J/sPacket reception cost
0.075J/sPacket transmission cost
20mSensing range
40mCommunication range
ValueParameter

324J/hr
32400J (100hr)
0.025J/s
Value

Maximum energy
consumption in motes

Total initial energy
Idle cost
Parameter

0.030J/sPacket reception cost
0.075J/sPacket transmission cost
20mSensing range
40mCommunication range
ValueParameter

The request initiator which is nearby the failure sensor will
send a repairing request to the robot. Upon receiving the
request message, the robot will perform the proposed repairing
algorithm to construct a repairing path if it collects at least 5
different repair request messages in 10 minutes. In case that
the robot collects fewer than 5 failure messages for 20 minutes,
the robot also executes the repairing mechanism in order to
prevent the request initiator from waiting for a long time.

To evaluate the benefit obtained from the proposed X-
correction, two straightforward mechanisms including
Flooding-correction mechanism and Line-correction
mechanism are compared with the proposed X-correction
mechanism in terms of the control packet overhead and the
length of tracking path. In the flooding mechanism, the robot
floods a correction packet over the entire WSN and all sensor
nodes update their counter values according to the correction
packet. In the line-correction mechanism, the y-axis of the
robot’s location is considered to be the path traversed by the
correction packet. Nodes that lie on the y-axis will correct their
counter value according to the correction packet.

We assume that the robot broadcasts the correction packet
for every movement of 400m. The failure nodes are randomly
selected and 5 failure nodes will be generated every 10
minutes. As shown in Fig. 13, line-correction and flooding
mechanisms have smallest and largest control overheads,
respectively. The control packet overhead of X-correction
mechanism is approximately 2.5 times of the line-correction
mechanism while the control overhead of flooding mechanism
is about 37 times of X-correction mechanism. In other words,
the control overheads of the line-correction and X-correction
are similar and they are significantly smaller than that of the
flooding mechanism.

Figure 13. The control overhead of three mechanisms for correcting the
counter values.

In order to evaluate the impact of applying the three
correction mechanisms on the tracking length, the average
length of tracking path is calculated and compared. Figure 14
examines the average distance between sensor nodes and robot.
The repairing request packet sent by any sensor node can
always reach the robot by traveling the shortest path by
applying the flooding-correction mechanism. Although the
length of tracking path by applying the X-correction
mechanism is not as short as the one created by applying the

765

flooding mechanism, however, the X-correction mechanism
efficiently reduces the average length and keeps the path
length smaller than 520m. As a result, the average path lengths
by applying X-correction and Line-correction mechanisms are
280m and 372m, respectively. We evaluate which mechanism
is the most cost-effective by using a correction efficient index
which is defined by the reduced routing path divided by the
number of correction packets. As shown in Fig. 14, the
correction efficient indexes of X-correction and Line-
correction are 17.26 and 15.75, respectively. Thus, the X-
correction mechanism outperforms the Line-correction and
flooding mechanisms in terms of the correction efficient index.

Figure 14. The average length of tracking path from request initiators to the
robot by applying the three correction mechanisms.

The threshold of robot movement distance that initiates the
X-correction mechanism is ranging from 200m to 500m. As
shown in Fig. 15, the value of threshold set by 200m and 300m
can significantly reduce the average length of tracking path.
When the threshold values are 400m and 500m, the
improvement of path length is not significant. Therefore, the
X-correction mechanism will use 400m as the threshold value
in the repairing task to compare with the CED mechanism [1].

Figure 15. The average length of tracking path by varying the threshold
value of movement distance.

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80
Time (min)

R
ep

ai
r E

ff
ic

ie
nc

y
(J

/s
en

so
r)

TRR
CED

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80
Time (min)

R
ep

ai
r E

ff
ic

ie
nc

y
(J

/s
en

so
r)

TRR
CED

Figure 16. Comparison of TRR and CED in terms of the repairing efficiency.

TRR additionally reduces the energy consumption of the
robot. When the robot receives multiple repairing request
messages, it constructs a shortest route that passes through all
failure regions. Let repairing efficiency be measured by the
average energy consumption required for robot to repair a

failure region. Since the robot moves along the shortest route,
the TRR saves robot’s energy and has a better repairing
efficiency than CED, as shown in Fig. 16.

Finally, we compare the TRR and CED in terms of the
coverage ratio. The proposed TRR enables request initiators
actively notify the robot to repair the failure region, resulting
the failure region can be rapidly redeployment within 10
minutes. Therefore, TRR maintains 98% of coverage radio.
However, CED passively waits the robot to repair the failure
region, and hence some existing holes can not be repaired in
time. As shown in Fig. 17, TRR has a better coverage ratio
than CED.

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80
Time (min)

C
ov

er
ag

e
R

at
io

TRR
CED

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80
Time (min)

C
ov

er
ag

e
R

at
io

TRR
CED

Figure 17. Comparison of TRR and CED in terms of coverage ratio.

V. CONCLUSIONS
This paper proposes a tracking mechanism and a robot

repairing mechanism for maintaining coverage quality of a
given WSN. With the extension of the existing robot
deployment algorithm [4], the robot leaves virtual coordinates
and counter value on each deployed sensor as a footmark for
tracking the robot. After the robot completes its deployment
task, it moves for handling the event and repairing the failure
regions. Since the robot changes its location, an X-correction
mechanism is proposed for the robot to update the counter
values of some sensors in a cost-effective manner.
Consequently, the request initiator learns a better route to
notify robot for repairing. Upon receiving the location of
failure regions from different request initiators, the robot
dynamically constructs a shortest route that passes through
each failure region for executing the redeployment task so that
the coverage quality of the given WSN can be maintained. The
route construction also takes obstacle and constraint of robot’s
remaining energy into consideration. Performance results
reveal that the proposed tracking and repairing algorithms
outperform existing mechanism in terms of repair efficiency
and coverage ratio.

REFERENCES
[1] M. A. Batalin and G. S. Sukhatme, “Efficient Exploration without

Localization,” Intl. Conference on Robotics and Automation (ICRA), pp.
2714–2719, Taipei, Tanwan, May 2003.

[2] M. A. Batalin and G. S. Sukhatme, “Coverage, Exploration and
Deployment by a Mobile Robot and Communication Network,”
Proceedings of the International Workshop on Information Processing
in Sensor Networks, pp. 376-391, Palo Alto Research Center (PARC),
Palo Alto, Apr 2003.

[3] Y. Zou and K. Chakrabarty, “Sensor Deployment and Target
Localization in Distributed Sensor Networks,” ACM Transations on
Embedded Computing Systems, vol. 3, pp.61-91, 2004.

[4] C. Y. Chang, H. R. Chang, C. C. Hsieh and C. T. Chang, "OFRD:
Obstacle-Free Robot Deployment Algorithms for Wireless Sensor
Networks," IEEE WCNC, Hongkong, March 2007.

[5] S. Ganeriwal, A. Kansal and M. B. Srivastava, “Self Aware Actuation
for Fault Repair in Sensor Neworks,” IEEE International Conference on
Robotics and Automation (ICRA), Apirl 2004.

766

