
Design of Dynamically Assignmentable TAM Width
for Testing Core-Based SOCs

Jiann-Chyi Rau
Department ofElectrical Engineering, Tamkang

University
151, Ying-Chuan Rd. Tamsui, Taipei Hsien 251, Taiwan,

R.O.C
jcraugee.tku.edu.tw

Abstract Test access mechanism (TAM) and testing schedule
for System-On-Chip (SOC) are challenging problems. Testing
schedule must be effective to minimize testing time, under the
constraint of test resources. This paper we presents a new method
based on genealized rectangle packing, as two-dimensional
packing . A core cuts into many pieces and utilize the design of
reconfigurable core wrappers, and is dynamic to change the
width of the TAM executing the core test. Therefore, a core can
utilize different TAM width to complete test.

Keywords SOC Testing, TAM, Testing Scheduling

I. INTRODUCTION

The chip of nowadays is more and more complex. Chips
often include a lot of systems; we call System-On-Chip (SOC).
Therefore, how to testing SOC is very important problem. For
testing a SOC, we need to build a test wrapper for each core,
internal scan registers within each core, and a test access
mechanism (TAM) [6]. The test wrapper is comprised of a
standard cell at each core input and output that enables
isolation of the core from the SOC for testing independently.
The core providers design the internal scan registers for the
necessary Design-For-Testablity (DFT). The TAM is a
mechanism to transport test data (test patterns as well as
responses). The test control signals between SOC pins and core
I/0 and internal scan chains. A SOC requires above-mentioned
element just accomplish the testing, and an efficiency of testing
depend on the test application time. The scan-based testing
methodology needs high-test application time. Because scan
requires test data to be shifted in and out by one or more scan
chains. The recent approaches to minimize test application time
include [7], [8], and [9].

Our idea is based on a reconfigurable core wrappers [1] and
rectangle packing [2]. We improve the configuration of
reconfigurable core wrappers in the hardware. In Our
algorithm, we use the method of [2] to get the initial
information.

This paper is organized as follows. In Section 2 we
introduce the reconfigurable core wrappers and propose the
improvement configuration. The general rectangle-packing
problem introduce in Section 3. Simultaneously, in Section 3
we illustrate our idea and an algorithm. In Section 4 are the
experimental results and Section 5 is conclusion.

Chien-Shiun Chen, and Po-Han Wu
Department ofElectrical Engineering, Tamkang

University
151, Ying-Chuan Rd. Tamsui, Taipei Hsien 251, Taiwan,

R.O.C
{cschen, phwugee.tku.edu.tw}

II. THE RECONFIGURABLE CORE WRAPPERS

SI e- - --~SO

core

Figure 1. The Reconfigurable Core Wrappers Design

In [1] Koranne describes the design of reconfigurable core
wrappers. These kinds of wrappers enable dynamic change
width of the TAM to execute a core test. This manner is to put
multiplexers on the head of certain scan chain. The connection
of core internal scan chain will allow arbitrarily changing.
Therefore, we can utilize different test resource (the different
width of the TAM\) to test the core. An example of scan chain
configuration is shown in Figure 1. The core consists of three
internal scan chains of length 8, 4, and 3, respectively. A
multiplexer before the head of the L4 is controlled by the
control signal. Then the control signal is selected as a zero, the
TAM of 1 bit width which length equals 15. Then, the TAM of
width 2 bits which length equals 8 and 7, respectively. The
control signal is selected as a one.

Nowx, we propose an improvement configuration. We put
the multiplexer before the head and after the tail of all scan
chains. This method enables more easier to change the width of
the TAM. Why we use this configuration? Because we want to
utilize different TAM widths at the different time to execute a
core testing. Therefore, the current time changes to follow the
testing schedule, Then the TAM widths are going to change to
follow the current time. So, the core can use dissimilar test
resource to complete testing. An example is shown in Figure 2.

1399

1-4244-0387-1/06/$20.00 (@2006 IEEE

(b) TAM Width= 2

Figure 2. To add multiplexer before the head and after the tail of all scan
chains (a) TAM Width = 1, (b) TAM Width= 2, (c) TAM Width= 3

(a), (b), and (c). In Figure 2 (a), the basic configuration consists
of three internal scan chains of length 10, 6, 4, respectively. All
scan chains include two multiplexers that the one before the
head other after the tail. Then all multiplexers that control
signal are selected as a one, the TAM of lbit width which
length equals 20. In Figure 2 (b), the TAM of width 2 bits
which length equals 10, 10, respectively. The multiplexer
before the head and after the tail of L10 is selected as a zero.
This scan chain is the first independent TAM. The L6 and L4
are connected with a second TAM. The control signal before
the head of L6 is selected as a zero. The control signal after the
last of L6 is selected as a one and the control signal before the
head of L4 is selected as a one too. The control signal after the
tail of L4 is selected as a zero. In Figure 2 (c), TAM widths are
3 bits. All multiplexers are selected as a zero.

III. THE RECTANGLE PACKING PROBLEM AND TEST
SCHEDULING

To execute the testing schedule must find an initial
rectangle of the core before. The rectangle of the core includes
two parts. The one part represents the test resource (the number
of TAM widths). Other one represents the testing time under
the test resource. How to find the initial rectangle of a core?
We need to compute the optimal test resource for the core, and
to find the testing time under this optimal test resource. Then,
we can execute the testing schedule.

In the past, testing schedule which the partition of TAM
width is fixed. So, Testing schedule exist a lot of idle time.

An example is shown in Figure 3. There are three idle times
in the testing schedule. More idle times cause testing schedule
bed. Therefore, we propose a new testing schedule method. We
call stairway scheduling. This method considers that the core
cuts into many pieces and tests by different width of TAM.
This paper we assume that all cores in the SOC can test at the
same time. Then, we insert the core testing into the idle time.
Therefore, the core must change the TAM width that to satisfy

the idle time. Such the core testing can complete different
TAM width. An example is shown in Figure 4. When the Core
4 completes the testing and the TAM width cannot schedule
any core at the current time. The next scheduling of the core
(Core 3) will use the TAM width of Core 4. Then the current
time moves to the next time (the Core 1 end time) and the Core
3 testing use the TAM width (Core 4 + Core 1) at the current
time. These actions complete until the pattern of Core 3 to
finish shifting, and the Core 3 end it's testing.

Idle
ti neIt

Figure 3. The SOC testing schedule (In the past method)

Figure 4. The SOC testing schedule (Our method)

In Figure 5, we detail the algorithm that we have developed
to solve the problem of test scheduling. In our algorithm utilize
the method [2] to find the initial rectangle of a core, and to
assign the idle width of the TAM to the longest core at the

APCCAS 2006

(a) TAM Width= I (c) TAM Width = 3

1400

0 Scan Cha -in

I Leng1h = IO 1

current time. We elaborate on each step of the algorithm in the
following paragraphs.

Figure 5. Algorithm for solve the problem of test scheduling

A. The Structure ofthe core

We use two structures, which the one is core initial and the
other is core sedule to store the TAM width, the pattern
numbers, and testing time values, respectively. The Structure
for the core of the SOC is presented in Figure 6. This data
structure update with the begin times and the end times for
each core.

B. The Initial rectangle ofthe core

In Line 1, we use the method [2] to compute the collection
of the initial rectangles. The Line 3 set initial values ofw avail,
this_w, this-time, and next-time. (In this paper, Wmax is
chosen to be 64.)

C. A first movement ofscheduling the core

In Line 5 is a general action to schedule the core. The
w avail is not equal the Wmax and the TAM width of the
initial rectangle satisfy this w avail such we schedule this core.

D. Assigning the idle TAM width to cores

In Line 7, we use the method [2] to assign the remained
TAM width to the longest core at the current time (this time).
An example is shown in Figure 7. Therefore, the TAM width
(w avail) equals the total (Wmax) width at the current time
(this-time).

E. Using the action ofstairway schedule the core

In Line8, we set the this time to the next time and release
the TAM width at the current time (this_time). In Line 9, the
testing time Tic (widthc (i)) of the core compute under current
TAM width. In Line 10, Line 11, and Line 12, we will
calculate whether the testing time Tip (widthip (i)) not across
next_tme and compute the remnant pattern numbers. In Line
13, when the Width of the TAM equals the total TAM width
(Wmax), we will set next ttme infinite. We schedule the core

testing, when all patterns are finished to shift. In Line 15, the
testing time Tip (widthip (i)) not across next_tme, we schedule
this core testing.

Figure 6. The Structure ofthe core

Figure 7. Assigning remain TAM width

F. The idle time ofthe stairway scheduling
An ideal result of the stairway scheduling will not have

occurred the idle time. But Tip (widthip (i)) is not completely
to match the next time. A little idle time will exist in the
scheduling of the core testing. An example is shown in Figure
8 there are two idle times in the Core 3 testing. But idle times
are small. An experimental result proves the times of idle will
not affect the total time of testing.

APCCAS 2006

Procedure Soc schedule optimizer

1 Compute collection of core rectangles using a design of wrapper;
2 Initialize(C, d, p);
3 Set w avail Wn,,; this w = Wn,,; this time = 0; next time 0;
4 While C . 0 1
5 If w avail > OAND this w = Wmax t
6 If Core i E C can be found, such that

Width (i) < w avail AND Ti(width (i)) is maximum;
Schedule (i) = 1; 3

7 Else Core iE C can be found AND C } 0
In schedule structure, find a longest end time (i); AND
Assign remain w avail to this core;

8 Else {
Set this time= next time;
In schedule structure, find the end time (i) > this time AND

end time (i) is minimum;
Set next time end time (i)
Set w avail this time width AND this w = w avail;

9 Calculate TiL (width, (i)) under current w avail;
10 If Ti, (width, (i)) > next time I
11 While a Core pattern . 0
12 Calculate pattern numbers, such that

Tip (width j, (i)) will across next time
under current w avail;

Records remain pattern numbers;
Set this time= next time;
Set w avail this time width AND this w w avail;

13 If this time width= Wn,,
Set next tim -°;3

14 Else I
In schedule structure, find the end time (i) > this time
AND end time (i) is minimum;

Set next time end time (i)
Schedule (i) = 1;

15 Else I
Set next time this time + Ti, (width, (i));
Set w avail this time width AND this w = w avail;

Schedule (i) = 1; }}}
1 6 Return Schedule:

Structure core initail

1. num (i) /* the number of a core *
2. end time (i) /* the initial time of a core *
3. width (i) /* the initial width of a core */
4. remainp (i); /* the remain pattern numbers of a core *
5. Schedule (i)l* boolean indicates test for Core i has completed *

Structure core sedule

1. num (i) /* the number of a core *
2. this time (i) /* the scheduling begin time of a core *
3. end time (i) /* the scheduling finish time of a core *
4.Schedule (i) /* boolean indicates test for Core i has completed *

1401

Idle
tilTie

idle
1 time

Figure 8. The idle time ofthe stairway scheduling

IV. EXPERIMENTAL RESULTS

In this section, we show the experimental result in Table 1,
Table2, Table3, Table4, respectively. The algorithms were
implemented using C++ language. We used four SOCs from
the new set of ITC'02 SOC Test Benchmarks [5]: d695,
p22810, p34392, and p93791and compare our results with
three previously published approaches: (1) the Test Bus
Architecture optimization method base on ILP and exhaustive
enumeration in [4], (2) the rectangle packing co-optimization in
[2], (3) the wrapper/TAM co-optimization in [3]. We use the
TAM width 16, 24, 36, 48, 56, 64, to test every benchmark.
Experimental results show our method get the better results
than others method.

TABLE I. EXPERIMENTAL RESULTS FOR SOC D695

W LB ILP[4] Rect. Par eval[3] Our
____ ~~~~~pack. [2] _______method
16 41231 42568 44545 42644 43023
24 27487 28292 31569 30032 28878
32 20615 21566 23306 22268 22234
40 16492 17901 18837 18448 17848
48 13743 16975 16984 15300 15864
56 11780 13207 14974 12941 13722
64 10307 12941 11033 12941 12279

TABLE II. EXPERIMENTAL RESULTS FOR SOC P22810

W LB ILP[4] Rect. Par eval[3] Our
pack. [2] method

16 412538 462210 489192 468011 499625
24 275025 361571 330016 313607 373043
32 206269 312569 312662 246332 242292
40 165015 278359 278360 232049 212241
48 137512 278359 268474 232049 178297
56 117868 268472 266800 153990 138824
64 103134 260638 260638 153990 129609

TABLE III. EXPERIMENTAL RESULTS FOR SOC P34392

wLB ILP[4] Rect.
a vl3 Our

W LBl ILP[4 I pltpack. [2] Pareval[3] method
1 6 936881 998733 1053491 1033210 1051402

24 624587 720858 759427 882182 715732
32 544579 591027 544579 663193 544579
40 544579 544579 544579 544579 544579
48j 544579 544579 544579 544579 544579
56 544579 544579 544579 544579 544579
64 544579 544579 544579 544579 544579

TABLE IV. EXPERIMENTAL RESULTS FOR SOC P93791

W LB ILP[4] Rect. a vl3 Our
pack. [2] |ParevaL] method

16 1707095 1771720 1932331 1786200 1763635
24 1138063 1187990 1310841 1209420 1268411
32 853547 887751 988039 894342 871332
40 682838 698583 794027 741965 696894
48 569031 599373 669196 599373 603498
56 487741 514688 568436 514688 514141
64 426773 460328 517958 473997 464305

V. CONCLUSION

In this paper, we propose an idea of section a core to test.
The core can split to complete a testing, but in the hardware
requires adding extra cost. Therefore, an engineer must
consider how to find a balance at test application time and
hardware.

REFERENCES

[1] S. Koranne. "Design of Reconfigurable Core Wrappers for Embedded
Core Based SOC Test". In Proc. of ISQED, pages 106- 111, March
2002

[2] V. Iyengar, K. Chakrabarty, and E. J. Marinissen. "On using rectangle
packing for SOC wrappers/TAM co-optimization". In Proc. VLSI Test
Symp., 2002, pp. 253-258.

[3] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, "Efficient
Wrapper/TAM Co-Optimization for Large SOCs". In Proc. Design,
Automation, and Test in Europe (DATE), pages 491-498, March 2002.

[4] K. Chakrabarty, "Design of System-on-a-chip Test Access Architecture
Using Integer Linear Programming". In Proceedings IEEE VLSI Test
Symposium (VTS), 2001, pp 127-134.

[5] E.J. Marinissen, V. Iyengar and K. Chakrabarty, "A Set of Benchmarks
for Modular Testing of SOCs ". In Proceedings IEEE International Test
Conf (ITC), Baltimore, MD, Oct. 2002.

[6] Yervant Zorian, Erik J. Marinissen, and Sujit Dey, "Testing Embedded-
Core Based System Chips". In Proceedings IEEE International Test
Conference, pp 130-134, 1998.

[7] Vikram Iyegnar, Krishnendu Chakrabarty, and Erik Jan Marinissen,
"Test Wrapper and Test Access Mechanism Co-Optimization for
System-on-Chip". In Proceedings IEEE International Test Conference,
pp 1023-1032, 2001.

[8] Vikram Iyegnar, Krishnendu Chakrabarty, and Erik Jan Marinissen,
"Test Access Mechanism Optimization, Test Scheduling, and Tester
Data Volume Reduction for System-on-Chip". IEEE Transaction on
Computers, 52(12), pp. 1619-163 1, 2003.

[9] Chih-pin Su, and Cheng-wen Wu, "A Graph-Based Approach to Power-
Constrained SOC Test Scheduling". Journal of Electronic Testing:
Theory and Application 20, 45-60, 2004.

APCCAS 20061402

