Modeling and Control of Radial Force in Switched Reluctance Motor

Feng-ChiehLin  and

Sheng-Ming Yang

Department of Mechanical and Electro-mechanical Engineering
Tamkang University, Taiwan
e-mail: smyang@mail.tku.edu.tw

Abstract—-Unbalanced radial force acting on a rotor shaft is
undesirable because it causes motor vibrations. Yet, motor
vibrations can be reduced with intentionally produced shaft
radial force which cancels the existing unbalanced radial forces
due to a non-uniform air gap or external load. Due to its
special structure, the shaft radial force and torque of a
switched reluctance motor can be separately controlled when
all pole currents are controlled independently. However,
control of SRM radial force is rarely discussed in existing
literature. This paper presents a scheme that produces a
controlled radial force for a 12/8 pole SRM. In this scheme,
mutual inductances between stator poles are included in the
control model. The motor torque is controlled with the
conventional method, i.e. all poles in the conduction phase are
energized with the same current to produce the desired torque.
Two extra poles from the descending- inductance phase are
energized to produce the desired radial force. The
cross-coupling torque produced by the force producing poles is
compensated. The experimental results have verified that when
controlled with the proposed scheme, the SRM was able to
produce a controlled radial force when at standstill or running,
and subjected to a load torque.
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1. INTRODUCTION

Switched reluctance motors (SRM) develop torque
through an interaction between the electromagnetic
excitation from the stator poles and the rotor teeth. Once a
particular combination of phase currents is established and
maintained in the stator, the rotor teeth will be attracted into
alignment with the stator poles in a particular position. This
attraction force can be divided into tangential and radial
force components relative to the rotor. The tangential force
is converted into the rotational torque. The net radial force is
generally zero due to the geometrically balanced motor
structure. Unbalanced radial force acting on a rotor shaft is
undesirable because it causes motor vibrations. For instance,
in applications in which the external load is not balanced, or
when the rotor is not centered causing a non-uniform air gap,
shaft radial force exists [1-3]. For most motors, radial force
cannot be changed after the motor is assembled. This radial
force will be absorbed by the bearings and the load
connected to the rotor. Due to its special structure and the
way torque is produced, the SRM offers a unique
opportunity to control shaft radial force without disrupting
the normal rotational torque. It is possible to produce the
radial force required to cancel the forces due to non-uniform
air gap or external load, and consequently reduce motor
vibrations.

Several methods have been proposed to produce
controlled radial force for SRM. A radial force and torque
decoupling control scheme has been proposed for
‘self-bearing” control of a 12/8 pole SRM [4-7]. In the motor
each stator pole contains a main and an auxiliary winding.

The main winding is used to control the motor torque. The
auxiliary winding produces radial force for rotor levitation.
This controller has a complicated implementation because of
the required number of windings and computations. There
were a number of reports that discussed using sinusoidal
current waveforms to control SRM. For example, the vector
control scheme commonly used in the ac motor drives was
adopted to control a three-phase SRM [8-9]. However, their
objectives were mainly for torque ripple reduction and not
radial force control. Another sinusoidal excitation scheme
has been proposed to separately control the motor torque
and radial force for conventional one winding per pole 12/8
pole SRM [10]. The control scheme works well when both
the torque and force are large. However, determining the
currents that will produce the desired torque and radial force
is cumbersome and limited when a small motor torque is
requested.

Recently, an alternative decoupling scheme for torque
and radial force control was proposed for conventional 12/8
pole SRM [11]. Motor torque is controlled with the
conventional method, i.e. all of the poles in the conduction
phase are excited with the same current to produce the
desired torque. Two extra poles from the descending
inductance phase are excited to produce the required radial
force. Although this scheme can effectively produce radial
force, the force vector has significant error in both
magnitude and orientation due to the exclusion of mutual
inductance in the control model. In this paper, a radial force
control scheme with similar pole selection strategy for 12/8
pole SRM is presented. Mutual inductances between stator
poles are modeled and included in the controller. The
production of torque and radial force are decoupled to
simplify the controls.

II. TORQUE AND RADIAL FORCE MODEL

Figure 1 shows the schematic of a 12/8-pole switched
reluctance motor. The twelve stator pole currents are
controlled independently. Only the phase 4 windings are
shown. The pole currents are designated as iy, iy, i3, and
iq4, respectively, and 6, is the rotor angle in a conduction
period. The aligned position is defined as 6, = 0°. Because
the motor stroke angle is 15 mechanical degrees (°M), with
no advancement &, is between -15°M to 0°M for motor
operation. Consider the attraction force produced at pole 4/
first. A schematic illustrating this force is shown in Fig. 2.
The magnetic flux passes through the overlapped arca and
the non-overlapped area due to fringing. The inductance can
be modeled as [12]
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Figure 1. Schematic and coordinate systems of the 12/8 pole SRM.
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Figure 2. Attraction force produced by pole 4/.
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where 4, is the permeability of air, K is a constant for the
fringing inductance, N is the number of turns, D is the stack
length, R is the rotor radius, g is the air gap length, 6, and
6, arc the overlapped and the non-overlapped angles,
respectively. Because 6, and 6, are simple functions of &,
the inductance can be calculated with Eq. (1) easily. The air
gap length is assumed uniform in the analysis below. Except
for the aligned position, the attraction force between the
stator and the rotor tooth is not parallel to the stator pole. A
coordinate system is attached on each stator pole to assist
the attraction force analysis. For example, the phase A4
coordinate systems shown in Fig. 1, A/ Y~ A4 Y are the
parallel and A4/ X~ A4 X are the perpendicular axes,
respectively, with reference to their corresponding stator
pole. The origin is located at the center of the overlapped
rotor pole area.

A. Single Pole Excitation

As shown in Fig. 2, let the amplitude and angle of the
attraction force for pole 4/ be F;; and 8, respectively, from
Eq. (1) F4; can be approximated as

Fu=Krid @
where K= L4/4g. Note that F,; is proportional to square of
the pole current and varies with &, since L, is a function of
the rotor angle. The angle of F;; equals 90 degree when the
rotor and the stator poles are aligned, but deviate from 90
degree due to the fringing flux at the non-overlapped arca

when the poles are not aligned. The deviation angle can be
found by treating the forces produced at the overlapped and
non-overlapped arcas as independent and concentrated
forces [10]. Therefore, the angle of the attraction force can
be approximated as,

0
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where K, is a constant. Note that 6,, is positive when the
rotor is in the ascending inductance region and negative
when in the descending inductance region. The last term in
Eq. (3) is the angle due to the fringing flux.

The perpendicular and the parallel force component
with respect to the pole A/ tooth can be expressed
respectively as

FA]fX ZFA]COS9¢ (4)
Fyp y = Fysind, &)

Where F,; y is the radial force produced by pole A/. The
rotor torque, however, cannot be calculated from Eq. (4)
directly because F; x is not tangential to the rotor pole
tooth. As shown in Fig. 2, F,; y deviates from the tangent of
the rotor pole slightly. Let the deviation angle be 6,. The
torque then produced by pole 47 can be written as

Ty =~Fy;coslo; +0, )R 6)

Note that 6, is a non-linear function of rotor position and is
difficult to describe mathematically. Figure 3 shows the
relationship between ¢, and 6, calculated with a
finite-clement (FE) analysis software. The parameters of the
SRM used in the analysis can be found in Appendix A. It
can be seen that 6, is about 2.5°M for 6, < -3°M, and
decrease rapidly as 6, approach the aligned position.

B. Two and Four Poles Excitation

When more than one pole in a phase is excited the
mutual inductance between these poles must be considered
for accurate radial force and torque modeling. In the
following analysis it is assumed that an even number of
poles, adjacent to one another, are energized. For simplicity,
let poles A/ and A2 be excited. The attraction forces can
then be expressed respectively as [13]

.2 . .
Fq=Kp (’AJ +KmA’AJ’A2) Q)
. D . .
Fgr=Kp (lAz + KmA’AJ’AZ) ®)
where K4 is a rotor angle dependent term, its relationships
with 6, is also shown in Fig. 3. F4; and F4, can be resolved

into an X- and Y-direction force with equations similar to
Egs. (4)-(5). The net torque produced by these two poles is

TAJ,ZZ—KFCOS(9¢ +9p)R(i5U +ij2 +2KmAiA]iA2) (9)

In the case when all the poles in a phase are excited,
since it is similar to the excitation of two pairs of adjacent
poles, the radial force and torque produced by each pole pair
can be found with Eqs. (7)-(9) separately. The net force and
torque are the sum of the force and torque produced by each
pole pairs.
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Figure 4. Idealized inductance of 12/8-pole SRM.

Figure 5. Schematic of the SRM when phase 4 is the conduction phase and
B1, B2 are the radial force producing poles

Table 1  Selection of force control poles

Egs. (12)(13) U:,1r;)(|!&:!i::i(,:11 cx;i:’ll‘.}i‘un
A Bi, B2

Qo> 0, 0> 0 B £l
C Al A2

A B2, B3

O < 0, Oy > 0 B 2, C3
C A2, 43

A B3 B4

Qo < 0,0 <0 B C3, ¢4
C A3, A4

A4 B4, BI

O >0, Oy < 0 B C4, CI
C A4, Al

C. Radial Force and Torque of the Motor

Under the assumption that even number and adjacent
poles are energized in any phase, the net radial forces and
torque produced by the SRM can be found and expressed as
the following system equations:

Fyl |Ky 4 Ky 5 Ky |14
Fy =Ky 4 Ky p Ky ¢ |Ip (10)
r Kr 4 Kr p Kr ¢ |Ic

where Fy and Fy are the net X- and Y-direction radial force,
respectively, 7 is the net torque, K matrices are rotor angle
related and are shown in Appendix B, and the current
vectors are

2 . . .

iB1 +Kpp -ip; -(ips orip;)
T "ffz +Kppipa-lip1otips) | (poop _ ap o (1)

ip3+ Kpp -ips-(ip2 0T ips)

ipg+Kpp ipy -(ip3 or ipy)
Note that Eq.(10) is a general expression for the relationship
between pole currents, torque and radial force produced by
the motor. It shows that Fy, Fy and 7 can be manipulated
with the proper selection of pole currents at any rotor angle.
However, given the desired Fy, Fy and 7, there are 12

unknown currents to be determined from only three
equations. This means that there are an infinite number of
current combinations that yield the desired Fy, Fy and 7. In
the next section, a control scheme that requires only three
unknown currents is presented, Eq. (10) vields a unique
solution with this scheme.

III. RADIAL FORCE CONTROL

Figure 4 shows the idealized phase inductance profile of
the 12/8 pole SRM. It can be scen that at any rotor angle
there is one phase with ascending inductance, one phase
with descending inductance, and one phase with the
inductance is at its lowest level. In the conventional SRM
control, the ascending-inductance phase is the conduction
phase and its poles are excited to produce the desire torque.
The low-inductance phase does not produce any uscful
torque or force. Excitation of the descending-inductance
phase produces radial force and negative torque. In the
proposed control scheme, motor torque is controlled with
the conventional method, i.e. excitation of all the poles in
the ascending-inductance phase with the same current, and
the desired radial force is produced by two poles in the
descending-inductance phase.

Using the condition shown in Fig. 5 as an example,
where F* is the desired radial force vector. At this position
phase A is the ascending-inductance phase, phase B is the
descending-inductance phase, and phase C is the
low-inductance phase for the motor to rotate in the CCW
direction. Therefore, poles 47-44 are excited with same
current to produce the desired torque, and pole B/ and B2
are excited to produce the desired radial force. Because B/
and B2 also produce a negative torque, motor torque must be
compensated to correct this effect.

A. Selection of Force Control Poles

According to the direction of the desired radial force,
two poles of the descending-inductance phase are selected to
produce the force. Because the radial forces produced by
these poles are 90°M from each other, the two poles adjacent
to the desired force vector are selected. Again, the example
shown in Fig. 5, 2 F'* is about 75°M, 4. is -8°M, therefore
pole B/ and B2 are selected to produce F*. To automate the
pole selection procedures the following terms relating to the
force angle are computed,

Ocos = COS(AF* - Ooffset + Kang ’ guo/(go + Kfr )) (12)

Qsin = Sin(lF* 'goffset + Kang 'guo/(go + Kfr )) (13)
where G, equals 0, 30, and 60°M when the conduction
phase is C, A and B phase, respectively, and K,,,6,,/(6,+K};)
is the last term in Eq. (3). Table 1 shows the excitation poles
for various rotor angle and conduction phase. In the table,
Osin, O.0s and the conduction phase are used to determine the
force control poles.

B. Calculate Force Control Currents

After the force control poles are determined, the currents
for these poles can be calculated. Let ovand /S be the
conduction phase and the force control phase, respectively,



the current that produces the required torque be iy, and the  radial force was close to being circular as expected.

currents for the force control be ir; and ip; . respectively. Figure 7 shows the calculated radial force and i s when
By applying the above control law Eq. (10) can be |F* was set 15N and 8. varied from 0° to 14°M, the other
simplified into the following 3x3 system equations, pole currents are not shown in the figure since their
Fy 0 sirlp 45+ Ol codp 45+ Ot K1+ Ko i (14) waveforms are similar to 7,3 except the phase shift. It can be
ml- 0 —colfyp+ Ontred 571035+ Oofree Kpp(i*nz +Ktetes) seen that the force errors are very small in all the cases. The
T | |~ 4ol 0pa)R  codtyps 0,5 R codtys+0,p)R Kip(ies’ +Kgiiaien) current also increased for larger 6,. The worst case occurred

when 6, = 14° because the rotor was very close to the
unaligned position for the force producing poles (phase A4).
Note that as mentioned before, &, is defined within the
conduction phase and is generally negative. However, it is
extended to above 0° for better interpretation of the
verification results.

where Gy, 45, 0,0, and 6,5 are the G, and 6, angles for phase
oo and f, respectively, and Fy*, Fy* and 7* are the desired
radial force components and torque, respectively. The force
and torque in Eq. (14) can be separately expressed as the
following two equations:

" in0,+ Ourt)  coslOyp +0 KF,B(Z-;f + Kmﬁi;ﬂ;Qj 15) . Figure 8(a) shows the compensation torque calculated
[F x { pp T Tolfsat ]\ T 5 ” Offsetﬂ , (15) yith Eq.(18) for the same conditions as in Fig. 7. Figure 8(b)
Fy | 7050 +Oottier) 3mGgp * Ootter KF,B(i;72 + K g i shows the net motor torque SRM produced after A7 was
il compensated. Note that A7 calculated with Eq.(18) are quite

K (K acc.ur.ate.for 6,=0° and 7°, but has slight error for 6,=14°.

~ :R[_4COS( Oy 40 ) COS( - )] . i e T . This indicates that the to.rque produced by the force control
L LR KF,@(Z'FI +igy +2K ppipips poles can be decoupled in general, however, error emerges

when the force control phase is in the vicinity of its
(16) unaligned position. Figure 9 shows the calculated radial

Inverting Eq. (15) yields . force for 6,=7°, |F'*| =15N, £ F** varied from 0 to 360°, and
5 by ir was set to 1A, 2A and 3A, respectively, the
i; ;| +K, ﬁi; 11‘}32 ~ {sz‘nE@W +00ffset) —cos(@W +00ffset)} Krp [(17) corresponding load torques are 0.1, 0.4, and 0.9Nm. It can
l_;22 . Kmﬁi;;Zi;;I cos\Oyp + Onpier ) 51Oy +00ffset) F_Y* ‘pe seen that the variation of load torque have very little
Krp influence on the produced radial force.
. * 40w F=20N
Begause K.ps G4p, Ootrser, and Ky are functions of 6, i, and T /
i can be calculated from Fy* and Fy* with simple \ X
algebraic calculations and tables. [: 0 il
C. Calculate Compensation Torque e
Equation (16) shows that the force control currents iFI* 40, 00 :‘\mx
and i Fg* also produce a negative motor torque. Designate the i ;:,_{f;\] 0
torque as A7, then from Eq.(16) A7 can be written as (@
1.5 2.5
x 2 x 2 * % iy i fas P14 5| F=30N T
ATZKFﬁRCOS(9¢ﬁ +0Pﬁ{iF1 +iF2 +2KmﬁiF]iF2j(18) ;A}l I-; : 3:::\;‘*
' 0.5 N SRS A b | (AR l-"-i{]N?;_.-'-.::Z:.
This torque represents the coupling effect between the radial B S A Y A - i g=0°
force producing poles and the motor torque. It can be 0656186576360 Y050 180 270""360
decoupled by adding AT to the motor torque command. LF*(°M) ZF*(°M)
More on this compensation scheme is given in Section V. _ (b) _ ©
Also tiote Thai A7 is typic ally very — compan'son io Figure 6. Mo.tor radial force calculated. with FE, .=0°, | *\ZION, 20N,
. Lok .ox 30N, respectively, no load, £ F*varied from 0 to 360°, (a) radial force
the rated torque of the motor since a small ir; and ir, can VEOROT, (5) far-Fas, Whiert [T = TON. (6 B Tor-vasions |7,

produce a very large radial force.
20 a=0" o a=7"

I'V. VERIFICATION WITH FINITE ELEMENT ANALYSIS Ny 4

Figures 6-9 show the FE verification results with the PR ";, O=14, o ias
above radial force production scheme. In all figures the O : (g Py
SRM was stationary and was commanded to produce a _ 1t \,
rotating radial force. No load torque was applied except in Nou LN I W F=I5N
Fig. 9. Figure 6(a) and (c) show the calculated force and i a0 09 180, 270777360
pole A3 current, respectively, when |F* was set to various (*‘)“Jv\'} £F éb)h1)
: a
ﬁ?f:]aflsil:ii 61(81)\IS1§)::: $th$: ;uar;‘lznté Of(;l% hgz;;gtig Figure 7. Motor radial force calculated with FE, |F¥=15N,8=0°,7°, 14°,
11 Zero, fit fhis casé Tt <cam. b seen that ai I:my instant only respectively, no load, £ F* varied from 0 to 360°, (a) radial force vector, (b)
* i43 for various 4.
two poles were excited to produce the radial force. The .
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Figure 8. (a) Compensation torque calculated with the same conditions as
shown in Fig.7, (b) motor torque after compensation.
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V. CONTROL SYSTEM

Figure 10 summarizes the calculation procedures for ir; ",
ip,;” and AT. The subscript «and f are referring to the
conduction phase and the force control phase, respectively.
In the figure, the rotor angle related parameters: 6,, 6,, K,
and K, are pre-calculated with FE analysis and experiments,
and then transformed into appropriate formats and stored as
lookup-tables in the controller. Also note that the constants

K, in Eq.(1) and K, in Eq.(3) are also identified with FE
analysis.

A block diagram for the radial force control scheme is
shown in Fig. 11. The motor speed is regulated with a PI
controller, and the output is the desired torque command 7",
The sum of 7~ and the compensation torque A7 is the net
torque command for the motor, this command is then
converted to the current command for the conduction phase
ir* The desired X- and Y-direction radial force, i.e. Fy* and
Fy*, are generated according to the needs of the application.
Rotor position 6, is used to determine the ascending-
inductance and the descending-inductance phase. All the
poles in the ascending- inductance phase are energized with
ir*. Two poles in the descending-inductance phase are
selected using the procedures described in Section III and
Table 1, and then energized with ir;*and iz, *, respectively.
ip;* and ip,* are calculated with the procedures shown in
Fig.10. The compensation torque A7 is also calculated in the
process.

VI. EXPERIMENTAL RESULTS

The control scheme presented in the previous sections
was verified experimentally. The parameters of the SRM are
shown in Appendix A. Figure 12 shows the experimental
setup. The stator was placed vertically on a platform. The
upper end of the rotor was connected to the housing via a
universal joint and a bearing. An ac motor was mounted on
top of the rotor shaft to provide load to the SRM. Four load
cells were mounted on the lower end of the rotor to measure
the radial force produced by the motor. Each pole winding
has its own current control loop. A DSP was used to
perform all of the current, speed, and radial force controls.
Hysteresis control action was used for current controllers,
and the execution rate was set to about 18.4 kHz. The
execution rate of the speed and radial force control was 4.6
kHz. The phase switching angle was advanced 1°M in order
to avoid force control at 15°M since at this position the
available force is much smaller than the aligned position.
Therefore, the torque and force control regions are
-16~-1°M and -1~14 °M, respectively. Note that since the
compensation torque is very small near 6, = 0°M, advancing
the switching angle has very little impact on the overall
control strategy.

Figure 13 shows the measured radial force vector and
pole 41~A4 currents when the motor was at standstill, &, =
0°M, |F'* = 10N, no load, and £ F* varied from 0 to 360°. It
can be seen that the force vector was very close to a circle
with the magnitude approximately 10N. The pole currents
were almost sinusoidal, and at angle instant only two poles
were energized. Figure 14 compares the radial force when
the mutual inductance in Eq.(17) was included/not included
in the calculations, |[F* was set to 15N. The terms involving
multiplication of different pole currents in Eq. (17) were set
to zero when the mutual inductance was not considered. It
can be seen that significant error existed when the mutual
inductance was not included in the calculation.

Figure 15 compares the radial force and i4; current for
various 6, Figure 15(a) and (b) show the radial force vector



for 6.=7°M and 14°M, respectively, the radial force for 6, =
0°M was already shown in Fig. 14. It can be seen that the
produced force for all 6, were quite accurate. Figure 15(c)
shows that the required pole current became larger as the
rotor angle moved near the unaligned position. These are
consistent with the FE calculation results shown in Fig.7.

Figure 16 shows the measured radial force and pole
Al1~A4 currents when the motor was running at 100 rpm
under 0.5Nm load torque and |F* set to: (a) ON, (b) 10N and
rotating synchronously with the rotor, (¢) 10N and rotating
at 1 Hz. It can be seen in Fig. 16(a) that the pole currents
were pulses with approximately the same amplitude. This is
identical to a conventional current controlled SRM since
zero radial force was commanded. The measured force
vectors were significantly smaller in comparison to the
forces when |F* was set to 10N. In Figs. 16(b) and (c),
however, part of the current pulses carried currents at the
descending-inductance region to produce radial force. The
radial force vectors were circular but with noticeable ripples.
As shown in Fig. 16(b), the force ripple appeared at
approximately the same directions. Also, the force oscillated
about twelve times per revolution. Because the force
command was synchronous with the rotor, the force
producing poles happened to commutating between the
following two cases: 1) force command was located near
one of the force poles, and 2) force command was at the
vicinity of the center of the force poles. Since the X, used in
the model has slight error, the actual force produced in case
2) was larger than the force produced in case 1) for the same
K,,. As a result, the force contained twelve ripples in each
revolution. Note that as shown in Fig. 16(c), the above
phenomenon on force ripple did not occur when the radial
force was rotating at 1Hz, which was asynchronous to the
rotor speed. Despite the ripple, the average radial force
produced were approximately 10N as commanded.

Figure 17 and 18 show the measured radial force vectors
under the same operating conditions as that in Fig. 16 except
the motor was running at 600 and 1000rpm, respectively.
Similar results were obtained when zero radial force was
commanded. On the other hand, it can be seen that the force
ripples in Fig. 17(b) became slightly larger and more
noticeable when comparing to the synchronous force
waveforms shown in Fig. 16(b). The ripple patterns were
similar in these figures since the radial force was
synchronous to the rotor. However, as shown Fig. 18(b),
force ripple reduced significantly when the motor was
running at 1000rpm. This is because the radial force was
measured through the force cells located at the lower end of
the rotor shaft. The rotor and shaft structure was a low pass
filter to the measured shaft radial force. Note also that the
shape of the force was slightly oval. This is caused mainly
by the air gap eccentricity produced by the motor
manufacturing process. Regardless of the radial force
frequency the eccentric air gap caused similar distortions in
the radial force waveforms. Also, as shown in Fig. 17(¢) and
18(c). due to this ovalisation effect the force ripple no longer
appeared at the same directions when the radial force was
not synchronous to the rotor.
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Figure 13. Radial force and pole 4/~A44 currents when the SRM was at

standstill, 6, = 0°M, |[F"* = 10N, no load, and / F*varied from 0 to 360°,
(a) radial force vector, (b) pole 4/~A44 currents.
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Figure 15. Radial force and i3 current and when the SRM was at standstill,

|74 = 15N, £ F* varied from 0 to 360°, (a) radial force when &, = 7°M, (b)
radial force when 6, = 14°M, (c) i4; for various 6.

VII. CONCLUSIONS

A scheme to produce controlled radial force in a
12/8-pole SRM was proposed in this paper. The twelve
stator pole currents are controlled independently. The motor
torque was controlled using the conventional method, i.e. all
poles in the conduction phase are excited with the same
current to produce the desired torque. Two additional poles
from the descending-inductance phase were energized to
produce the required radial force. Because the force
producing poles also produce a negative torque, this torque
was compensated so that the motor output torque and radial
force controls are decoupled. The motor parameters needed
for the control were obtained from the finite-clement
analysis of the SRM, and then stored as lookup-tables in the
controller. In general, the accuracy of the parameters
obtained with FE analysis was adequate for the control
scheme. The experimental results show that when controlled
with the proposed scheme, the SRM was able to produce a



controlled radial force when at standstill or running, anc
subjected to a load torque. Although the radial forces
exhibited noticeable ripples caused by the commutation o
the force producing poles, their averages were very close tc
the command values.

A possible application of this scheme is to produce the
radial force required to cancel the forces produced by ¢
non-uniform air gap or external load, and thereby reduce the
SRM vibrations. Because the objective of this paper is on
the development of a radial force control scheme, generation
of appropriate commands to cancel the defect-induced radial
forces is not discussed. However, the command generation
algorithm is required for the successful application of this
scheme.

APPENDIX A
The 12/8 pole SRM used in this paper is 100 Watts, 1000 rpm, 3Amp.

Aligned inductance = 8 mI, un-aligned inductance = 2 mH, K, = 4.1,
Ks=3.1.
APPENDIX B

I?XiA =Kpy lsin(&m) cos(9¢A) - sin(HM) - cos(9¢A)J

I?YiA =Kpy l— cos(HM) sin(HM) cos(&m) = sin(HM )J

I?TfA =—Kpy lcos(@m + QPA) cos(@m + QPA) cos(@m + QPA) cos(@m + QPA)JR
I?XiB =Kpp lsin(&w + 30) cos(&w + 30) = sin(H¢B + 30) = cos(&w + 30)]
EYiB =Kpp l— cos(9¢B + 30) sin(9¢B + 30) cos(9¢B + 30) = sin(9¢B + 30)]
I?T73 =—Kpp lcos(ﬁwg + ng) COS(9¢B + ng) COS(9¢B + ng) COS(9¢B +6,p )JR
K x c=Krc lsin(9¢c + 60) cos(9¢c + 60) - sin(9¢c + 60) - cos(9¢c + 60)]

K v ¢c=Krc l— cos(9¢c + 60) sin(9¢c + 60) cos(9¢c + 60) N sin(9¢c + 60)]
I?ch =—Kpce lCOS(QW + Qpc) cos(%c + ng) cos(@w + ng) cos(9¢c +60,c )JR
Kpy=L,/4g Kpp=Lp/4g, Kpc=Lc/4g
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Figure 16. Radial force vector and pole 4 /~44 currents when the motor
was running at 100 rpm under 0.5 Nm load torque and |F¥ set to: (a) ON,
(b)10N and rotating synchronously with the rotor, (¢)10N and rotating at 1
Hz.
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Figure 17. Radial force vector when the motor was running at 600 rpm
under 0.5Nm load torque and |/ set to: (a) ON, (b)10N and rotating

synchronously with the rotor, (¢)10N and rotating at 1 Hz.
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Figure 18. Radial force vector when the motor was running at 1000 rpm
under 0.5Nm load torque and |/ set to: (a) ON, (b)10N and rotating

synchronously with the rotor, (¢)10N and rotating at 1 Hz.
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