
Learning Design Plans in a Knowledge-Based Blackboard System

Jenmu Wang
Department of Civil Engineering, Tamkang University

Tamsui, Taipei Hsien 25 I. Taiwan

Abstract
The control information along a decision route that

leads to the creation of a design solution is open referred
to as design plan. Knowledge-based design systems
frequently use precompiled design plans to control and
schedule design activities. It is, however, dificult for
design systems to learn new plans. This article
introduces the concept of memory-oriented learning and
presents an approach to learn design plans from normal
design sessions in a blackboard design model.
Keyword: Design Plans; Machine Learning; Structural

Design; Knowledge-Based Systems

1: Introduction

The knowledge embodied in most of today's
knowledge-based systems is static in time. That is, they
do not expend or modify their knowledge base through
their own experience. If the system response incorrectly
for a given problem, it will give the same incorrect answer
for that problem until a knowledge engineer modifies its
knowledge base. The inability to save previous
experiences for future application and modification
represents a serious shortcoming of most knowledge-
based systems today. Even at the first time, put
knowledge into a knowledge base is not an easy job.
Knowledge acquisition is always refer to as the bottleneck
of building expert systems. Therefore, how to apply
machine learning techniques to improve the performance
of design systems has been an active research area
recently [I]. The following discussion characterizes
design systems in tenns of the model of learning.

Under the modular and multi-layer concept, a
learning system can be divided into a performance
element and a learning element [2]. The performance
element is a problem solver, independent of the learning
element. That is it can be run without the learning
element. The learning element uses machine learning
techniques to improve the problem solving ability of the

performance element. From the machine learning
literature, learning can be categorized to memory-oriented
learning and rule learning:

Memory-oriented learning stores previous
experiences in order to replay the derivation of their
solutions as a reasoning shortcut. So, the core issue of
memory-oriented learning is how to organize these
experiences so that they can be used again in the
appropriate situations. Memory-oriented learning is in
fact a learning by analogy process.

Rule learning learns heuristic rules from previous
experiences. The rule-base is incrementally refined and
created during the normal use of the system. Rule
learning is actually an automated knowledge acquisition
and skill refinement process.

Two steps are necessary to learn abstracted reasoning
rules. Credit and blame must be assigned to the
performance of a problem solver first. The rule base
then can be modified based on the criticism. A common
critical technique is the ideal trace, used in LEX [3].
The ideal trace of a solution is compared with the actual
trace to identify the positive and negative training
instances. The former correspond to the rules that
behaved correctly and the latter correspond to the rules
that behaved incorrectly.

Some rule modification techniques that can be use to
refine the rule-base are summarized in [4]. These are: (a)
prioritizing the rules, (b) instantiating a rule, (c) adding
extra conditions to a rule's hypothesis, (d) proposing a
new heuristic rule, and (e) updating the hypothesis of an
incompletely learned rule.

The intelligent computer-aided design system
presented in this paper can be conceptually divided into a
performance element and a learning element as discussed
above. The performance element is based on a
blackboard AI architecture that explicitly controls and
reasons about its design behavior. The learning element
of the system employs memory-oriented learning to
capture design strategies as design plans.

122
0-8186-8218-3/97 $10.00 0 1997 IEEE

The following sections of the paper provide an
overview of the intelligent design system and describe its
representation and acquisition of design plans.

2: Blackboard design model

In a typical blackboard problem-solving model [5
and 61, the knowledge needed to solve a problem is
partitioned into independent knowledge sources that are
grouped into several knowledge modules in the
knowledge base. The knowledge sources modify only a
global knowledge structure (the blackboard) and respond
opportunistically to the changes on the blackboard. An
inference mechanism sequences the execution of
knowledge sources according to the current control
strategies, and updates the solution and control strategies
on the blackboard accordingly. The blackboard model
was selected because of its explicit control structure that
can easily separate domain and control information and
facilitate the capture and replay of design plans.

Usually, the solution space of a design problem is too
big to search. Decomposition is a common strategy used
by engineers to divide the search space. Domain specific
knowledge and general problem-solving skills are
required to control the decomposition and to search
effectively for the reduced design space. However, the
complexity of individual subproblem and the interaction
between subdesigns can still make the design an iterative
process. The generated design has to be tested against all
the design constraints and relevant parts of the design
must be modified to overcome any constraint violation.
This process may have to be repeated several times to
produce an acceptable design.

According to the characteristics of underconstrained
parametric design and the blackboard reasoning paradigm,
an underlying design model was developed. Designs are
divided into subtasks in the design system, and the
knowledge for solving individual subtasks is stored in a
knowledge base. The problem solver uses that
knowledge to develop design solutions through a
generate-test-modify paradigm. Top-down
decomposition plans are also stored in the knowledge base.
A plan represents a design strategy that consists of a
sequence of design steps. Each step in a plan is called a
goal; goals guide the problem solver toward the desired
solution. Different levels of abstraction of plans can help
decompose and organize design knowledge. A plan can
specify a sequence of goals that produce a subdesign. A
plan can be a top level design strategy that points to other
plans.

The problem solver checks design constraints
throughout the design as appropriate. Whenever a
constraint violation is found, the problem solver has to

overcome the design failure by redesign (that is,
modifying the partial design). Redesign in the system is
based on dependency-directed backtracking with
knowledge-based advice. The problem solver’s truth
maintenance system (TMS) provides dependency links for
a design failure. The dependency network is built during
design. The design variables involved in the current
design failure can be traced through the links. The
problem solver analyzes the dependency information and
the violated constraints to suggest what part of the partial
design to modify and how to fix it. The TMS updates
the current design according to the modification. Design
values that are no longer valid (as well as values derived
from those values) are removed, and the problem solver
proceeds from there to its generate-test-modify cycle.

3: System overview

The problem-solving process of the design system is
controlled by a scheduler using the activated design
strategies (plans and goals) on the blackboard. This
section describes the interpretation, rating and scheduling
of design actions and the decomposition of design
strategies. The discussion focuses on the general
concepts of these activities, which lays the groundwork
for a more detailed presentation of the plan learning
mechanism in the system.

The blackboard of the design system is divided into a
design information blackboard (containing design data
generated by various actions) and a control blackboard
(consisting of the control decisions the system uses to
schedule activities). The design solution is generated on
the solution blackboard incrementally by applying design
actions one at a time. The condition under which a
knowledge source (KS) can be executed is specified by a
blackboard state with a set of variables to represent
different triggering contexts, and the action of the KS is
also specified by the same set of variables to represent
alternative actions under different contexts. All
knowledge sources operate simultaneously at every cycle
and generate knowledge source activation records
(KSARs) when specified trigger conditions and
blackboard contents exist.

No preset order of execution is defined in the system.
It dynamically selects a sequence of actions (KSARs) to
produce a design according to the design strategies that
are in use. At each design step, the schedulers of the
system select one KSAR for execution based on how well
the action of a certain KSAR matches the intent of the
current design strategies on the control blackboard. The
design strategies are represented as plans and goals. A
goal is a design consideration that the system uses to rate

123

KSARs. A plan is a sequence of design goals that
represents a design strategy.

Different levels of abstraction of design plans can
help decompose and organize design knowledge. A plan
can specify a sequence of goals that produce a subdesign.
A plan can be a top-level design strategy that points to
other plans. Therefore, a global design goal can be
dynamically expanded into a more detailed design plan (or
plans) at run time. The individual goals of that plan may
be further expanded if specific plans are available. This
top-down plan decomposition with several levels of
abstraction is called goal expansion. An Example is
given in Figure 1. It is possible that several expansions
are available for a given design goal. Therefore, the
system frequently has multiple design plans on the
blackboard at once.

Cantilever.Bridge.Design.Plan
l.lnput.vsrlabla.cS> 2.csnUlever.brldg~.d..lpn<5> 3.chock.maJor.con~tr~lnts~Sw

I.ond.do~lpn.so.slon~5> J 4.sct iv~ts .pmslsxsd.con. t r~ lnts~5~

Cantilever.Bridge.Design.Subp1an. 1 L l .ehoo~~.con~~ucUon.method~5w 2.choo~o.longlhrdln.I.p~onl~~Sw

t- l . a s s e n . ~ s t l o n . p m p s ~ l ~ s ~ 5 ~ 2..s~~rt.tendon.force..nd.moma~t~Sw

I.ddgn.s.gment.<Sw 4 . g e n ~ n t ~ . . ~ g m ~ n t - < 5 >

JI
Cantilever.Bridge.Design.Subplan.3

Figure 1 : An Example of Goal Expansion

The rating of a KSAR against a plan on the control
blackboard is a function of the priority of the action
against current goals of the plan and the importance of
different goals. There may be more than one plan on the
control blackboard. In that case, the rating of a KSAR
with respect to all plans is the weighted and normalized
sum of the individual ratings. The weighting process
takes into account the different importance of plans. The
rating of every KSAR is a numeric value ranging from
zero to one hundred, which represents a “no match” to a
“perfect match”. At every cycle, the scheduler selects
the highest rated KSAR to execute (or the user can
ovemde the scheduler by selecting a different KSAR).

4: Representation of design plans

Knowledge representation in the design system is
based on an object-oriented approach. Design strategies
are stored as plan and goal objects in the knowledge base.
When design plans and goals are posted on the control
blackboard, the system regards them as the control
knowledge of the current design session and uses them to

rate and schedule design actions. The top-level design
plan (Cantilever.Bridge.Design.Plan) in Figure 1 is given
in Figure 2 as an example. The following are
explanations of the properties of plans:

0 GOAL.LIST- a list of goal objects to be
activated sequentially. Each element of the list
can be a single goal object or a list of goals to be
activated at the same time.

0 INTENTION-a LISP form that indicates when
the plan needs to be deactivated. When it
evaluates to true, either the intention of the plan is
satisfied or it is no longer applicable.

0 WEIGHT - a number between 1 and 10
(inclusive), representing the importance of the
plan. It is used in KSAR rating to account for
different priorities of design plans. The default
value is 5. It can be changed by the user when
creating the plan object or by control KSs during
design. A plan with a higher weight value is
considered more important than a plan with a
lower weight and is more influential in scheduling.

0 ACTIVE.GOAL-the goal (or goals) currently
active in this plan. It is an internal attribute used
by the blackboard maintenance mechanism. The
default value is NIL, and it will be set to an
appropriate value during blackboard updating.

0 REMAINING.GOAL.LIST-a list of goals that
remain to be activated in this plan. It is an
internal attribute with a default value of NIL, and
it will be set to an appropriate value by the
blackboard maintenance mechanism.

INTENTION: Valid while the cantilever
bridge design parameters
(e.g., construction method,
longitudinal profile, span
depth ratio, slab thickness,
tendon type, number of
tendons, etc.) are undecided.

GOAL.LIST: (input.variable
cantilever. bridge.design
check.major.constraints
activate.pre-
relaxed.constraints
end.design.session)

WEIGHT: 7
ACTIVFLGOAL: cantilever.bridge.design
REMAINING.GOAL.LIST: (check.major.constraints

activate.pre-re-
1axed.constraints
end.design.session)

Figure 2: Cantilever.Bridge.Design.Plan

124

A goal is the primary rating object for the blackboard
design system. It can be a part of a design plan or a
stand-alone design consideration. All activated goals on
the blackboard are used to rate KSARs. The attributes of
goals are explained below and an example is given in
Figure 3.

0 FUNCTION-a LISP form that returns a value
between 0 and 100. This is the rating function
that evaluates how well a KSAR serves the goal.
The higher the returned number is the better the
KSAR is for achieving the goal.

0 INTENTION-a LISP form that indicates when
the goal needs to be deactivated. When it
evaluates to true, either the intention of the goal is
satisfied or it is no longer applicable.

0 WEIGHT - a number between 1 and 10
(inclusive), representing the importance of the
goal. It is used in KSAR rating to account for
different priorities of design goals. The default
weight of a goal is 5. It can be changed by the
user when creating the goal object or by control
KSs during design. A goal with a higher weight
value is considered more important than a goal
with a lower weight and is more influential in
scheduling.

0 1NCLUDE.IN-the plan object to which the goal
belongs. If the value is NIL, the goal is not
attached to any plan. Usually, a stand-alone
goal is an important design decision that needs
immediate attention. For example, stand-alone
redesign goals fix constraint violations.

FUNCTION: Favor actions instantiated from
subclasses of cantilever bridge design
generator.
Valid while the cantilever bridge section
properties (e.g., web thickness, top and
bottom slab thickness, etc.) are
undecided.

INTENTION:

WEIGHT: 5
INCLUDEDJN: Cantilever.Bridge.Design.Plan

Figure 3: The Cantilever.Bridge.Design Goal

5: Learning design plans

After a design session is done, design information is
still stored on the blackboard, which includes problem
inputs, final solution, intermediate solutions, variable
value justifications and design history (a sequence of the
executed KSs and their bindings). It is time for the
learning element to perform memory-oriented learning.
That is to learn design strategies from the just finished
design. However, the design strategies do not explicitly

exist on the blackboard. The strategy recorder of the
learning element analyzes the design history and
constraint status as well as other information on the
blackboard and captures design strategy in the form of
design plans and goals. A design memory is then used to
store the recorded plans and goals. The memory is
divided into two parts: a memory of plans and a memory
of goals.

A recorded plan is a subclass of the plan object
discussed in the previous section. It stores the problem-
solving or backtracking strategy of a particular previous
design. It specifies the sequence of design goals
achieved by the previous design steps. The recorded
goals will be discussed later in this section.

The strategy recorder in the learning element of the
design system is responsible for creating recorded plan
objects and saving them in the memory. The control
knowledge of a previous design session is abstracted to
one global design plan and several redesign plans. The
process that the strategy recorder uses to capture design
plans is stated below:

0 Identify major design actions. The design
history is analyzed, and all KSs that modified the
solution blackboard are gathered. This step is to
filter out unnecessary design steps that do not
directly contribute to the solution process (e.g.,
control KSs that only modify the control
blackboard).

0 Create associated goals. A recorded goal is
created for each identified major action (KS) in
order to prefer the same KS in the future. This
process is discussed in detail later.

0 Differentiate design and redesign goals. The
major design actions can be classified into design
and redesign actions. Therefore, the recorded
goals are assigned to one design plan that
represents the major design path and several
redesign plans that represent the various
backtracking processes. The goals then make up
the goal list of their plan.

0 State the intention of the plans. The intention
of a global plan is to generate design value for all
the design attributes and to satisfy all the
applicable constraints of the design. The
intention of a redesign plan is to satisfy all
unsatisfied constraints that triggered the redesign
process.

The strategy recorder is also responsible for creating
recorded goal objects and saving them in the goal memory.
A recorded goal represents one step of the recorded plan
that it belongs to. It contains a rating function to
evaluate the usefulness of future KSARs for reproducing

125

the effect that resulted from the past action taken at that
step.

Three different rating levels are created for each
recorded goal:

e

0

e

In

”
High rating-A high rating is given to the
KSARs instantiated from the same KS that
previously triggered the KSAR used to
accomplish the goal (i.e., KSARs from the same
KS).
Moderate rating-KSARs that modify the same
design objects and attributes attain a moderate
rating.
Limited rating - Same types of actions (i.e.,
KSARs with same parent class as the previously
used KSAR) score a limited rating.
this way, each step of a recorded plan can be

followed precisely, closely or loosely by the system’s
control mechanism when the plan is reused (that is,
reposted on the blackboard). However, further
experiment shows that the level of backtracking is the
most important guidance that a recorded backtracking goal
can give to later designs. The backtracking level is
recorded with the bindings of the previously executed
backtracking KSAR. Therefore, to capture that decision,
the following rating level is added to the top of the rating
condition list for recorded goals that are extracted from
previous backtracking provoking actions. That is four
rating conditions are used instead of three. The highest
rating is given by the condition stated below:

0 Excellent rating -The best rating is given to
the KSARs that are the same as previously used
to accomplish the redesign goal (i.e., KSARs
from the same KS with the same bindings).

The intention of a recorded goal is the negation of the
trigger condition of the KS that previously accomplished
the design step. A goal is not applicable when its
intention is true. The action is not appropriate or is already
executed when its trigger condition is not true.
Therefore, when the trigger condition of a previous action
is not true, the recorded goal denoting that action is not
applicable (either the goal is already accomplished or the
intended purpose of the goal is not desirable). The
formulation works well with the plan and goal updating
mechanism of the blackboard design system.
Inapplicable goals from past plans are delayed or skipped
under this setup.

6: Conclusions

This approach was tested for structural design of
balanced cantilever bridges. The recording and reuse of
design plans and goals in the blackboard design system
are fundamentally supported by the underlying model of

the system, and the model directly influences the
representation of design plans and goals. The control
knowledge captured is of little use unless it can be
recognized by system‘s control mechanism. Therefore,
the recorded plans and goals are expressed in a format that
can later be directly posted on the control blackboard by
control actions to change the behavior of the design
system.

The initial result of this research revealed the
difficulties of capturing design strategies as design plans.
While recording the designer‘s steps as design plans, the
system can capture the explicit basis of the design plan,
such as the ingredient design attributes, satisfied
constraints, unsatisfied constraints, performed actions, etc.
However, the implicit supporting reasoning behind design
plans can not be acquired (e.g., judgment based on
unrepresented design considerations and analysis of
values from several objects, etc.). The system assures
the fundamental appropriateness of transferring previous
plans. However, the good result of plan reuse is not
promised. To fully assess the correctness of plan reuse,
the system needs to capture the undeclared reasons
associated with individual human design decision.
Furthermore, the system can not justify design steps of its
user. It only records the designer‘s steps and assumes
their correctness. A possible solution to these problems
is to build an interface to let the user provide justifications
whenever the system’s decisions are overridden.

References

1. Duffy, Alex H.B., Brown, David C. and Maher, Mary Lou,
“Special Issue: Machine learning in design,” Artifcia1
Intelligence f o r Engineering Design, Analysis and
Manufucruring, Vol. 10, pp. 81-82, Cambridge University
Press, 1996.

2. Smith, Reid G., Mitchell, Tom M., Chestek, Richard A. and
Buchanan Bruce G., “Model for Learning Systems,”
Proceedings of the Fifth IJCAI, Fifth International Joint
Conference on Artificial Intelligence, Cambridge,
Massachusetts, pp. 338-343, August, 1977.

3. Mitchell, Tom M., Learning and Problem Solving, Technical
Report LCSR-TR-45, Department of Computer Science,
Rutgers University, New Brunswick, New Jersey 08903, June
1983.

4. Bundy, Alan, Silver, Bernard and Plummer, Dave, An
Analytical Comparison of Some Rule Learning Programs,
Research Paper No. 215, Department of Artificial
Intelligence, University of Edinburgh, 1984.

5. Hayes-Roth, Barbara, “Blackboard Architecture for Control,”
Artificial Intelligence, Vol. 26, pp. 251-321. 1985.

6. Nii, H. Penny, “Blackboard Systems : The Blackboard
Model of Problem Solving and Evolution of Blackboard
Architectures-Part One,” AI Magazine, Vol. 7 , No. 2, pp.
38-53, 1986.

126

