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Abstract 
The control information along a decision route that 

leads to the creation of a design solution is open referred 
to as design plan. Knowledge-based design systems 
frequently use precompiled design plans to control and 
schedule design activities. It  is, however, dificult for 
design systems to learn new plans. This article 
introduces the concept of memory-oriented learning and 
presents an approach to learn design plans from normal 
design sessions in a blackboard design model. 
Keyword: Design Plans; Machine Learning; Structural 

Design; Knowledge-Based Systems 

1: Introduction 

The knowledge embodied in most of today's 
knowledge-based systems is static in time. That is, they 
do not expend or modify their knowledge base through 
their own experience. If the system response incorrectly 
for a given problem, it will give the same incorrect answer 
for that problem until a knowledge engineer modifies its 
knowledge base. The inability to save previous 
experiences for future application and modification 
represents a serious shortcoming of most knowledge- 
based systems today. Even at the first time, put 
knowledge into a knowledge base is not an easy job. 
Knowledge acquisition is always refer to as the bottleneck 
of building expert systems. Therefore, how to apply 
machine learning techniques to improve the performance 
of design systems has been an active research area 
recently [I]. The following discussion characterizes 
design systems in tenns of the model of learning. 

Under the modular and multi-layer concept, a 
learning system can be divided into a performance 
element and a learning element [2]. The performance 
element is a problem solver, independent of the learning 
element. That is it can be run without the learning 
element. The learning element uses machine learning 
techniques to improve the problem solving ability of the 

performance element. From the machine learning 
literature, learning can be categorized to memory-oriented 
learning and rule learning: 

Memory-oriented learning stores previous 
experiences in order to replay the derivation of their 
solutions as a reasoning shortcut. So, the core issue of 
memory-oriented learning is how to organize these 
experiences so that they can be used again in the 
appropriate situations. Memory-oriented learning is in 
fact a learning by analogy process. 

Rule learning learns heuristic rules from previous 
experiences. The rule-base is incrementally refined and 
created during the normal use of the system. Rule 
learning is actually an automated knowledge acquisition 
and skill refinement process. 

Two steps are necessary to learn abstracted reasoning 
rules. Credit and blame must be assigned to the 
performance of a problem solver first. The rule base 
then can be modified based on the criticism. A common 
critical technique is the ideal trace, used in LEX [3]. 
The ideal trace of a solution is compared with the actual 
trace to identify the positive and negative training 
instances. The former correspond to the rules that 
behaved correctly and the latter correspond to the rules 
that behaved incorrectly. 

Some rule modification techniques that can be use to 
refine the rule-base are summarized in [4]. These are: (a) 
prioritizing the rules, (b) instantiating a rule, (c) adding 
extra conditions to a rule's hypothesis, (d) proposing a 
new heuristic rule, and (e) updating the hypothesis of an 
incompletely learned rule. 

The intelligent computer-aided design system 
presented in this paper can be conceptually divided into a 
performance element and a learning element as discussed 
above. The performance element is based on a 
blackboard AI architecture that explicitly controls and 
reasons about its design behavior. The learning element 
of the system employs memory-oriented learning to 
capture design strategies as design plans. 
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The following sections of the paper provide an 
overview of the intelligent design system and describe its 
representation and acquisition of design plans. 

2: Blackboard design model 

In a typical blackboard problem-solving model [5 
and 61, the knowledge needed to solve a problem is 
partitioned into independent knowledge sources that are 
grouped into several knowledge modules in the 
knowledge base. The knowledge sources modify only a 
global knowledge structure (the blackboard) and respond 
opportunistically to the changes on the blackboard. An 
inference mechanism sequences the execution of 
knowledge sources according to the current control 
strategies, and updates the solution and control strategies 
on the blackboard accordingly. The blackboard model 
was selected because of its explicit control structure that 
can easily separate domain and control information and 
facilitate the capture and replay of design plans. 

Usually, the solution space of a design problem is too 
big to search. Decomposition is a common strategy used 
by engineers to divide the search space. Domain specific 
knowledge and general problem-solving skills are 
required to control the decomposition and to search 
effectively for the reduced design space. However, the 
complexity of individual subproblem and the interaction 
between subdesigns can still make the design an iterative 
process. The generated design has to be tested against all 
the design constraints and relevant parts of the design 
must be modified to overcome any constraint violation. 
This process may have to be repeated several times to 
produce an acceptable design. 

According to the characteristics of underconstrained 
parametric design and the blackboard reasoning paradigm, 
an underlying design model was developed. Designs are 
divided into subtasks in the design system, and the 
knowledge for solving individual subtasks is stored in a 
knowledge base. The problem solver uses that 
knowledge to develop design solutions through a 
generate-test-modify paradigm. Top-down 
decomposition plans are also stored in the knowledge base. 
A plan represents a design strategy that consists of a 
sequence of design steps. Each step in a plan is called a 
goal; goals guide the problem solver toward the desired 
solution. Different levels of abstraction of plans can help 
decompose and organize design knowledge. A plan can 
specify a sequence of goals that produce a subdesign. A 
plan can be a top level design strategy that points to other 
plans. 

The problem solver checks design constraints 
throughout the design as appropriate. Whenever a 
constraint violation is found, the problem solver has to 

overcome the design failure by redesign (that is, 
modifying the partial design). Redesign in the system is 
based on dependency-directed backtracking with 
knowledge-based advice. The problem solver’s truth 
maintenance system (TMS) provides dependency links for 
a design failure. The dependency network is built during 
design. The design variables involved in the current 
design failure can be traced through the links. The 
problem solver analyzes the dependency information and 
the violated constraints to suggest what part of the partial 
design to modify and how to fix it. The TMS updates 
the current design according to the modification. Design 
values that are no longer valid (as well as values derived 
from those values) are removed, and the problem solver 
proceeds from there to its generate-test-modify cycle. 

3: System overview 

The problem-solving process of the design system is 
controlled by a scheduler using the activated design 
strategies (plans and goals) on the blackboard. This 
section describes the interpretation, rating and scheduling 
of design actions and the decomposition of design 
strategies. The discussion focuses on the general 
concepts of these activities, which lays the groundwork 
for a more detailed presentation of the plan learning 
mechanism in the system. 

The blackboard of the design system is divided into a 
design information blackboard (containing design data 
generated by various actions) and a control blackboard 
(consisting of the control decisions the system uses to 
schedule activities). The design solution is generated on 
the solution blackboard incrementally by applying design 
actions one at a time. The condition under which a 
knowledge source (KS) can be executed is specified by a 
blackboard state with a set of variables to represent 
different triggering contexts, and the action of the KS is 
also specified by the same set of variables to represent 
alternative actions under different contexts. All 
knowledge sources operate simultaneously at every cycle 
and generate knowledge source activation records 
(KSARs) when specified trigger conditions and 
blackboard contents exist. 

No preset order of execution is defined in the system. 
It dynamically selects a sequence of actions (KSARs) to 
produce a design according to the design strategies that 
are in use. At each design step, the schedulers of the 
system select one KSAR for execution based on how well 
the action of a certain KSAR matches the intent of the 
current design strategies on the control blackboard. The 
design strategies are represented as plans and goals. A 
goal is a design consideration that the system uses to rate 
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KSARs. A plan is a sequence of design goals that 
represents a design strategy. 

Different levels of abstraction of design plans can 
help decompose and organize design knowledge. A plan 
can specify a sequence of goals that produce a subdesign. 
A plan can be a top-level design strategy that points to 
other plans. Therefore, a global design goal can be 
dynamically expanded into a more detailed design plan (or 
plans) at run time. The individual goals of that plan may 
be further expanded if specific plans are available. This 
top-down plan decomposition with several levels of 
abstraction is called goal expansion. An Example is 
given in Figure 1. It is possible that several expansions 
are available for a given design goal. Therefore, the 
system frequently has multiple design plans on the 
blackboard at once. 

Cantilever.Bridge.Design.Plan 
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JI 
Cantilever.Bridge.Design.Subplan.3 

Figure 1 : An Example of Goal Expansion 

The rating of a KSAR against a plan on the control 
blackboard is a function of the priority of the action 
against current goals of the plan and the importance of 
different goals. There may be more than one plan on the 
control blackboard. In that case, the rating of a KSAR 
with respect to all plans is the weighted and normalized 
sum of the individual ratings. The weighting process 
takes into account the different importance of plans. The 
rating of every KSAR is a numeric value ranging from 
zero to one hundred, which represents a “no match” to a 
“perfect match”. At every cycle, the scheduler selects 
the highest rated KSAR to execute (or the user can 
ovemde the scheduler by selecting a different KSAR). 

4: Representation of design plans 

Knowledge representation in the design system is 
based on an object-oriented approach. Design strategies 
are stored as plan and goal objects in the knowledge base. 
When design plans and goals are posted on the control 
blackboard, the system regards them as the control 
knowledge of the current design session and uses them to 

rate and schedule design actions. The top-level design 
plan (Cantilever.Bridge.Design.Plan) in Figure 1 is given 
in Figure 2 as an example. The following are 
explanations of the properties of plans: 

0 GOAL.LIST- a list of goal objects to be 
activated sequentially. Each element of the list 
can be a single goal object or a list of goals to be 
activated at the same time. 

0 INTENTION-a LISP form that indicates when 
the plan needs to be deactivated. When it 
evaluates to true, either the intention of the plan is 
satisfied or it is no longer applicable. 

0 WEIGHT - a number between 1 and 10 
(inclusive), representing the importance of the 
plan. It is used in KSAR rating to account for 
different priorities of design plans. The default 
value is 5. It can be changed by the user when 
creating the plan object or by control KSs during 
design. A plan with a higher weight value is 
considered more important than a plan with a 
lower weight and is more influential in scheduling. 

0 ACTIVE.GOAL-the goal (or goals) currently 
active in this plan. It is an internal attribute used 
by the blackboard maintenance mechanism. The 
default value is NIL, and it will be set to an 
appropriate value during blackboard updating. 

0 REMAINING.GOAL.LIST-a list of goals that 
remain to be activated in this plan. It is an 
internal attribute with a default value of NIL, and 
it will be set to an appropriate value by the 
blackboard maintenance mechanism. 

INTENTION: Valid while the cantilever 
bridge design parameters 
(e.g., construction method, 
longitudinal profile, span 
depth ratio, slab thickness, 
tendon type, number of 
tendons, etc.) are undecided. 

GOAL.LIST: ( input.variable 
cantilever. bridge.design 
check.major.constraints 
activate.pre- 
relaxed.constraints 
end.design.session ) 

WEIGHT: 7 
ACTIVFLGOAL: cantilever.bridge.design 
REMAINING.GOAL.LIST: ( check.major.constraints 

activate.pre-re- 
1axed.constraints 
end.design.session ) 

Figure 2: Cantilever.Bridge.Design.Plan 
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A goal is the primary rating object for the blackboard 
design system. It can be a part of a design plan or a 
stand-alone design consideration. All activated goals on 
the blackboard are used to rate KSARs. The attributes of 
goals are explained below and an example is given in 
Figure 3. 

0 FUNCTION-a LISP form that returns a value 
between 0 and 100. This is the rating function 
that evaluates how well a KSAR serves the goal. 
The higher the returned number is the better the 
KSAR is for achieving the goal. 

0 INTENTION-a LISP form that indicates when 
the goal needs to be deactivated. When it 
evaluates to true, either the intention of the goal is 
satisfied or it is no longer applicable. 

0 WEIGHT - a number between 1 and 10 
(inclusive), representing the importance of the 
goal. It is used in KSAR rating to account for 
different priorities of design goals. The default 
weight of a goal is 5.  It can be changed by the 
user when creating the goal object or by control 
KSs during design. A goal with a higher weight 
value is considered more important than a goal 
with a lower weight and is more influential in 
scheduling. 

0 1NCLUDE.IN-the plan object to which the goal 
belongs. If the value is NIL, the goal is not 
attached to any plan. Usually, a stand-alone 
goal is an important design decision that needs 
immediate attention. For example, stand-alone 
redesign goals fix constraint violations. 

FUNCTION: Favor actions instantiated from 
subclasses of cantilever bridge design 
generator. 
Valid while the cantilever bridge section 
properties (e.g., web thickness, top and 
bottom slab thickness, etc.) are 
undecided. 

INTENTION: 

WEIGHT: 5 
INCLUDEDJN: Cantilever.Bridge.Design.Plan 

Figure 3: The Cantilever.Bridge.Design Goal 

5: Learning design plans 

After a design session is done, design information is 
still stored on the blackboard, which includes problem 
inputs, final solution, intermediate solutions, variable 
value justifications and design history (a sequence of the 
executed KSs and their bindings). It is time for the 
learning element to perform memory-oriented learning. 
That is to learn design strategies from the just finished 
design. However, the design strategies do not explicitly 

exist on the blackboard. The strategy recorder of the 
learning element analyzes the design history and 
constraint status as well as other information on the 
blackboard and captures design strategy in the form of 
design plans and goals. A design memory is then used to 
store the recorded plans and goals. The memory is 
divided into two parts: a memory of plans and a memory 
of goals. 

A recorded plan is a subclass of the plan object 
discussed in the previous section. It stores the problem- 
solving or backtracking strategy of a particular previous 
design. It specifies the sequence of design goals 
achieved by the previous design steps. The recorded 
goals will be discussed later in this section. 

The strategy recorder in the learning element of the 
design system is responsible for creating recorded plan 
objects and saving them in the memory. The control 
knowledge of a previous design session is abstracted to 
one global design plan and several redesign plans. The 
process that the strategy recorder uses to capture design 
plans is stated below: 

0 Identify major design actions. The design 
history is analyzed, and all KSs that modified the 
solution blackboard are gathered. This step is to 
filter out unnecessary design steps that do not 
directly contribute to the solution process (e.g., 
control KSs that only modify the control 
blackboard). 

0 Create associated goals. A recorded goal is 
created for each identified major action (KS) in 
order to prefer the same KS in the future. This 
process is discussed in detail later. 

0 Differentiate design and redesign goals. The 
major design actions can be classified into design 
and redesign actions. Therefore, the recorded 
goals are assigned to one design plan that 
represents the major design path and several 
redesign plans that represent the various 
backtracking processes. The goals then make up 
the goal list of their plan. 

0 State the intention of the plans. The intention 
of a global plan is to generate design value for all 
the design attributes and to satisfy all the 
applicable constraints of the design. The 
intention of a redesign plan is to satisfy all 
unsatisfied constraints that triggered the redesign 
process. 

The strategy recorder is also responsible for creating 
recorded goal objects and saving them in the goal memory. 
A recorded goal represents one step of the recorded plan 
that it belongs to. It contains a rating function to 
evaluate the usefulness of future KSARs for reproducing 
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the effect that resulted from the past action taken at that 
step. 

Three different rating levels are created for each 
recorded goal: 

e 

0 

e 

In 

” 
High rating-A high rating is given to the 
KSARs instantiated from the same KS that 
previously triggered the KSAR used to 
accomplish the goal (i.e., KSARs from the same 
KS). 
Moderate rating-KSARs that modify the same 
design objects and attributes attain a moderate 
rating. 
Limited rating - Same types of actions (i.e., 
KSARs with same parent class as the previously 
used KSAR) score a limited rating. 
this way, each step of a recorded plan can be 

followed precisely, closely or loosely by the system’s 
control mechanism when the plan is reused (that is, 
reposted on the blackboard). However, further 
experiment shows that the level of backtracking is the 
most important guidance that a recorded backtracking goal 
can give to later designs. The backtracking level is 
recorded with the bindings of the previously executed 
backtracking KSAR. Therefore, to capture that decision, 
the following rating level is added to the top of the rating 
condition list for recorded goals that are extracted from 
previous backtracking provoking actions. That is four 
rating conditions are used instead of three. The highest 
rating is given by the condition stated below: 

0 Excellent rating -The best rating is given to 
the KSARs that are the same as previously used 
to accomplish the redesign goal (i.e., KSARs 
from the same KS with the same bindings). 

The intention of a recorded goal is the negation of the 
trigger condition of the KS that previously accomplished 
the design step. A goal is not applicable when its 
intention is true. The action is not appropriate or is already 
executed when its trigger condition is not true. 
Therefore, when the trigger condition of a previous action 
is not true, the recorded goal denoting that action is not 
applicable (either the goal is already accomplished or the 
intended purpose of the goal is not desirable). The 
formulation works well with the plan and goal updating 
mechanism of the blackboard design system. 
Inapplicable goals from past plans are delayed or skipped 
under this setup. 

6: Conclusions 

This approach was tested for structural design of 
balanced cantilever bridges. The recording and reuse of 
design plans and goals in the blackboard design system 
are fundamentally supported by the underlying model of 

the system, and the model directly influences the 
representation of design plans and goals. The control 
knowledge captured is of little use unless it can be 
recognized by system‘s control mechanism. Therefore, 
the recorded plans and goals are expressed in a format that 
can later be directly posted on the control blackboard by 
control actions to change the behavior of the design 
system. 

The initial result of this research revealed the 
difficulties of capturing design strategies as design plans. 
While recording the designer‘s steps as design plans, the 
system can capture the explicit basis of the design plan, 
such as the ingredient design attributes, satisfied 
constraints, unsatisfied constraints, performed actions, etc. 
However, the implicit supporting reasoning behind design 
plans can not be acquired (e.g., judgment based on 
unrepresented design considerations and analysis of 
values from several objects, etc.). The system assures 
the fundamental appropriateness of transferring previous 
plans. However, the good result of plan reuse is not 
promised. To fully assess the correctness of plan reuse, 
the system needs to capture the undeclared reasons 
associated with individual human design decision. 
Furthermore, the system can not justify design steps of its 
user. It only records the designer‘s steps and assumes 
their correctness. A possible solution to these problems 
is to build an interface to let the user provide justifications 
whenever the system’s decisions are overridden. 

References 

1. Duffy, Alex H.B., Brown, David C. and Maher, Mary Lou, 
“Special Issue: Machine learning in design,” Artifcia1 
Intelligence f o r  Engineering Design, Analysis and 
Manufucruring, Vol. 10, pp. 81-82, Cambridge University 
Press, 1996. 

2. Smith, Reid G., Mitchell, Tom M., Chestek, Richard A. and 
Buchanan Bruce G., “Model for Learning Systems,” 
Proceedings of the Fifth IJCAI, Fifth International Joint 
Conference on Artificial Intelligence, Cambridge, 
Massachusetts, pp. 338-343, August, 1977. 

3. Mitchell, Tom M., Learning and Problem Solving, Technical 
Report LCSR-TR-45, Department of Computer Science, 
Rutgers University, New Brunswick, New Jersey 08903, June 
1983. 

4. Bundy, Alan, Silver, Bernard and Plummer, Dave, An 
Analytical Comparison of Some Rule Learning Programs, 
Research Paper No. 215, Department of Artificial 
Intelligence, University of Edinburgh, 1984. 

5. Hayes-Roth, Barbara, “Blackboard Architecture for Control,” 
Artificial Intelligence, Vol. 26, pp. 251-321. 1985. 

6. Nii, H. Penny, “Blackboard Systems : The Blackboard 
Model of Problem Solving and Evolution of Blackboard 
Architectures-Part One,” AI Magazine, Vol. 7 ,  No. 2, pp. 
38-53, 1986. 

126 


