
HIGH-SPEED EBCOT WITH DUAL CONTEXT-MODELING CODING

ARCHITECTURE FOR JPEG2000

Jen-Shiun Chiang, Chun-Hau Chang, Yu-Sen Lin, and Chang-You Hsieh, Chih-Hsien Hsia

Department of Electrical Engineering, Tamkang University, Tamsui, Taipei, Taiwan

E-mail: {chiang, chchang, yslin, p21001, Hsia}@ee.tku.edu.tw

ABSTRACT

This work presents a parallel context-modeling coding

architecture and a matching arithmetic coder (MQ coder)

for the embedded block coding (EBCOT) unit of the

JPEG2000 encoder. The Tier-1 of the EBCOT consumes

most of the computation time in a JPEG2000 encoding

system, and the proposed parallel architecture can increase

the throughput rate of the context-modeling. To match the

high throughput rate of the parallel context-modeling

architecture, an efficient pipelined architecture for context-

based adaptive arithmetic encoder is proposed. This

encoder of JPEG2000 can work at 185MHz to encode one

symbol each cycle. Compared with the conventional

context-modeling architecture, our parallel architecture can

decrease the execution time about 25%.

1. INTRODUCTION

JPEG2000 is a new image compression standard developed

by the JPEG committee (ISO/IEC JTC 1/SC 29/WG 1) [1].

JPEG2000 image coding system provides very good rate-

distortion performance in low bit-rate image compression

and subjective image quality. The key algorithms of

JPEG2000 include discrete wavelet transform (DWT),

scalar quantization, context modeling, binary arithmetic

coding, and post-compression rate allocation. Although

JPEG2000 takes the benefits of EBCOT, the EBCOT takes

more than 50% of the computation time [3]. A speedup

method, sample skipping (SS) [4], was proposed to realize

the EBCOT in hardware to accelerate the encoding process.

Since the coding procedure proceeds column-by-column, a

clock cycle is still wasted whenever the entire column is

empty. In order to solve the empty column problems of SS,

a method called group-of-column skipping (GOCS) [4] was

proposed. However GOCS is restricted by its predefined

group arrangement and it requires an additional memory

block. An enhanced method of GOCS called multiple

column skipping (MCOLS) [5] was also proposed. MCOLS

performs tests through multiple columns concurrently to

determine whether the column can be skipped. The MCOLS

method has to modify the memory arrangements to supply

state information for determining which column to be coded,

and it limits the number of simultaneously combined

columns. Besides the intensive computation, EBCOT needs

massive memory locations. In conventional architectures,

the block coder requires at least 20K-bit memory.

Chiang et al. proposed another approach to increase

the speed of computation and reduce the memory

requirement for EBCOT [6]. They use pass-parallel context

modeling (PPCM) technique for the EBCOT entropy

encoder. The PPCM can merge the multi-pass coding into a

single pass, and it can also reduce memory requirement by

4K bits and require less internal memory accesses than the

conventional architecture.

In order to increase the throughput of the arithmetic

coder (MQ coder), people like to design MQ coder by

pipelined techniques [8]. However the pipelined approach

needs a high performance EBCOT encoder, otherwise the

efficiency of the MQ coder may be reduced. This paper

proposes a parallel context- modeling scheme based on the

PPCM technique to generate two CX-D data each cycle,

and a matched pipelined MQ coder is designed to

accomplish a high performance Tier-1 coder.

2. EMBEDED BLOCK CODING ALGORITHM

The block diagram of the JPEG2000 encoder is shown in

Fig. 1. The discrete wavelet transform and the scalar

quantization are first applied for the input image data. The

quantized transform coefficients are then entropy coded by

using context-modeling and adaptive binary arithmetic

coding. Finally, the compressed data is organized into a

feature-rich code-stream by using post-compression rate-

distortion optimization algorithm. The key algorithms of the

entropy coding involved in this paper are described in the

following subsections.

Fig.1. The block diagram of JPEG2000 encoder system.

2.1 Context-Modeling

After the transformation and quantization steps are

performed, each sub-band is partitioned into rectangular

blocks (called code-blocks). typically 64×64 or 32×32 in

dimension. EBCOT, the PPCM proposed by Chiang et al. [6] can

increase the efficiency by merging the three coding passes

to a single one. PPCM requires four blocks of memory and

each block takes 4K bits. These four blocks are classified as

x (records all signs of samples in a bit-plane), vp (records all

magnitudes of samples in a bit-plane), 0 (records the

significance of pass 1), and 1 (records the significance of

pass 2) respectively. The refinement memory can be

replaced by 0 1, where is the logical exclusive-or

operation. Therefore, the memory requirement of PPCM is

4K bits less than that of a conventional design. The PPCM

also uses the column-base operation [4] to find the

information of the memories. Since the PPCM merges the

three coding passes to a single pass, it encounters two

problems. One is that the coded sample belonged to pass 3

may become significant earlier than pass 1. The other is

how to predict neighbour significances of the coded

samples that are belonged to pass 1, pass 2, and pass 3

respectively. The authors of [6] proposed two methods to

solve the first problem. Firstly they use two memory blocks

0 and 1 to record the significances of pass 1 and pass 3,

and then they delay the pass 3 coding one stripe column.

For the second problem, they use Table I to predict the

neighbour significances. Besides, they use “stripe causal”

mode of JPEG2000 [2] to break the correlation between the

current stripe and next stripe. By using these techniques, all

samples in each column can be coded one by one efficiently.

In the context-modeling module, all quantized transform

coefficients of the code-blocks are expressed in sign-

magnitude representation and divided into one sign bit-

plane and several magnitude bit-planes (from MSB to LSB).

During coding scan, the bit-plane can be divided into

several stripes. Each stripe is composed of four row

samples. The bit-plane is scanned stripe by stripe. In order

to improve the embedding of the compressed bit-stream,

each bit-plane is coded in three coding passes. Each sample

in a bit-plane is coded in only one of the three coding

passes. The three coding passes and the condition for each

pass are described as follows: 1) Significant pass (pass1):

The coded sample is insignificant and at least one of the

neighbour sample is significant. 2) Magnitude refinement

(pass2): The relative sample of the previous bit-plane is set

significant. 3) Cleanup pass (pass3): Those samples that

have not been coded by pass 1 or pass 2 in current bit-plane.

These three passes are composed of four coding primitives:

zero coding (ZC), sign coding (SC), magnitude refinement

coding (MR), and run length coding (RLC). The context-

data are generated by these primitives according to different

neighbour states of the coded sample. These states are

shown in Fig. 2. The more detail about the context-

modeling algorithm can be found in [1] and [3].

Fig. 2. The the neighbor states used by different

primitives. (a) ZC and MR . (b) SC. (c) RLC

2.2 Adaptive Binary Arithmetic Coding

The MQ coder is an adaptive binary arithmetic coder with

renormalization-driven probability estimation. To reduce

complexity, there are only 18 contexts used in JPEG2000,

and each coding context is represented by 5 bits of the state

information. Since the spirit of the MQ coder is adaptive in

nature, the content of the selected context is updated based

on the probability estimation process defined in JPEG2000

whenever a renormalization occurs. A byte of compressed

data is removed and outputted from the high order bits of

the code register C periodically to keep C from overflowing.

When all of the symbols have been coded, the FLUSH

procedure is executed to terminate the encoding operations

and generate the required terminating marker. Several bytes

are also generated in the FLUSH procedure.

2.3 Pass Parallel Context Modeling

Because the inefficiency of the context-modeling of

Table . The predicted technique for three pass types

Pass Type Significant Prediction

Pass 1 Visted samples: 0[k]

Have not visted samples: 0[k] || 1[k]

Pass 2 Visted samples: 0[k]

Have not visted samples: 0[k] || 1[k] || vp[k]

Pass 3 Visted sample: 0 [k] || 1[k]

Have not visted samples: 0[k] || 1[k]

(“||”: OR logic operation , k: location of the coded sample)

3. PROPOSED ARCHITECTURE

Based on PPCM, this paper presents a parallel coding

architecture to further save the coding clock cycles. Our

design uses a “context-window” register to store all coded

samples and neighbour status of all coded samples.

Moreover, the “stripe causal” mode and column-based

operation are also adopted. Fig. 3 shows the context-

window. The context-window consists of two parts; the first

part processes all samples that are coded by pass 1 and pass

2 in column C, and the second part processes the rest

samples coded by pass 3 in column C to shift left one

column to be coded in column D. The coding procedures

can be divided into three steps:

Step 1: code the sample that belongs to pass 1 or pass 2.

Step 2: code the sample that belongs to RLC of pass 3.

Step 3: code the sample that belongs to ZC or SC of pass 3.

In order to increase the throughput rate, Step 1 and Step 3

process two samples concurrently.

Fig. 3. The proposed coding context-window register

In order to code two samples in column C to produce

the Context-Data (CX-D) simultaneously, the prediction

method about upper position of each coded sample from

position 1 to position 3 in column C must be modified. For

example, both pass type and significance of position 0 have

to be considered when the system is coding the sample at

position 1 in column C. Since the correct significance of

position 0 is known until next cycle, it has to be predicted in

the current cycle and the method is shown as equation (1).

0[k-1] = 0 [k-1] || Sp (1)

If upper pass type = 1: Sp = vp [k-1]

If upper pass type = 2: Sp = 1

Where Sp is a variable determined by the upper pass type of

the coded sample, vp[k-1] is the upper magnitude of the

coded sample, and 0[k-1] is the upper significance of the

coded sample.

The block diagram of the proposed architecture is

shown in Fig. 4. There are four memory blocks to store

status of the code-block (magnitude, sign, pass 1 significant,

and pass3 significant). In the very beginning, the data

needed for coding are loaded into the context-window unit

one column a time. After some operations, the information

needed by all coding primitives are generated and sent into

the context block. The context block unit is composed of

two “ZSM” (ZC, SC, and MR) primitive blocks and one

RLC primitive block. Since we process two samples

concurrently, The output number of CX-D pairs is not

constant (from 1 to 4) at each cycle. These CX-D pairs are

sent into the MQ coder one by one. Therefore a parallel-in-

serial-out (PISO) buffer is needed. Fig.5 shows this

architecture.

In order to avoide the data in current cycle being

overwriten by next cycle. The frequency of MQ coder and

the size of PISO buffer are important issues. Table II shows

the output number percentage of the context modeling of 6

image pictures. From TableII, the output number of two

occurs most frequently. Therefore the operation frequency

of the MQ coder of twice of the context modeling is

selected. Moreover the percentage of four outputs is about

5%, and thus we use 10 buffers in our design.

Fig. 4. The proposed architecture of context-modeling

Fig. 5. Proposed architecture of Tier-1

Table II. The condition of output number in our design

The output number Image

Size

Test

Image
1 2 3 4

Lena
197700

28.45%

299552

43.10%

155829

22.42%

42862

6.02%

Jet
229396

34.76%

252241

38.23%

136365

20.67%

41754

6.33%
512x512

Baboon
163400

19.72%

449707

54.28%

175629

21.20%

39681

4.79%

Bike
4828464

32.61%

6215432

41.97%

2940479

19.85%

823400

5.56%

Cafe
4524970

27.57%

7912284

48.21%

3170517

19.32%

804444

4.90%
2048x2560

Woman
3806095

28.04%

5948512

43.83%

2957053

21.79%

860102

6.34%

Average 28.19% 44.94% 20.88% 5.66%

4. MQ Coder

In order to increase the performance of MQ Coder, we use a

pipelined architecture to divide all the coding procedure

into four stages. This architecture is shown in Fig. 6. Those

CX-D data streams sent into the MQ Coder from our

parallel coding architecture are interleaved. Therefore the

traditional architecture must be modified to eliminate the

conflict. In [6] more context registers and coding state

registers are used to solve this problem. In our pipeline

design, this method is also adopted. We increase two coding

state registers (A, B, C, CT) in Stage 2 and Stage 3.

 In Stage 1, CX and pass number are sent into the

“context table” to select an index and MPS symbol.

However, the correct index is not known until Stage 2 is

finished and a wrong index may be selected. Therefore a

predict scheme has to be used to predict the next new index.

An “index predict” unit is used for the index prediction and

a register is used to save “nlps” or “nmps”. If

renormalization is executed during the operation of Stage 2,

the correct index must be fetched from the “index predict”

unit. Stage 2 and Stage 3 are used to calculate the new

interval (A) and lower bound (C). In order to increase the

clock rate, the calculation of C is divided into Stage 2 and

Stage 3. This technique is adopted from [7]. Because the

largest number of byteout is 2 bytes, we add a FIFO in

Stage 4 to make the last bit-string in order.

Fig. 6. Pipeline architecture of the MQ-Coder.

This MQ Coder has been synthesized using Synopsys in the

worst case environment (WCCOM). The clock rate can be

run at 185MHZ to encode one CX-D each cycle.

5. EXPERIMENTAL RESULTS

The execution time of this proposed architecture and

PPCM architecture [6] is compared. There are six different

images with size 512x512 used in our experiments. The

result is shown in table III. The proposed architecture

reduces about 25% execution time.

Table III. Experimental result of the execution time

Execution Time

(Clock Cycle)
Test

Image
[6] This work

Decreased

Perentage

Lena 1431739 1083918 24.29%

Jet 1748425 1383706 25.22%

Baboon 1309989 979650 20.86%

Boat 1359648 1017169 25.19%

Pepper 1277950 945675 26.00%

Zelda 1142081 816326 28.52%

Average 1378305 1037740 25.01%

6. CONCLUSION

This paper proposes a parallel coding architecture to

increase the throughput rate of the context-modeling of

JPEG2000 for about 25% compared with the previous work.

A pipelined MQ coder is also designed to match the parallel

context-modeling architecture, and this encoder can operate

at clock rate of 185MHz.

7. REFERENCES

[1] M. D. Adams,The JPEG-2000 Still Image Compression

Standard, ISO/IEC JTC 1/SC 29/WG 1 N2412, Sep. 2001.

[2] D. Taubman, E. Ordentkich, M. Weinberger, and G.Seroussi,

“Embeded block coding in JPEG2000,” HP Labs, Palo Alto,

Feb. 2001.

[3] M. D. Adams and F. Kossentini, “Jasper: a software-based

JPEG-2000 codec implementation,” Proc. IEEE Int. Conf.

Image Processing, vol. 2, pp. 53-56, Sep. 2000.

[4] K.-F. Chen, C.-J. Lian, H.-H. Chen, and L.-G. Chen, “Analysis

and architecture design of EBCOT for JPEG2000,” Proc.

IEEE Int. Symp. Circuits and Systems, vol. 2, pp. 765-768,

May 2001.

[5] H.-H. Chen, C.-J. Lian, T.-H. Chang, and L.-G. Chen,

“Analysis of EBCOT decoding algorithm and its VLSI

implementation for JPEG 2000,” Proc. IEEE Int. Symp.

Circuits and Systems, vol. IV, pp. 329-332, 2002.

[6] J.-S. Chiang, Y.-S. Lin, and C.-Y. Hsieh, “Efficient pass-

parallel architecture for EBCOT in JPEG2000,” IEEE Int.

Symp. Circuits and System, vol. I, pp.773-776, May 2002.

[7] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen,

“ Analysis and architecture design of block-coding engine for

EBCOT in JPEG 2000,” IEEE Trans. Circuits and Systems

for Video Technology, vol. 13, pp. 219-230, March 2003.

[8] K.-K. Ong, W.-H. Chang, Y.-C. Tseng, Y.-S. Lee, and C.-Y.

Lee, “A high throughput context-based adaptive arithmetic

codec for JPEG2000,” IEEE Int. Symp. Circuits and Systems,

vol. IV, pp. 133-136, May 2002.

	footer1:

