
Large Block Inpainting by Color Continuation Analysis 

Timothy K. Shih, Rong-Chi Chang, Liang-Chen Lu, and Louis H. Lin 

Multimedia Information Network Lab 

Department of Computer Science and Information Engineering 

Tamkang University, Taiwan, R.O.C. 

E-mail: tshih@cs.tku.edu.tw

ABSTRACT

Automatic inpainting is a mechanism which repairs 

damaged pictures using an approximation mechanism. 

The most difficult problem is to inpaint a large damaged 

area, without knowing its content. One possible solution is 

to use color interpolation or extrapolation on surrounding 

pixels. However, spatial characteristics such as edges and 

pixel continuations are hard to be restored. In this research, 

we propose a series of automatic algorithms, which is 

based on an analysis of color continuations. Large 

damaged blocks are repaired, before the rest smaller 

potions are repaired by a multi-resolution inpainting 

algorithm. The mechanism is tested on more than 2000 

images, including cartoon drawing, photos, Chinese 

painting, and western painting. Our results prove that, the 

proposed automatic mechanism fixes damaged image up 

to a certain degree of satisfaction from the users. The 

demonstration of our work is available at: 

http://www.mine.tku.edu.tw/demos/inpaint.

Key words: digital inpainting, image restoration, large 

block inpainting, multi-resolution inpainting 

1. Introduction 

Automatic digital inpainting is a technique which restores 

damaged image or video by means of image interpolation. 

The technique can be used in photo restoration, zooming, 

and even image coding. Current techniques may base on 

the extrapolation of neighboring pixels, recovery of edges, 

curvature-driven diffusions (according to the connectivity 

principle in vision psychology) [3], and inpainting from 

multiple view points (i.e., image from movie, or image 

from different time and view point). A fast inpainting 

algorithm was proposed in [4]. Efficiency of the proposed 

method [4] is two to three orders of magnitude faster than 

those using partial differential equations. In addition to 

inpaint damaged pictures, the work presented in [1] can 

automatically inpaint a user-selected region, by using 

surrounding information. Another paper [2] takes the 

ideas from classical fluid dynamics to propagate isophote 

lines. Inpainting can be used in attacking a visible 

watermark [5]. The system discussed in [5] allows users 

to select a watermark area, and to produce an 

approximation to the original picture. 

One of the most challenge problems of automatic 

inpainting is when there is only little or no information 

that can support pixel restoration of large damages areas. 

Most extrapolation or interpolation algorithms rely on 

surrounding pixels. However, if too much information is 

lost, automatic mechanism is impossible to recover all 

details. In this situation, user knowledge should be used 

by meanings of some drawing tools. In some cases, 

texture characteristics can be applied in restoration. 

However, if a picture contains important spatial 

characteristics, such as the horizontal line of the edge of a 

building, it is hard to restore vectors automatically.  

We propose algorithms which take surrounding pixels, 

and compute possible color continuations. We also 

propose another method and an evaluation mechanism, 

based on different level of details of still image. We claim 

that, if an image region is seriously damaged, it is not 

realistic to rely on the extrapolation of neighboring pixels 

in any method. Instead, global information should be used. 

In addition, if the variance of pixel colors is large in an 

image block, it is possible that the block contain detailed 

shapes. Thus, a multi-resolution strategy should be 

considered. We present our algorithm and an evaluation 

mechanism. Analysis is given based on a test of more than 

1000 pictures, with randomly generated noise. We 

conclude that, our algorithm consider different levels of 

details. And, the overall efficiency is higher then others 

using a singular resolution approach.  

We deal with the special cases first in section 2. The main 

inpainting algorithm is presented in section 3, followed by 

an evaluation mechanism (section 4). We tested more than 

2000 images of different kinds. Analysis is given in 

section 5 before the conclusion is presented. 

2. Inpaint Large Damaged Blocks 
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When dealing with inpainting of large damaged blocks, a 

simple algorithm of color interpolation results badly. To 

cope with this problem, special treatment is necessary. We 

propose two recursive algorithms, which estimate color 

continuations of surrounding pixels with respect to a large 

damaged block and progressively inpaints the block by 

averaging colors. The algorithm is able to guess edge 

vectors which preserve shapes up to a degree of 

satisfaction. The difference between these two algorithms 

is on the definition of a mapping function, which decides 

colors for inpainting. 

Figure 1: Surrounding Pixel Groups and Mapping 

The fundamental concept of the algorithms assumes that a 

block (consists of inpainting pixels) to be filled is at least 

surrounded by n levels of surrounding pixels. In a 

boundary case, duplicated surrounding pixels can be 

added to ease computation. In figure 1(a), n is set to 2 for 

illustration. Inpainting pixels are shown in white and 

surrounding pixels are shown in non-white colors. 

Surrounding pixels are grouped into n by n groups, which 

are numbered from 1 to 32. Each of these groups has a 

mean color M. Mean colors are used to estimate color 

continuations. The threshold of mean color differences, ,

depends on the color space used. For instance, in the HSV 

color space, the difference can rely on the value of hue. 

This threshold can be computed from the color variation 

of the entire picture. We present two recursive algorithms 

here. The first algorithm uses mean colors of surrounding 

pixel groups. It is easy to implement and runs faster. The 

second algorithm is CPU time consuming but has a better 

result. 

Algorithm 1: Brute Force Color Extrapolation 

Step 1: Inpaint: For each outer most inpainting pixel, 

inpaint according to the following mapping: 

f(A) = 1, f(B) = 2, f(C) = 3, f(D) = 3 

f(E) = 32, f(F) = 31, f(G) = 31 

based on the illustrations in figure 1(b), where A to G are 

inpainting pixels, and numbers represent surrounding pixel 

groups. Other mappings can be computed in a similar 

manner. The mean colors of groups are used to inpaint the 

outer most inpainting pixels. 

Step 2: Recursion: Shrink the inpainting pixel block by one 

level (i.e., removes the outer most pixels), and recursively 

call the algorithm until the size of inpainting pixel block is 

equal to 1 by 1 (or 0 by 0). Inpaint the last pixel (if any) by 

the mean of Ms of the four surrounding pixel groups. 

The disadvantage of the first algorithm includes error 

propagation. One of the solutions to solve this problem is 

to cut and paste surrounding pixel blocks, with a 

randomized control. However, the result fails to preserve 

special characteristics such as edges and gradient.

Algorithm 2: Color Extrapolation by Continuation 

Step 1: Calculate mean color continuation: Subdivide all 

surrounding pixel groups into a number of group series, 

based on the similarity of mean colors, and the threshold .

A surrounding pixel group at the boundary of a series is 

called a boundary pixel group.

Step 2: Inpaint: For each outer most inpainting pixel, 

inpaint according to the following mapping defined in table 

1.

Step 3: Recursion: Shrink the inpainting pixel block by one 

level (i.e., removes the outer most pixels), and recursively 

call the algorithm until the size of inpainting pixel block is 

equal to 1 by 1 (or 0 by 0). Inpaint the last pixel (if any) by 

the mean of Ms of the four surrounding pixel groups. 

The mapping function for algorithm 2 is based on the 

definition of two patterns. In figure 3, pattern A and 

pattern B are used as the sources of inpainting color 

computation, for a pixel in a corner and a pixel not in a 

corner, respectively. Both of these patterns has a consist 

color of pixels (i.e., A and B), or multiple colors (i.e., C 

and D). A group of pixels are consistent if all pixels have 

their colors differ in at most  (the threshold of color 
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difference). Usually, color differences large then the 

threshold occur in boundary pixel groups. Table 1 

summarizes the pre-image and image of a mapping 

function, which finds inpainting colors. The second 

algorithm relies on the mapping, to find a suitable color 

for each inpainting pixel. 

Figure 3: Color continuation of surrounding pixels 

and Patterns for inpainting color computation 

Since table 1 is designed according to human perception 

on the boundary of color changes, luckily, it is possible to 

preserve spatial characteristics such as edges and gradient.  

The initial step is to handle large damaged area. However, 

in a typical damaged picture, damaged areas are by 

scratch lines, inks, and other small effects. Frankly 

speaking, if the damaged area is too large, too much 

information is lost. It is impossible to automatically 

restore the damage. However, for damages of small 

regions, automatic restoration is possible, as we should 

discuss in the next section. 

Table 1: Color Mapping Function of Algorithm 2
Boundary Corner

default

3. Inpaint by Color Interpolation 

To restore damages areas automatically, we design a 

recursive algorithm. The algorithm works as the following. 

Let DIB be a damaged image block. We subdivide DIB

into n by n image blocks (i.e., IBs).  The default value of 

n is set to 16. There are three adjustable thresholds used: 

is a threshold of variance of pixel colors, and 1 and 2 are 

the thresholds of percentages. We assume that, an image 

block has i*j pixels, and a color variance, var, can be 

calculated as

ji

x

x
i j

ij

    , )1/())((var 2 jixx
j

ij

i

,

where x  is the average of pixel color. Color variance has 

a strong indication of the degree of details in an IB. The 

threshold  sets the criterion of whether a multi-resolution 

inpainting is required. In our implementation, the value of 

is a percentage in the range between 0 and 100 (the 

maximum var) of an IB. Another criterion is the 

percentage of potential damaged pixels. We argue that, if 

the percentage is too high, using surrounding color 

information to fix a pixel is less realistic as compared to 

using a global average color. In some severe cases, it is 

impossible to use neighborhood colors. Note that, both 

thresholds are adjustable for the sake of analysis. The 

recursive algorithm iterates through each of the IBs in a 

DIB. If the color variance of IB is below the threshold ,

there is not much difference of pixels in IB. No 

subdivision is required (i.e., no need of looking at the next 

level of details). Thus, the algorithm further divides IB

into several pixel blocks (i.e., PBs). If the percentage of 

damaged pixels in a PB is too high (i.e., greater than 2),

the mean color of IB is used. One example is that the 

(a) Separation of Color Continuations 

s
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(b) Patterns of Inpainting Colors 
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entire PB is damaged (thus we need to use the mean color 

of IB). Alternatively, if the percentage is still high (i.e., 

greater than 1), the mean color of PB is used. Note that, 

the computation of mean colors does not take damaged 

pixels into the account. If the percentage is low, neighbor 

pixels are used for inpainting. Finally, if the color 

variance of IB is not below the threshold , the algorithm 

is called recursively to handle the next level of details. 

The following algorithm is implemented on MS Windows 

to test our justification. 

Algorithm 3: Inpainting by Color Interpolation 

Let DIB be a damaged image block 

Let  be a threshold of variance 

Let 1, 2 be a threshold of percentage, 1 < 2

Algorithm inPaint(block DIB)

  use color extrapolation inpainting in large damaged blocks 

  if DIB is a small block then return 

  divide DIB into n*n image blocks 

  for each image block IB

    let var be the color variance of IB

    let Mcolor be the mean color of IB

      if var <  then 

        { 

        let PB be an x*y pixel block in IB

let Ncolor be the mean color of PB

        for each PB in the image block 

          { 

          if the percentage of damaged pixels in PB > 2

            inpaint the damaged pixels using Mcolor

else if the percentage of damaged pixels in PB > 1

            inpaint the damaged pixels using Ncolor

          else 

            inpaint the damaged pixels using neighbor pixels 

          } 

        for each pixel in the boundary of each PB

          smooth boundary pixels using neighbor pixels 

        }

      else  

        call inPaint(IB)

We use this algorithm to design a simple inpainting tool 

(see figure 4), the tool allows one to load a picture, and to 

damage the picture on purpose (by using line, simple 

graphics object, spray, and even randomly generated 

noises). A naïve single-resolution inpainting function and 

our multi-resolution inpainting function discussed above 

are both implemented. The damaged picture and the two 

inpainted pictures are compared with the original picture 

to obtain multi-level evaluation values (shown on the right 

side). The tool is used to test the efficiency of the 

algorithm. Interested readers can download the tool from 

our demo Web site. However, to evaluate the results, we 

also implemented a batch process system, which reads 

1000 bit-mapped pictures, and produces a line chart using 

MATLAB. We discuss our evaluation strategy in the next 

section. For the interests of the reader, figure 5 shows a 

damaged picture, a result from single resolution inpainting, 

and another from multi-resolution inpainting. Note that, 

the result from single resolution inpainting in figure 5 has 

a strip from the sky to the mountain area. The error effect 

is less in the result of multi-resolution inpainting. We 

have 1000 sets of results available on the demo Web. 

Interested readers should check these results. 

Figure 4: A multi-resolution inpainting tool 

4. The Evaluation Procedure 

In a practical situation, it is impossible to compare a 

damaged picture with its original. However, the strategy 

of our evaluation is based on the following assumption. 

Suppose that there are two copies of the original picture. 

The first is damaged, and we will like to recover the 

damage as much as possible such that the inpainted 

picture will look almost the same as the second original. 

Thus, the evaluation of an inpainting algorithm can take in 

to account the PSNR value of the damaged picture, and 

the PSNR value of the inpainted picture. However, using 

a single PSNR value of each picture fails to analyze the 

details. It is possible that, an important small portion of 

the inpainted picture is not well-repaired. But, the overall 

PSNR value of the picture is still high. Thus, we use a set 

of multilevel PSNR values as well as the concept of “the 

percentage of good picture portions.” 

We decompose a picture using a complete quad-tree 

representation. Each level of decomposition equally 

divides an area into 4 quadrants. The number of levels 

depends on the actual size of a picture. As a practical 

situation, we decompose pictures up to 8 levels for 

evaluation. Note that, this decomposition layout is 

different from the multi-resolution inpainting algorithm, 

in order to test the results from a different perspective. Let 

n be the level number (from 1 to a maximum value). The 

average PSNR value at each level can be computed as: 
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where ji

nPSNR ,  is the PSNR value of the decomposed 

blocki,j at level n. And, PSNR1 is the PSNR value of the 

entire picture. According to the PSNR function, the 

average PSNR value at level n+1 is equal to the PSNR 

value at level n. This can be proved mathematically. Or, 

comparing one blank picture to another with a uniform 

distribution of noise will prove the assumption. We have 

tested both approaches. Note that, the decomposition of 

PSNR values is to test the quality of inpainting in the next 

level of detail. It is interesting to know that, in general, the 

average PSNR values at level n+1 are higher then the 

PSNR values at level n. The PSNR values are used to 

compare different inpainting algorithms on an equal base. 

In addition, we count the percentage of areas with their 

PSNR values greater than or equal to 30dB, w. r. t. each 

level of decomposition. In general, the value (i.e., 30dB) 

denotes a good picture quality. The testing tool shows 

PSNR values and percentages at each level (see figure 4).

There are three thresholds in the multi-resolution 

inpainting algorithm, , 1 and 2. We use all 

combinations of the following values: 

 = 50%, 60%, 70%, 80% 

1 = 60%, 65%, 70%, 75%, 80%, 85%, 90% 

2 = 95% 

The selection of 2 is to test the usage of Mcolor (i.e., the 

mean color of the outside image block). Unless a pixel 

block is seriously damaged, otherwise, Mcolor should not 

be used. Thus, the selection of 2 should be high. Since 

1< 2, we select the values of 1 accordingly. The 

threshold is to check the variance. We try to cover a 

wide spectrum. We run through the above combinations 

for 1000 bit-mapped image. The result is discussed in the 

next section. 

5. Analysis 

The values of , 1 and 2 show a great impact to the 

outcome. In general, if is less than 70, the average 

PSNR values at a higher level is about the same as the 

single resolution decomposition. In table 2, we give the 

results of 2 runs, with = 80. The value of  2 should be 

higher than 1. We chose 2 = 95 through our analysis. 

This means that unless the percentage of damaged pixels 

in a pixel block is higher than 95, the mean color of an 

outside big block should not be used. The value of 1 is 

critical. If 1 is less than 60, the result is not as good as 

expected. Table 2 also shows that both the PSNR values 

and the area of good image by our multi-resolution 

algorithm are better than the single resolution approach in 

general.

(Original Picture) 

(Damaged Picture) 

(Single Resolution Inpainting)
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(Multi-Resolution Inpainting) 

Figure 5: A sample test set 

The values of PSNR become high as the level number 

increases. This is due to the fact that, the percentages of 

noise in a picture is relatively low. In some tests, if the 

entire picture is covered by noise, the PSNR values 

increase slowly when the level number increases.  

Figure 6: Results from 1000 pictures 

Figure 6 shows the result from 1000 24-bit BMP images. 

The overall performance of multi-resolution image 

inpainting is better than the single resolution approach, if 

a set of parameters is carefully chosen (i.e., = 80, 1= 90,

and 2= 95). One of the important contributions of multi-

resolution image inpainting is the prevention of error 

propagation, which is encapsulated inside a block. 

However, the disadvantage is that the multi-resolution 

approach does not look at the picture from a global view. 

Discontinuity occurs due to block subdivision. We are 

working on a dynamic resolution scheme to cope with this 

drawback.

6. Conclusions 

We are currently working on transferring our technology 

to the industry. A few issues still need to be resolved. A 

friendly interface will allow users to mark the portion of 

damaged pictures, before the system can inpaint and print 

the pictures. The prototype only takes 24-bit BMP images 

for now. We also need to incorporate more off-the-shelf 

graphics formats. Also, it is possible to separate the 

damaged picture into multiple layers. Artists draw pictures 

in multiple layers. Usually, the background in a Chinese 

painting is in a light color. The foreground is painted in a 

darker color. Separation of layers can be done by a 

classification mechanism based on color histogram. 

Different inpainting mechanism can be used in different 

layer. And, the results can be combined. We believe that, 

the contribution of inpainting methods have both 

academic and commercial values.  
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Table 2: Test Results of 2 sets of parameters using 1000 pictures 

 Average PSNR values (dB) Area percentages with PSNR>30 (%) 

Level Damaged Single Multiple Damaged Single Multiple 

   :80, 1:80 :80, 1:90 :80, 1:80 :80, 1:90

1 21.0908 26.8535 27.9091 27.9103 0 7 17 17 

2 21.9556 27.3046 28.4243 28.4252 3 18 30.25 30.25 

3 26.4713 32.2096 33.6134 33.6144 18.82 39.6 46.47 46.47 

4 42.5164 47.7414 49.2164 49.2175 37.62 53.99 59.23 59.23 

5 60.5305 64.8264 65.9877 65.9892 56.32 66.98 70.64 70.64 

6 75.702 78.8266 79.6501 79.6509 72.35 79.09 81.03 81.03 

7 85.2987 87.5305 88.1085 88.1092 82.98 88.62 89.65 89.66 

8 90.79 92.403 92.8222 92.823 89.2 93.5 94.18 94.18 
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