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Abstract. In this paper we address an inverse scattering problem whose aim is to discuss the CPU time for
recovering a perfectly conducting cylindrical object buried in a slab medium. First, we use Fourier-series or cubic-
spline methods to describe the shape and reformulate the inverse problem into an optimization one. Then we solved
it by the improved Steady State Genetic Algorithm (SSGA) with different crossover rate and Simple Genetic
Algorithm (SGA) respectively and compare the cost time in finding out the global extreme solution of the objective
function. It is found the searching ability of SSGA is much powerful than that of the SGA. Numerical results are

given to show that the imaging problem by using SSGA is much better than SGA in time costing.

Introduction
The electromagnetic imaging of objects buried in a slab medium has attracted considerable attention in

with a large potential impact on geosciences and remote sensing and pipelines applications in recent years [1].
However, the solutions are considerably more difficult than those involving objects in a free space and half
space. This is due to the interaction between the interface of the three layers and the object, which leads to the
complicated Green's function for this three layer problem. The GA [1]-[3] is an evolutionary algorithm that uses

the stochastic mechanism to search through the parameter space. As compared to the gradient-based searching
techniques, the genetic algorithm is less prone to converge to a local extreme. In this paper, inverse problem of
the slab medium case solved by an improved SSGA using non-uniform probability density function (pdf) is
proposed and compared with SGA.

Theoretical Formulation
Let us consider a two-dimensional slab structure as shown in Fig. 1, where ( ei 9 o,i ) i = 1,2,3, denote the

permittivities and conductivities in each region. Here the permeabilities of all three regions are assumed to be

O, and a conducting cylinder is buried in region 2. The metallic cylinder with cross. section described by the

equation p = F(O) is illuminated by an incident plane wave whose electric field vector is parallel to the Z axis

(i.e., TM polarization). We assume that the time dependence of the field is harmonic with the factor exp( jet).
Let E

,,,
denote the incident field form region 1 with incident angle 0, as follow:
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Owing to the interfaces, the incident plane wave generates
three waves that would exist in the absence of the rcgwm]

conducting object. Thus, the unperturbed field is given by
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At an arbitrary point ( x,y ) (or (rr0 ) in polar coordinates) in regions 1 and 3 the scattered field,

Es =E-Ei, can be expressed as

2~~~~~~~~~~~~~~~~~ 3

Es(r) =-J|G(r,F (9'),9f')J(9')d9' (3)
0

whereJ(a )arb r F2p(9)+nFx 2(o)J((9), F(O) is the shape function and F'(0) is the differentiation of
F(0). and
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Note that G1, G2 and G3 denote the Green's function which can be obtained by tedious mathematic manipulation
for the line source in region 2.J+ (0) is the induced surface current density, which is proportional to the normal
derivative of the electric field on the conductor surface. The boundary condition on the surface of the scatterer states
that the total tangential electrical field must be zero and yield an integral equation forJ(0):

For the direct scattering problem, the scattered field Es is calculated by assuming that the shape is known.

This can be achieved by first solving J in (5) and then calculating Es using (3).
Let us consider the following inverse problem: given the scattered electric field E measured outside the

scatterer, determine the shape funnction F(s) of the object.

Numerical Results
Wethe tatte er a f teproposed inversion algorithm and its sensitivity to random noise in the

scattered field. Consider a lossless three- layer structure (Oy1 = C2= U3 = 0) and a perfectly conducting cylinder
buried in region 2. The permittivity in each region is characterized by as= en2 =2.55ts and 63=now
respectively, as shown in Fig. 1. The frequency of the incident wave is chosen to be 3 GHz, with the incident
angles equal to 45 and 315, respectively. The width of the second layer is 0.3 m. Ten measurement points are
equally separated on two parallel lines at equal spacing in region 1 and region 3. Thus there are totally 20

311



MSMW'0 7 Symposiutm Proceedings. Khark-ov Ukrainie, Juine 25-30, 200 7

measurements in each simulation. Both two kinds of shape expansion are used in the direct problem. However,
only the cubic-spline expand is used for the inverse problem to guarantee nonnegative definitions of the shape.

In both algorithms, the population size are chosen as 100 (i.e. X 100). The binary string length of the
unknown coefficient, Pi is set to be 20 bits (i.e., L=20). The search range for the unknown coefficient of the
shape function is chosen to be from 0 to 0.1. The extreme value of the coefficient of the shape function can be
determined by the prior knowledge of the objects. The crossover used by SGA is chosen as 0.8. Note that, in a
typical GA, it uses the crossover and mutation operator to generate all the new population in each new
generation. On the contrary, NU-SSGA only needs to generate a few new population in each new generation.
The inutation probability p, is set to be 0.1 in both algorithms. The value of ,l is chosen to be 0.001. The
efficient NU-SSGA is then applied to enhance the convergence and increase the converging rate of finding the
global extreme of the inverse scattering problems.

In this example, the shape function is selected by the Fourier series as
F(O) = 0.03 + 0.006 cosO + 0.004 cos 2O + 0.005 cos 30 m and we use cubic-spline expand to recover it. The
reconstructed shape fumction at 6000 function calls using by SGA and NU-SSGA are plotted in Fig. 2(a) respectively
with the relative errors shown in Fig. 2(b). It is found that even the description of the shape are different in direct and
inverse problems, the NU-SSGA can get the good result in very short time compared to SGA.

Here DR, which is called shape function discrepancy respectively, are defined as
1 N's

DR-{ yFcal(O12F(Oif IF2(Oi)}112 (10)
N'1

where N' is set to 60. The quantities DR provides measures of how well F"'(0) approximatesF(0)
respectively. From Fig. 2(a) and Fig. 2(b), it is clear that the efficiency of the NU-SSGA is much better than that
of SGA. We canl save more than 90% CPU time by using NU-SSGA.
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Fig. 2(a) Shape function for example 1. The star curve Fig. 2(b) The trend of relative errors for SGA, NU-
represents the exact shape, while the curves of dot and solid SSGA-0.05 (crossover-0.05), NU-SSGA-0. 1
lines are the results at 6000 function call by using SGA and (crossover-0. 1) and NU-SSGA-0.2 (crossover=0.2)
NU-SSGA-0. 1 (crossover'=0.1) respectively. respectively. methods.

Conclusions
We have presented a study of comparing the efficiency of the SGA and NU-SSGA with different crossover

rate to reconstruct the conducting image in a slab medium through knowledge of scattered field. Based on the
boundary condition and measured scattered field, we have derived a set of nonlinear integral equations and
reformulated the imaging problem into an optimization problem. Besides, the contours of the cylinders are

expanded by the cubic-spline for the inverse problem instead of the trigonometric series to guarantee the
nonnegative definition of the shape. Experiment results show that the searching ability and efficiency of NU-
SSGA depends on the suitable crossover rate. There is no doubt that NU-SSGA will reduce a lot of CPU time in

imaging problems. In our experiment results, the best crossover rate in NU-SSGA is 0.1 and we can save more

than 90% CPU time to get the satisfied result for all the examples.
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