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Abstract: In this paper, an efficient optimization 
algorithm for solving the inverse problem of a 
two-dimensional homogeneous dielectric object is 
investigated. A homogeneous dielectric cylinder of 
unknown permittivity scatters the incident wave in free 
space and the scattered fields are recorded. Based on the 
boundary condition and the incident field, a set of 
nonlinear surface integral equation is derived. The imaging 
problem is reformulated into optimization problem and the 
genetic algorithm is employed to reconstruct the shape and 
the dielectric constant of the object. Numerical results 
show that the permittivity of the cylinders can be 
successfully reconstructed even when the permittivity is 
fairly large. The effect of random noise on imaging 
reconstruction is also investigated. 
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Dielectric object 
1. tntroduction 

In this paper, the inverse problem of the dielectric 

cylinder with unknown cross-section and dielectric 
constant is investigated. The inverse scattering problem of 
dielectric objects ha5 been a subject of considerable 

importance in noninvasive measurement, medical imaging, 
and biological application. In the past 20 years, many 

rigorous methods have been developed to solve the exact 

equation. However, inverse problem of this type are 
diffjcult to salve because of its ill-posedness and 

nonlinearity. As a result, many inverse problems are 

reformulated as optimization problems. General speaking, 
two main kinds of approaches have been developed. The 

first is based on the gradient search approach such as the 
Newton-Kantorovitch method [1],[2], the 
Leveberg-Marguart algorithm [3] and the 
successive-overrelaxation method [4]. This method is 
highly dependent on the initiaI guess and tends to get 
trapped in a local extreme. In contrast, the second approach 
is based on the genetic algorithm [5]. It usually converges 

to the global extreme of the problem, no matter what the 
initial estimate is [6]. 

By using the equivalent surface current technique [7], 
the inverse problem is efficiently solved in this study. 

Instead of dividing the cross-section of the tested object 

into many cells, the object surface is dividing into small 
segments such that the equivalent surface electric and 

magnetic current distributions can be obtained numerically 

by solving the one-dimensional integral equation. 

By applying the genetic algorithm and the moment 

method, the inverse problem can be solved as optimization 
problem. We need only define the range of the parameter 

corresponding to the shape function and the permittivity o f  

the cylinder. Good reconstruction is obtained as 
multi-incident waves are applied to get the measured data. 

In Section 11, the theoretical formulation is presented. In 
Section 111, numerical results for both cases of fossless and 
lossy objects are given. Finaliy, some conclusions are 

drawn in Section IV. 

4 .I’ 

Fig. 1 Geometry of problem in (x,y) plane. 
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II. Theoretical Formulation 

Consider a homogeneous dielectric cylinder located in 

free space as shown in Fig.1. The cross section of the 
object is  of starlike shape, such that it can be described in 

polar coordinates by p = F(0) .  The permittivity and 
permeability o f  free space and the dielectric object are 

denoted by ( E ~ , & )  and(&* , p 2 ) ,  respectively. To take 
into account the loss effect, in general, E ,  can be 

complex. 
The dielectric object is illuminated by an incident 

plane wave whose electric field vector is parallel to the z 
axis (i.e., TM polarization). We assume that time 
dependence of the field is harmonic with the factor e . 
Then, the incident electric and magnetic fields can be given 

j o r  

bY 

-j&(,(xsin@-,vcos$) c Z EinC (x, y )  = E,e 

k,' = W Z & * p o  

I 

where 6 is the incident angle and k, is the fiee-space 

wave number. 

Since the tangential components of E and H 
fields should be continuous across the surface o f  the 
dielectric object, we can derive two integral equations as 

c 

follows [4],[5]. 

i x E r n ' ( F ( 8 ) , O )  = - ~ ~ ~ ~ [ j ~ ( p ~ G ~ ( k , r , ) +  poGo(kO~i) ) j (O')  

+ M ( B ' ) x V ' ( G 2  (kzro)  + Go (k,r,,))]dB'------------------ (1) 

ii x P' (i=ye), e) = -ii x p" [ ~ W ( E ? G ~  + E,G, )G(el) 
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where J,, (e) and M ,  (e) are the equivalent surface 

electric and magnetic current densities, h i s  the outward 

unit normal on the object surface, and 

G,(k,ro) , G2(k2ro)  are the Green's functions in 
free-space and in a homogeneous space with relative 

dielectric constant E ,  = E ,  / E o  respectively. Here 

Hh2' stands for the Hankel function of the second kind of 
zeroth order. 

For TM case, the electric field has only one 
component along the Z axis such that the scattered 

electric field E' at the point ( x , y )  outside the scatterer 

can be expressed by 

E' (x, y )  = $'" [j~p,,G,(k,,<>~(O') f fi(f3') xV' G,(k ,~) )W 

In order to solve the direct problem for a given 

F(8)  and E, ( let ,Uz = P o  ), the moment method 

is applied. By using pulse basis functions {Pn(8)) for 

expanding the unknown functions j ( 6 )  and *(e) 
into N ,  terms, we have 

1 ,on A t , ,  
0 ,otherwise P,(W = 

(A!,, means the arc length of the object surface from 

769 



1 
2 x ( n  - 1) 2nn O =  to e=- 

N* N d  

By employing the point-matching technique, the 

above integral equations ( I )  and (2) can be transformed 

into matrix form as 

For the direct scattering problem, the scattered field 

E is calculated by assuming that the shape functions 

are known. This can be achieved by first solving J ( 6 )  
and n?@) using ( I )  and (2) and then the scattered field 

outside the scatterer can be calculated from Eqn. ( 5 ) .  It 

serves as the measured data of the inverse problem for the 

purpose of numerical simulation. 

For the inverse problem, we assume the approximate 

center of the scatter, which in fact can be any point inside 

the scatterer, is known. Then the shape F ( 8 )  function 

can be expanded as: 

n=0 "=I 

where Bn and cn are real number to be determined, 
and 2N+1 is the number of unknown coefficients for shape 

function. In the inversion procedure, the steady-state 
genetic algorithm is used to minimize the following cost 

function: 

where M ,  is the total number of the measurement. 

J ! ? ~ ' ~ ~ ~ ( F )  and E''"'' ( r )  are the measured scattered 

field and the calculated scattered field respectively. 

The parameters B,, and c, are coded using Gray 

code, and the processes of reproduction, mutation and 

crossover are employed to optimize B,, and c, . Here, 

we use the steady-state genetic algorithm for our image 

problem. The variance of steady-state genetic algorithm is 

to insert a temporary population which composes of the 

parent populations and the new individuals generated by 

crossover and mutation. Offspring individuals are then 

reproduced using rank selection scheme until the original 

population size is reached again. Steady-state genetic 

algorithm has not only the characteristic of faster 

convergence [SI, but also the lower rate of crossover. AS a 

result, it is a suitable scheme to effectively save the 

calculation time for the inverse problem as compared with 

the generational G.A. . 

111. Numerical Results 

In this section, we report some numerical results of 

using the scheme described in Section 11. Lossless 
homogeneous dielectric objects are taken into account. The 

sensitivity of  this method to random noise in the scattered 

field is also investigated. 
Let us consider a dielectric cylinder located in the 

free space. The permittivity of the dielectric object E ,  is 

assumed in the following examples. The frequency of the 

incident wave is chosen to be 3 GHz and the corresponding 
free-space wavelength is A = 0.h . To reconstruct the 

shape and the permittivity, the dielectric objects in the 

following examples are illuminated by plane waves of unit 

amplitude from three directions ( # = O",l 20°,2400 ), 
and the measurement points ( M, = 16 ) are equally 

separated on a circle of radius r,,, = 0.5m. The size of 
the object considered in each example i s  on the order of 

half wavelength. Note that the simulated result using only 
one incident wave is much worse than that using two 

incident waves. However, in order to get accurate results, 

three incident waves are used here. Numerically, for direct 
and inverse problems, N d  = 100 is set for the direct 

problem and N ,  = 50 for the inverse problem. The 
number of unknowns, including the shape function 
coefficients (2N+1) and the relative permittivity E,. and 
the loss term, is 2N+3, in total. 

For example, the shape function is chosen to be 

F ( 8 )  = [OB4 + O.Olcos€I + 0.005sin(48)]m , and 
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the relative permittivity of the object is E, = 2 -56 . The 

reconstructed shape function of the best population 
member i s  plotted in Fig2 (a). The rms .  error (DF) of the 

reconstructed shape FCu‘ (e) and the relative error 
(DIPE) of with respect to the exact values versus 

generation are shown in Fig. 2(b). The tm.s. error DF is 

about 0.7% and DIPE=0.321% in final. The Fig. 3 shows 
the reconstructed results under the condition that the 

measured scattered field is contaminated by noise c+jd, 
where c and d are independent random variables with 

uniform distribution. The values of c and d are distributed 

from -a, to a,, where a,, is defined as the r.m.s. 

value of the scattered field times the relative noise level. 

The relative noise level includes 0.03, 0.08, 0.1, 0.2, and 

0.3 for simulation purpose. It can be seen that good 
reconstruction is obtained when the relative noise level is 

below 0.2. 
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Fig. 2 Reconstructed results. 
(a) Shape function for first example. The solid curve represents 

the exact shape, while the star curves are calculated shape in 
. iteration ~ rncess .  
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Fig. 2 Reconstructed results. 
(b) Shape-function error  and permittivity error in each generation 
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Fig. 3 Shape error  and  the r&&e permittivity errors as functions of 

noise level. 

IV. Conchsions 
We have presented a study of applying the genetic 

algorithm to reconstruct the shapes and relative 
permittivity of a homogeneous dielectric cylinder. Based 
on the equivalence principle, boundary condition and 
measured scattered fields, we have derived a set of 
nonlinear surface integral equations and reformulated the 
imaging problem into an optimization problem. By using 
the genetic algorithm, the shape and dielectric constant of 
the object can be successfully reconstructed even when the 
dielectric constant is fairly large. Numerical results are 
presented and good reconstruction is obtained. 
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