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Abstract The inverse scattering of inhomogeneous biaxial dielectric cylinders is investigated. 
Based on the properly arrangement of the direction and polarization of the incident fie1d.a set of 
integral equations which can be solved by moment method and unrelated illumination method is 
derived. Numerical results are given to demonstrate the capability of the inverse algorithm. 

I. Introduction 

The electromagnetic inverse scattering of anisotropic objects have attracted increasing 
attention due to the development of compiste material. However, inverse scattering of this type is 
considerably more difficult than those of isotropic objects. This is due to the fact that the dielectric 
constant of anisotropic materials vary when the direction of the applied field changes. Hence, there 
is still no rigorious algorithm to handle this type of problems up to now. Most papers concerning the 
inverse scattering calculation dealt with the case of isotropic objects only. Generally speeking,two 
kinds of approaches have been developed. The first is an approximate approach [1]-[2]. It makes use 
of Fourier diffraction tomography to reconstruct the permittivities of dielectric objects. Since the 
Fourier diffraction tomography is generally based on the Bom or the Rytov approximation, it 
usually fails when applied to the case of strong scattering. In contrast, the second approach is a 
rigorous one [3 ] - [6 ] .  These techniques need no approximation in formula, but the calculation is 
more complex than the approximate approach stated above. In this paper, unrelated illumination 
method [6] is employed to reconstruct the permittivities of biaxial dielectric cylinders. In section 
11, the theoretical formulation for microwave imaging is briefly described. Numerical results are 
given in section 111. Finally some conclusions are drawn in section IV. 

11. Theoretical Formulation 
Let us consider cylinderical biaxial dielectric objects in the free space,as shown in Fig. I. The 

of the biaxial objects are characterized by a diagonal matrix in the relative permittivity tensors 
Cartesian Coordinate system (x,y,z) 

0 0 E 3 ( X , Y )  O I  xyl I EI(X,Y) 0 
E(x,y)= 0 EZ(X,Y) 0 

The permeabilities of the objects are PO, i.e., non-magnetic objects are concerned here. The 
properties of the scatterers may vary with the transverse coordinates only. The scatterers are then 
illuminated by the following incident waves: 
(i) TM (Transverse Magnetic) waves. 
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Let E' denote the incident field whose fie! vector is parallel to the z axis, i.e., ?:E$%, 
where F = (x,y).  Then the internal total field E = E,f and the external scattered field E' = E:Z 
can be written as follows: 
E@) = j, G(F,&&3QI) - l)Ez(&s' + E m  (1) 

(2) E:(F) = j, a;&&(+)- l)Ez(pl)ds' 
where G(F,P ) =f$'(ko IF-; I) and k, denotes the free-space wavenumber. 

(ii) TE (Transverse Electric) waves: 
Let E' denote the incident field, B'(F)=Ei(F)Z+E;(?jj, then the internal total 

field, E(F) =&(F)X+E,(F)jj, and the extemal scattered field, If(?) =E:(F)a+E;(F)jj, can be 
written as follows: 
E,O = (g +o)[ I, GW')(~,F')- IF,v'M~'] + &[ j, ai,+)(el(fl)- I)E,.V'M~'] +dm 
E ~ O =  $[I, ~ , i ' x e , ( f l ) -  I)E.v'~']+(~+~)[J,~,~M~~(~')- I)EAF'M~']+E~O 

60 = [$ + g)[j, G(?~')@I Q') - 1)EdflN ] + &[j, G(p,fl)(ezP') - 1)E,Q')ds'] 

E",m = &[ 1, W, {)(el - IzE.(i)ds'] + [$ +#)[ j, G(i,flXez(;) - I)E,(PodF'] 

(3) 

(4) 

( 5 )  

(6) 
For the direct problem, the scattered field is calculated by assuming that thtpermittivity tensor 
distribution of the scatterers are known. This can be achieved by first solving E in Eq. (1) or Eqs. 
(3) and (4), and calculating 

Next, we consider the following inverse problem, given the scattered field measured outside 
the scatterers, determine the permittivity tensor distribution of the scatterers. Note that the only 
unknown permittivities are &3(F) for TM case and similarly the unknown permittivities are E~(F)  
E*(?) for TE case. Thus, we can solve the permittivity distribution E , ( F ) ,  Q(F) and ~ ~ ( 7 )  for the TE 
and TM cases respectively. Now we divide the objects into sufficiently small cells so that the electric 
field and the dielectric constant can be assumed to be constant in each cell. Then the moment 
method with pulse basis hnction and point matching techniques are used to transform integral 
equations into matrix forms. Finally, the unrelated illuminated method is used to reconstruct the 
permittivity tensors of the scatterers. We refer the reader to [6] for details. 

in Eq. (2) or Eqs. ( 5 )  and (6). 

111. Numerical Results 
The reconstruction of a biaxial object illuminated by the beam focusing irradiation scheme 

is presented in the simulation. Many radiators outside the scatterers are used in the same time. By 
changing the beam directions and tuning the phase of radiators, one can focus all the incident beams 
in turn at each cell of the body. This procedure is called beam focusing scheme. The frequency 

of the incident wave is chosen to be 3GHz i.e. the wavelength is O.lm and the measurement is 
taken on a circle of radius 0.3m at equal spacing. The number of measurement points is set to be 9 
for each incident wave. The square cross-section of the object which is discretized into 4x4 cells is 
shown in Fig.2 and the corresponding dielectric permittivities are plotted in Fig.3. Each cell has 
0.15cmxO.15cm cross section. For investigating the effect of noise, we add to each complex 
scattered field a quantity Wcj, where b and c are independent random numbers 'have a uniform 
distribution over 0 to the noise level times the R.M.S. value of the scattered field. The noise levels 
applied include IO', I0"and 10' in the simulation. The reconstruction errors are shown in Fig.4. It 
shows the effect of noise is tolerable for noise levels below I O 3  . The reconstructed permittivity 
tensor distribution of the object corresponding to the noise level IO3 is plotted in FigS. The R.M.S. 
error is about 0.173%, 0.089% and 1.143% for the dielectric permittivities e, ,e2 and e3 
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respectively. It is clear that the reconstruction is good even in the presence of noise in measured 
data. 

IV. Conclusion 

We have used the integral equation formulation to reconstruct the permittivities of biaxial 
dielectric objects by the knowledge of the scattered field measured outside The unrelated 
illumination method and moment method are used to solve the nonlinear integral equations. 
Numerical simulation for imaging the permittivities of biaxial objects has been carried out and 
good reconstruction has been obtained. 
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Fig.1 Geometry of the problem in Fig.2 Geometry of the simulated experiment 

the (x,y) plane (the algebric number is cell number) 
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