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Abstract-The genetic algorithm is used to reconstruct the 
shapes of two perfectly conducting cylinders. Bases on 
the boundary condition and the measured scattered field, 
a set of nonlinear integral equations is derived and the 
imaging problem is reformulated into an optimization 
problem. The genetic algorithm is then employed to find 
out the global extreme solution of the cost function. 
Numerical examples are given to demonstrate the 
capability of the inverse algorithm. Good reconstruction 
is obtained even when the multiple scattering between 
two conductors is serious. In addition, the effect of 
Gaussian noise on the reconstruction results is 
investigated. 

I. INTRODUCTION 

The inverse scattering problem of conducting objects has 
been a subject of considerable importance in noninvasive 
measurement and remote sensing. In the past 20 years, many 
rigorous methods have been developed to solve the exact 
equations [l-31. However, inverse problems of this type are 
difficult to solve because they are illposed and nonlinear. As 
a results, many inverse problem are reformulated as 
optimization problems. The optimization problems are 
numerically solved by different iterative methods such as the 
Newton-Kantorovitch method [ 13, the Levenberg-Marquardt 
algorithm [2], and the successive-overrelaxation method [3]. 
However these approaches apply the gradient search method 
to find the extreme of the cost function which are highly 
dependent on the initial guess and tends to get trapped in a 
local extreme. In this article, we present a method based on 
the genetic algorithm to recover the shape of two separate 
perfectly conducting cylinders illuminated by transverse 
magnetic (TM) waves. The genetic algorithm [4] is a weli- 
known algorithm that uses the stochastic random choice to 
search through a coding of a parameter space. Compared to 
gradient search optimization techniques, the genetic 
algorithm is less prone to convergence to a local minimum, 
which in turn renders it an ideal candidate for global 
optimization. It usually converges to the global extreme of 
the problem, no matter what the initial is [4]. 
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11. THEORETICAL FORMULATION 

Let us consider two separate perfectly conducting cylinders 
with cross section described in polar coordinates in xy plane 
by the equations p, =I;;(@,) and p2 =F2(e2) centered 
at(d, cosy ,d l  s i n y )  and (-d2 cosy,-d, sinyl), respectively, in 

free space. Let ( E , ,  Po ) denote the permittivity and 
permeability respectively of free space. A plane wave whose 
electric field vector is parallel to z-axis (i.e., transverse 
magnetic or TM polarization) is incident upon the scatterers. 
We assume that the time dependence of the field is harmonic 

with the factor expowt) .  Let E, denote the incident field 

with incident angle @ , as shown in Fig. 1. Then the incident 
filed is given by 
-+ A 

E,  (x, y )  = e - i k ( x s i n $ + )  cos@) 

+ 

Z ,  

k 2  = w ~ E , ~ , , .  (1) 
At an arbitrary point (x,y) in Cartesian coordinates outside 

the scatterers, the scattered field, E ,  = E - E, , can be 

expressed by (2) 
and Hi2’ is the Hankel function of the second kind of order 

zero, and J , ,  (e,) is the induced surface current density 
which is proportional to the normal derivative of electric 
field on the ith conductor surface. 
The boundary condition states that the total tangential 
electric field at the surface of the scatterers must be zero and 
this yields two integral equations for J ,  (e I ) and J (e ) : 
(3) and (4) respectively. For the direct scattering problem, 
the scattered field E ,  is calculated by assuming that the 
positions and the shapes of the objects are known. This can 
be achieved by first solving J ,  and J in (3) and (4) and 
calculating E ,  in (2). Next, let us consider the following 

inverse problem: given the scattered field E ,  measured 

outside the scatterers, determine the shapes F ,  (e I ) and 
F 2 ( 0 2 )  of the objects. Assume the approximate center of 
the scatterer is known. 

-+ + - +  
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with 

Then the shape functions F ,  (e, ) and F ,  (e,) can be 
expanded as: 

NI2 N I 2  
F~ (e) = C B,, cos( n e )  + C c,, sin(n6) 

where B,, , C,, , B,, and C,, are real coefficients to be 
determined, and 2*(N+1) is the number of unknowns. In the 
inversion procedure, the genetic algorithm is used to 
minimize the following cost function express by (6): 

n=o "=I 

convergence, although overestimation will result in a very 
smooth reconstruction [ 11. For numerical calculation of the 
problem, the contour of the object is first divided into 
sufficient small segments so that the induced surface current 
can be considered constant over each segment. Thep the 
moment method is used to solve Equations (2 ) ,  (3) and (4) 
with the pulse basis functions for expanding, and the Direct 
delta function for testing. Genetic algorithms are the global 
numerical optimization methods based on genetic 
recombination and evaluation in nature [6]. They use the 
iterative optimization procedures that start with a randomly 
selected population of potential solutions, and then gradually 
evolve toward a better solution through the application of 

2, 

where M ,  is the total number of measurement points, and 

E,?'' ( r )  and E.Yp ( r )  are the calculated scattered field 
and the measured scattered field, respectively. Note that the 
regularization term a [ I ~ , ' ( e ,  )Iz + / ~ ; ( e , ) / ~ ]  was added in 

equation (6). The minimization of 
a.[lFl'(e,)12 + I F ; ( ~ , ) ~ ~ I  can, to a certain extent, be 
interpreted as the smoothness requirement for the boundgry 
of F, (e , ) and F, (e , ) . Therefore, the minimization of CF 
can be interpreted as the minimization of the least-squares 
error between the measured and the calculated fields with 
the constraint of a smooth boundary. Typical values of a 
range from 0.0001 to 10; but ideally, it is decreased as the 
convergence has been attained [3]. The optimal value of a 
is mostly dependent on the dimensions of the geometry. One 
can always choose a large enough value to ensure the 

+ -+ 

the genetic operators. Genetic algorithms typically operate 
on a discretized and coded representation of the parameters 
rather than on the parameters themselves. These 
representations are often considered to be "chromosomes," 
while the individual element that constitutes the 
chromosome representations for optimization problem 
involving several continuous parameters can be obtained 
through the juxtaposition of discretized binary 
representations of the individual parameters. In our problem 
parameters B, ,  , C,, , B , ,  and C,, are given by the 
following equation: 

where 5 represents B, , ,  , C,,, , B 2 , ,  or C,,, . The , 

b: ,......, b:-, (gene) is the L-bit string of the binary 
representation of B , " ,  C,,  , B , , ,  or C,,, , and pmin and 
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p max are the minimum and the maximum values admissible 

for B,, , C, ,  , B,, and C,, , respectively. The total 
unknown coefficients in Equation (7) would then be 
described by an 2(N+l)*L bit string (chromosome). The 
basic GA for which a flowchart is shown in Figure 2 starts 
with a large population containing a total of M candidates. 
Each candidates is described by a chromosome. Then the 
initial population can simply be created by taken M random 
chromosomes. Finally the GA iteratively generates a new 
population which is derived from the previous population 
through the application of the reproduction, crossover, and 
mutation operators. 

111. NUMERICAL RESULTS 

To demonstrate the capability of the present approach, two 
different examples are studied in our simulation. We 
consider two perfectly conducting cylinders in a free space, 
and a TM polarization plane wave is incident on the object 
as shown in Fig. 1. The frequency of the incident wave is 
set to be 3 GHz, i.e., the wavelength A is O.lm. Our 
intention is to reconstruct the shape of the object by using 
the scattered field measured outside. To reconstruct the 
shape of the cylinders, the object is illuminated by four 
incident waves with the incident angles of 
0 =on, 90' , 180°, and 270°, and the measurement is 
taken on a circle of radius 7m at equal spacing. Note that for 
each incident angle, eight measurement points in each 
simulation. The number of unknowns is set to be 10. The 
population size is chosen as 300(i.e. M=300). The crossover 
probability p ,  and mutation probability p ,  are set to be 
0.8 and 0.1, respectively. The value of a is chosen to be 
0.001. In the first example, d, =0.04 and d2  =0.08 and I,!/ 

is 45'. The two shape functions are chosen to be 
F, (e, ) = ( o . o ~ ~ + o . o o ~ c o s ( ~  e , )) m and 
F, (e,) =(0.03+0.0035cos(2 e, )+0.0035sin(28, ))m, 
respectively. The binary string length of the unknown 
coefficient, B,, , C,, , B,, and c,, , is set to be 8 bits (i.e. 
L=8). In other words, the bit number of a chromosome is 80 
in case 1. The search range for the unknown coefficient of 
the shape function is chosen to be from 0. to 0.1. The 
extreme value of the coefficient of the shape function can be 
determined by the prior knowledge of the objects. With all 
these parameters, the reconstructed shape function is plotted 
in Fig. 3. It is clear that the reconstruction of the shape 
function is very good. Moreover, the error for the best 
population member (chromosome) is also shown. Note that 
the shape function of the initial generation is far from the 
exact one. To investigate the sensitivity of the imaging 
algorithm against random noise, two independent Gaussian 
noises with zero mean have been added to the real and 
imaginary parts of the simulated scattered fields. Normalized 
standard deviations of , , lo-, and lo-' 

are used in the simulations. The normalized standard 
deviation mentioned earlier is defined as the standard 
deviation of the Gaussian noise divided by the rms value of 
the scattered fields. Here, the signal-to-noise ratio (SNR) 
Is inversely proportional to the normalized standard 
deviation. The numerical result for this example is plotted in 
Figure 5. It is understood that the effect of noise is negligible 
for those normalized standard deviations that we below 
10 -2 . In the second example, the shape function is chosen 
to be F, (e , )  =(o.o~+o.oo~~cos(B,  )+ 
O.O05cos(2e , )+O.O05cos(3 e , ))m and F2 (e,) =(0.03+ 

0.005sin(3e2 ))m. The parameters R', I,!/, d, and d, are 

chosen as 7m, 135' , 0.08m and 0.07m respectively. The 
coding length and the search ranges for the unknown 
coefficients of the shape function are the same as in example 
1. Again, with this set of parameter, satisfactory results are 
obtained in Fig. 4. This example implies that good 
reconstruction can be obtained when the scatterers are 
complex. 
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Fig. 1 The geometry in the (x,y) plane 
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Fig .2 The flowchart of Genetic Algorithm 

47 



O.l I 
E 0.05- 
ai 
P p 

.- 3 

0 -  8 
5 -0.05. 

-0.1 . 

-0.1 -0.05 0 0.05 0.’ 
horizontal co-ordinate,rn 

Fig. 3(a) The shape of example 1 
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Fig. 5 The SNR of example1 

IV. CONCLUSIONS 

We have presented a study of applying the genetic 
algorithm to reconstruct the shapes of multiple conducting 
cylinders illuminated by TM waves. Based on the boundary 
condition and measured scattered field, we have derived a 
set of nonlinear integral equations and reformulated the 
imaging problem into an optimization problem. By using the 
genetic algorithm, the shape of the objects can be 
reconstructed. According to our experience, the main 
difficulties in applying the genetic algorithm to this problem 
are how to chose the parameters, such as the population size 
(M), bit length of the string(L), crossover probability( p ,  ), 
and mutation probability( pm ). Different parameter sets will 
affect the speed of convergence as well as the computing 
time required. From the numerical simulation, it is 
concluded that a population size from 300 to 600, a string 
length from 8 to 16 bits, with p ,  and p ,  in ranges of 

0.7< p ,  <0.9 and 0.05< p ,  <0.15 are suitable for imaging 
problems of this type. 
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