
Tools Cooperation in an Integration Environment by Message-passing
Mechanism

Chi-Ming Chung, Ying-Hong Wang,
Wei-Chum Lin, Yhg-Feng Kuo

Department of Information Engineering
TamKang University

Taipei, Taiwan, R.O.C.

Abstract
Many CASE(Computer Aided Software Engineering;)

tools had been developed to increase the software
productivity. Therefore, the tool integration needed to be
more investigation. This paper proposes an architecture
based on a control integration plarform for exchanging
messages among different tools, This platform supports
different tools to integrate into a cooperative software
developing environment easily. Some tools had been
developed including compiler, editor, testing path
analyzer are integrated into this environment. Some
evaluation criteria are illustrated to assess the proposed
plaqorm and their integrated tools.
keywords: Tool Integraton, Evaluation Criteria, Platform

1 Introduction
Software Engineering is to investigate software

development process to promote the software productivity
and reduce the developing cost. According to the waterfall
model mentioned in [7], the software developing is divided
into many phases as depicted in Fig. 1. These phases are
analysis of software requirement, definitions of software
specification, principles of system design, structured
programming techniques (or coding), system and software
testing, software product maintenance. Among these
phases, many CASE(Computer Aided Software
Engineering) tools were developed to provide the
automatic or semiautomatic software development
metliodologies. However, these tools were selected
according to user's subjective thoughts from many different
tool vendors to form a CASE environment. As these
selected tools may be from different tool vendors, the
information exchanging among these tools is a big
problem. This is because the information needed among
these tools may have different format, so the tool
integration for providing each developing phase is more
and more important.

In this paper, Section two describes the approaches to
solve the tool integration problem. Section three explains
the message-passing architecture which is composed of

Gwo-Ching Hsieh

Project Manager
CASE Framework Project

Institute For Information Industry
Taipei, Taiwan, R.O.C.

message-server, the message protocol and the
integration interface,
Section four introduces the tools which helped user to
generate the testing path of developing software
automatically. The assessment and advantage of tools
integrated into this environment had also been discussed.
Section five is the conclusion.

Fig. 1 The WaterFall Model

2 Tool Integration Approaches
Several approaches managed the tool integration are

introduced. The first approach is to define a common
data format discussed among tools to exchange each
other's information. There are three drawbacks in this
approach. First, it is difficult to define a common data
format which is acceptable to all tools. Second, it is
necessary for all tools to modify their source codes to fit
this data format or develop the conversion module to
convert the data formats among tools(81. Thus, if there is
a new tool which is intended to join to this integrated
environment, almost every tool vendor must mod@ their
source code to identify this tool as depicted in Fig. 2. The
third is that tools which were used in a developing
environment are just execution codes. Because the tools
used by users may be developed by different tool vendors,
the tool integration is more difficult without the
corresponding source codes.

451
0730-3157/94 $04.00 0 1994 IEEE

c
HowabouttooIS?

Fig. 2 The first approach of tool integration

The other approach to solve tool integration is
accomplished by data integration and control
integration[l]. Data integration is to integrate tools
through a common database of tool information called
common data repository. However, how to let a new tool
join in this environment and not to change all of the
existed common shared data structure among tools.
Control integration is to communicate among tools via
message-passing rather than shared common data
structure defined in data integration. This message
passed among tools is defined as an agreed protocol.
Whenever a tool needs the service which is provided by
other tool, this tool just sends a request message to a
message-sewer. When the message was decoded, the
message-sewer resends to the appropriate tool, and does
the required service. Therefore, when this action is done,
the tool sends the results to the requested tool by
packaging them into a message and sending to the
message-sewer. The message-sewer decodes the
message again and resends back to the requested tool.
This process is depicted in Fig. 3.

Fig. 3 The other approach of tool integration
through message-passing mechanism

The first method proposed to support the control
integration is developed in Brown university -- the
FIELD environment[15,161. This environment is based
on UNIX operating system and the UNIX processes
communicate with each other via socket. The message of
the FIELD environment is the first format defined to be
sent among different processes. Products developed by
Hp[2,3] and SUN[2,1O,ll] have similar message
transmission protocols. They all do some enhancements
to provide more flexible capability for tools to exchange
messages. These environments were also implemented in
UNIX operating system which had already provided the
abilities of IPC(1nter-Process Communication).

As the Microsoft's WINDOWS system is widely used in
the personal computer, this paper proposed an
architecture to integrate tools in a Microsoft's
WINDOWS environment.. This architecture is based on
the idea of control integration and divided into two parts.
One is the message-sewer, the other is the message
protocol and the integration interface to encapsulate the
tools in this environment.

3 The Message-passing Architecture
The UNIX operating system had provided the facilities

to support the IPC mechanisms. They are shared
memory, semaphore and message-passing. And almost
all UNIX operating system had the network ability
embedded which are TCPDP, RPC(Remote Procedure
Call), NFS(Network File System) etc. These make the
tools distributed in different machine easy to
communicate. Besides, the X Window system had been
developed in the UNIX operating system for many years.
This can make tool easy to be implemented in a common
look-and-feel, user-friendly presentation. But when tool
vendor had the notice about the importance to cooperate
with each other, these developers have to study the
application interfaces of IPC, network and X Window
supported by UNIX operating system to make their tools
integrate together. If these application interfaces had
been assembled into an easier environment, this will
make tool easier and quicker to be integrated. The same
implemented strategies of the products are HP's
SoftBench[2,3] and SUN'S ToolTalk[2,10,11].
III(1nstitute for Information Industry) noticed that there

are many PCs in the world and the Microsoil's
WINDOWS system is the suitable software for
programmer to develop a common look-and-feel
presentation tool. However, the same problems arise --
the developers had to study the IPC facilities provided by
Microsoft's WINDOWS system to communicate among
tools. The Microsoft's WINDOWS system provided the
DDEML@ynamic Data Exchange Management Library)
to do the jobs of "Inter-Process Communication". This
library is composed of 28 application interfaces, 16
transaction types and the job for developers to understand
all of these application interfaces and transaction types is
difficult[14]. So 111 had launched a project to develop a
tool integration environment in the Microsoft's
WINDOWS system and assemble the DDEML into seven
easy, understandable and manageable integration
interfaces. This can reduce the effort of integrating tools
in the Microsoft's WINDOWS system.

These integration interfaces and message format
developed by 111 are followed the proposal[4,12] drafted
by COSE(Common Open Software Environment). The
COSE is founded by merging CASE Communique and

452

CASE Interoperability Alliance which are founded by
HP, IBM, Informix, CDC and SUN, Digital,
SiliconGraphics companies respectively. So the
integration interfaces and message format developed in
111 in the Microsoft's WINDOWS system may
communicate with the message format developed in
UNIX operating system. All of this process of integration
is passing the message from one tool to the message
server in different operating system and exchanging
information among different message servers to other
tool to achieve the job of communication. Therefore, the
important portion of the control integration is not only
the message format and the integration interfaces but also
the message server. The message server developed in 111
which is called CID(Contro1 Integration Daemon) is
based on the facilities provided by Microsoft's
WINDOWS'S DDE Server to do the job of Inter-Process
Communication. And the message format is listed and
explained as followed[6]:
(1) Tool-Class : Unique tool name which is registered in
the CID (to iden* the tool name to which the suitable
message to be sent).
(2) Operation : Tell the CID about the required operation
provided by other tool.
(3) Message-Type : Tell the CID that this message is
requested the service provided by other tool, or waited the
event happened in other tool, or sent the request
message to the suitable tool and waited for the service
result of other tool, then this requested tool can continue
its procedure. So there are three types of
Message-Type -- Request, Notice, Request-reply.
(4) Context-Host : Tell the CID about the host where the
required tool should process the message.
(5) Context-Directory : Tell the CID about the host and
directory where the required tool should process the
message.
(6) Context-File : Tell the CID about the host, directory
and file where the required tool should process the
message.
(7) Arguments : Tell the CID about the arguments
needed by the service tool to execute its function.

According to the message format described above, the
corresponding integration interfaces developed in I11 is
called CII(Contro1 Integration Interface) can also be
listed as followed[131:
(1) CII-Toolclass : Giving a unique tool name for a tool
to register in the CID when this tool initially joins into
this environment. For the further message passing,
CID can iden@ the suitable message to send to this tool.
This interface was mapped to the field of Tool-Class of
the above message format.
(2) CII-StartRegistration : Register the tool name defined
in CII-Toolclass to the CID.

(3) CIIProvide : Tell the CID about the services
provided in th is tool.
(4) CII-Listen : Tell the CID about the interesting events
of this tool. For example, the editor can provide basic
editing functions of cut, pasting, load file, save file
and the version control tool can provide check-in or
check-out of this file. The version control tool can also
get interested in the event of the save file happened in
the editor. When th is event happened, the version
control tool can be triggered by CID and automatically
done the check-out service of this file. So every tool in
this integrated environment, not only can register the
services it provided but also the events related to this
tool.
(5) CII-Messageobject : Create the Message Object to
put the message item of message format discussed above
and later send this Message Object to the CID to
trigger the suitable service provided by other tool.
(6) CII-Send : Send the Message Object to the CID.
(7) CII-StopRegistration : When the tool is not
necessary to be integrated in this environment, it can use
this integration interface to terminate the relationship
with CID.

Through the message format and integration interface
described above, there are two levels of tool integration
in this environment. One is Loosely-Integration the
other is Tightly-Integration. The difference of these two
kinds of integration is when a tool needs to integrate into
this environment, the later has to modify the source code
of this tool but the former does not. No matter Loosely or
Tightly integration for a tool to integrate into this
environment, the integration interfaces discussed above
are the necessary interface to add in a tool. The process
of loosely-integration is to create a new file source and
add the integration interfaces discussed above which are
needed for integration. Then this new source uses the
concept of fork in the UNIX operating system to execute
this tool. The process of tightly-integration is to add the
integration interfaces needed for integration in front of
the source code of the tool and reproduce the executable
code to join into this integrated environment. The
processes of the two-level integration are similar to use
the integration interface as an envelope to re-package the
tool. So these processes can be called as encapsulation.
The architecture of CID & CII based on the Microsoft
DOS & WINDOWS system of PC is depicted in Fig. 4.
The CID is based on the DDE server and the CII is to re-
package the DDEML which the Microsoft WINDOWS
system provided.

453

I DDE Server I
Microsoft WINDOWS 3.1 o r later version

Microsofi DOS 6.0 or later version

Fig. 4 The architecture of CII & CID

0 . .

I I
Fig. 5 The final result of tool integration

The run time snapshot of processes is drawn in Fig. 5 .
In Fig. 5 , every tool must be registered in the CID to
announce that this tool had been joined in this
integration environment. This joining procedure is called
registration. There are two kinds of tool registration in
this environment. One is static registration the other is
dynamic registration. The static registration is that
tools were added in a system default configuration
file(SDCF). The entries of SDCF forms the basic tool
integration sets in this environment. When the CID was
invoked, the SDCF is parsed and the basic tool sets is
registered in the CID. These tool sets are maintained by
the CID which created an Internal Management Process
Table(IMPT). After registering into the IMPT, the tool
can be triggered automatically by CID. This is because
when a message was passed to the CID and decoded that
the receiving tool of this message was not in running
state. In this way, the basic tool sets of this environment
can be properly managed. The only way for tools in static
registration to terminate the relationship with CID is to
delete the entry in SDCF where these tools located. After
that, delete the CID process and restart it again to reparse
the modified SDCF to create the new IMPT. The
dynamic registration is to register the tool into CID in
run time by the integration interfaces -- CII-ToolClass
and CII-StartRegistration. In this way, the tool can be
added into the IMPT dynamically. The only way for tools
in dynamic registration to terminate the relationship with
CID is to use the integration interface --
CII-StoyRcgistration. From the above description, it is
obvious to see the difference between the static and
dynamic registration. The former is to register tool in
SDCF and terminate the integration of this tool by
deleting the entry from SDCF. The later added or
terminated the integration relationship between a tool
and CID by the integration interface. The advantage of
dynamic registration is that tools can be easily plug-in or
replace in this environment. Whereas, the tool added in

static registration can be triggered automatically by CID
when it was not in running state. Fig. 6 depicted the
integrated architecture which is proposed by ECMA
PCTE to provide an environment for tools to plug-in or
replace easily. And the integration environment
developed by 111 is followed this ideal reference model[9].

Fig. 6 A control integration architecture
referenced the model of ECMA PCTE

4 Evaluation Criteria and Assessment
When CID & CII had been designed, the consideration

after implementation is to have some basic tool sets to
exhibit the advantage of this environment. Therefore, 111
had developed a coding convention tool and a
corresponding output listing tool called CONV and
EDITFILE respectively. In order to monitor the status of
tool invocation and the flow of message-passing, 111 also
had implemented CIP(Contro1 Integration Platform)
Manager and Message Monitor tool. The CIP Manager
parsed the IMPT and displayed the entry format of
SDCF discussed in previous section in the output
window. The functionality of Message Monitor is the
same, that is to display all of the messages passing back
and forth to the CID. However, the lack of tools
integrated in this environment is still a problem. In the
meantime, TamKang university had implemented some
testing path analysis tools. These tools originally
provided the editing, checking and analysis facilities to
software developer. So 111 and TamKang university had
launched a cooperative project to integrate the tools
implemented in TanKang university and other
companies to provide a convenient environment for users
to develop their software. If these tools were not
integrated together, the advantage of individual tool is
limited. But if they are integrated together, the
advantages of these cooperative tools can provide the
services which are not existed in each other.
The tools of the cooperative project to be integrated in

the integration environment of 111 are Editors, Testing
Path Analyzer(TPA), the Microsoft's Visual C++
compiler and tracer(MSVC & MSVT), Borland's C++
compiler and tracer(BLC & BLT). The tools architecture
integrated in the control integration environment
developea by 111 can be drawn as Fig. 7. This figure
described the tools integrated in this environment and the

454

corresponding message passing forward and backward.
The Editor and TPA which were developed in TamKang
university are tightly integrated into CID by m w n g
the source codes and adding the integration interface in
front of them. The TPA can be divided as All-Statement
Analyzer(ASA), All-Branch Analyzer(ABA) and Ter. 3
Analyzer(TER3). And the MSVC, MSVT, BLC and
BLT are loosely integrated into CID by producing new
file sources and encapsulating these binary codes into
CID in integration interfaces. When the Editor passed a
message containing the program name@"), testing
criteria(TC), selected compiler(SC) or tracer(ST) to the
CID, the CID decoded this message and passed to one of
three test path analyzers, two compilers or tracers. After
completing their service, these tools sent the result or
program listing(PLL) to the CID and the CID resent
back to the Editor to point out the corresponding
program location(PL) of the source code.

Fig. 7 Tool integration architecture in the
platform developed by III

This proposed integration environment can be assessed
by an CASE tool criterion. This criterion are compared
the HP's Teamwork, 111's Kanga tools and this proposed
environment from three different aspects: Individual
aspect, Integration aspect, Transformation aspect.[5]
The Individual aspect of assessment is to survey if it had
provided enough functionality to accomplish the user's
tasks. As this environment is the foundation which
provided the platform for every tool to be encapsulated,
the Individual aspect of assessment can be satisfied by
integrating the tools which are necessary to user. The
Integration aspect of assessment is to select the
individual tool which is satisfied to the requirement of
user and integrated them together. As tools are integrated
into this cooperative environment by the integration
interfaces, this environment can fit the Integration aspect
of assessment. There are five components to be compared
among the HP's Teamwork, 111's Kanga tools and this
proposed environment. These components are Common
User Interface(CUI), Intertools Data Transfer(IDT),
Integrated CASE Repository(ICR), Intermachine
Data Transfer(1DT) and the Availability On
Workstation(A0W). The CUI is to evaluate that
whether every tool integrated in these environment had a

common look-and-feel interface or not. The IDT is to
evaluate that whether every tool integrated in these
environment can exchange information among tools or
not. The ICR is to evaluate that whether these
environment possessed the Integrated CASE Repository
to store the information of CASE tools or not. The IDT is
to evaluate that whether the information of CASE tools
can exchange with other CASE tools which are in
different machine or not. The AOW is to evaluate that
whether these environment which are supported on
workstation or not. And the corresponding result of
comparison listed in Table 1. The Transformation
aspect of assessment is to evaluate the properness of the
information exchanging among tools. No matter what
kind of tool to be integrated into this environment, the
message-passing is controlled by the CID. The CID can
dispatch messages forward and backward properly
according to the message type. So this environment can
also meet the Transformation aspect of assessment. There
are three components to be compared among the HP's
Teamwork, 111's Kanga tools and this proposed
environment. These components are Interphase
Automatic Information Transformation(IAIT),
Selected Diagramming Transformation(SDT), Full
Diagramming and Information TransferredWDIT).
The IAIT is to evaluate that whether the information of
Merent phase of tool can be transformed automatically
or not. The SDT is to evaluate that whether the
diagramming tool in these environment can transform a
selected diagram into another diagram or not. The FDIT
is to evaluate that whether the diagramming tool in these
environment can transform a selected diagram and its
information into another diagram and corresponding
information or not. Finally, this compared result listed in
Table 2.

455

ation aspect
ofassessment
IAIT
SDT

FDIT

Although this environment is much better than HP'
Teamwork and 111's Kanga tools, there is still a drawback
in this platform. The drawback is when a programmer
developing a software system, one thing for him to
remember is to cooperate with other tools. That is, once a
tool was developed, it is necessary for this tool to open
the functions and their corresponding parameters which
it provided. In this way, it would be no secret to keep in
the individual tool. But this problem can be solved by
defining the standard providing functions for tools before
they were developed.

Team- Kanga environ-
work tools ment

Support None Depending
on diagram
tool

Support None Depending
on diagram

support support support

5 Conclusion
The architecture discussed in this paper provides a tools

integration environment in Microsoft WINDOWS
System and makes tools exchange information via
message-passing. In this way, a tool does not have to
provide all the functions needed for users and can
cooperate together to compensate for the drawbacks
among tools. This environment also provide the
methodolo& for tool integration, not only limited to the
CASE tools but also the other fields of tools just to meet
the users' requirements. Therefore, the time required to
develop a new tool or mod@ an existed tool for tool
integration can be shorten and with minimum effort.

Reference
1. Alan W. Brown, "Control Integration through
message-passing in a software development
environment", Software Engineering Journal, May 1993,

2. Astrid Julienne, Larry Russell and Brain Fromme,
"The Message Is the Medium", SUNExpert Magazine,

3. Cagan, M.R., T h e HP Somench environment: an
architecture for a new generation of software tools",
Hewlett-Packard Journal, June 1990, PP. 36 -
4. CASE Interoperability Alliance and CASE
Communique,"Proposed Messaging Architecture -- A
Joint Proposal", December 1992, PP. 1 - 12.

PP. 121-131.

March 1993, PP 48 - 69.

47.

5 . Chi-Ming Chung, Po-Yu Chou, "Evalution Criteria of
CASE", Journal of Information and Management
Sciences, July-August 1993, pp. 5 1-52
6. Donald Firesmith, "An expanded View of
Messages",Journal of Object-Oriented Programming,

7. Edward Yourdon, "Modem Structured Analysis",
Prentice-Hall International Editions, 1987, pp. 82 - 83.
8. EIA,"CDIF: organization and procedure manual",
Report Number EIA/PN-239, January 1990.
9. European Computer Manufacturers Association, "A
reference model for computer-assisted software
engineering environments", ECMA Report Number
W 5 5 , V2, December 1991.
10. Frankel; R.,"Introuction to the ToolTalk Service",
Sun Microsystems Inc., Mountain View, California, 199 1.
11. Frankel, R.,"The ToolTalk Service", Sun
Microsystems Inc.,Mountain View, California, 199 1.
12. Fischer, H.,"Notes fromCASE Communique
Meeting", 17 October 1991.
13. Hal Dean, "Object-Oriented design using message
flow decomposition", Joumal of Object-Oriented
Programming, May 1991, pp. 21-31.
14. Jeffrey D. Clark, "WINOWS Programmer's Guide to
OLEDDE", Prentice Hall, 1990, PP. 4 - 239.
15. Reiss, S.P.,"Interacting with the FIELD
environment", Software Practice & Experience, 1990,

16. Reiss, S.P., "Connecling tools using message passing
in the FIELD environment", IEEE Software, June 1990,
PP. 57 - 99.

July-August 1993, pp. 51-52

20(S1), PP. 189 - 195.

456

