1997 IEEE International Conference on Intelligent Processing Systems

October 28 - 31, Beijing, China

Software Testing and Metrics for Concurrent Computation
through Task Decomposition

Ying-Hong Wang, Chi-Ming Chung, Timothy K, Shih,
Huan-Chao Keh, and Wei-Chuan Lin

Graduate Institute of Information Engineering, TamKang University
Tamsui, Taipei Hsien, Taiwan, China
TEL: +886-2-6215656 ext. 748, FAX: +886-2-6209749
E-mail: inhon@ocs.tku.edu.tw

Abstract

Software testing is one of important approaches (o assure
the reliability and quality of software. Sequential
programming testing is fairly sophisticated process. The
emergence of concurrent programming in'the recent years.
Some concurrent program lesting methodologies are
proposed to solve controlled execution and determinism.
However, there are few discussions of concurrent sofiware
testing from the inter-task viewpoints. This paper focuses
the testing view on the concurrent programming through
task decomposition. [Four testing criteria are proposed to
test a concurrent program. Programmer can choose an
appropriate testing strategy depending on the properties of
concurrent programs. A coverage criteria hierarchy is
provided. Moreover. two suggestions for concurrent
programming based on rendezvous complexity are made.

Index Terms: Concurrent prograins, soflwarc testing
criterion, software complexity, Ada language, rendezvous.

1. Introduction

The purpose of software testing is the assurance of
software quality and softwarc correctness. The cinergence
of concurrent programming in recent years [7. 13].
however, has presented new testing problems and
difficulties which cannot be solved by regular sequential
program testing techniques {11, 12]. In the paper. we will
discuss the testing problems of concurrent programs and
try to propose new testing strategics focused on inter-tasks
view, '

Concurrent programs are programs with components
that can be executed in parallel. Duc to nondetlerminism.
concurrent programs can result in many instances of
execution for the same set of input data. Although repcated
execution of a nondeterministic concurrent program s
possible, it is still not sufficient to investigate all such
instances of execution. A worse casc scenario is that a fault
occurs in only one instance of execution, and that instance
of execution is never tested.

The common characteristics of concurrent

0-7803-4253-4/97/810.00 © 1997 IEEE

programining arc cxplicit identification of large grain
parallel computation units (tasks). and explicit inter-task
communication via a rendezvous-style mechanism.
Existing concurrent programming languages supply these
capacitics, such as HAL/S [11]. CSP [6], Ada, and PCF
FORTRAN [Y]. etc.- To provide a specific basis for the
further discussions. wc choose Ada as our description
sample. although the results are applicable to any prograins
that use rendezvous-like synchironization. The rendezvous
concept combines process - synchronization and
conununication |1, 4]. This synchronization or
communication to exchange information is called the
rendezvous [5]. Thus we focus software testing in the
rendezvous for. concurrent programs and some testing
strategics based on the rendezvous are proposed. To
provide a focus. the discussion in the remainder of this
paper will be with respect to Ada. and we assume that
variables are not shared by different tasks in concurrent
units.

The remainder of this paper is organized as follows.
Scction 2 introduces a survey of concurrent programming
testing. In scction 3. four testing criteria based on
rendezvous view arc proposed and the coverage criteria
hicrarchy is provided. . In scction 4, four equations for
mcasuring complexity of concurrent program are proposcd.
Section 5 concludes the paper and describes our plans for
futurc work.

2. Background of Concurrent Program
Testing

The existing testing stratcgics of concurrent prograims
can be divided into some techniques {3].

The first one is static analysis. Taylor et al. propose a
structural or white-box testing mcthod | 12]. This technique
applics the (raditional structural tesling strategies to
concurrcnt programs. Weiss obtain another approach
towards testing by considering a concurrent program as a
set of sequential program |14]. However. this thecnique is
limited in practice becausce of state space explosion.

Sccond technique is testing based on deterministic

— 1857 —

execution. Tai, Carver and Obaid proposc a deterministic
exccution technique (o debug concurrent Ada programs
[10]. There are some drawbacks such as sclection of the
appropriate SYN-scquences for covering the critical paths
is a difficulty posed by this method. Also the programmer
has to cnumerate all possible SYN-sequences for testing a
parallel program [or 2l possible instances ol exceution for
a given input.

Another technique is testing based on execution
traces. A mechanism for noninterference monitoring and
reproduction of a program behavior of real-lime software
systems is proposcd by Tsai ct al. [13]. Howcver, it is
difficult to ensurc that all possible exccution instances arc
tested.

Yet another approach based on Petri nets is proposed
by Morasca and Pezze [15]. Its shortcoming is practically
infeasible for large programs.

The last fechnique is lesting based on comtrolled
execution. Damodaran-Kamal and Francioni have
proposed a theory for testing nondeterminacy in message
passing programs that-is based on controlled execution
with permuted delivery of messages [2]. This testing
algorithm has a polynomial {ithe complexsity.

3. A Rendezvous Oriented Testing for
Concurrent Programs

In this section, we will discuss the basic type of

rendezvous in Ada and how to test it complctely.

Generally, a space-time diagram, shown in figure 3-1,
is a convenient form 1o represent a paraliel exccution.
However, it cannot represent multiple cntry accepting of
rendezvous.

Task 1 Task2 Task 3
Entry call I\‘LAec(I Entry call
5pL

Fig. 3-1. A example of spacc-time diagram

In this paper, we will usc a modified space-time
diagram to show the rendezvous. We append a circle on the
time flow to represent an cntry call or entry accepting
statement and label the entry name ou the diagonal arrow
to describe the occurring entry. The circles are divided into
two classes: entry calling node and cutry accepting node,
marked as EC and EA respectively.

In Ada programming, the rendczvous is implemcented
by entry call and accept among tasks,

Clearly, the basic type of rendezvous is a task invoke
an entry call, then the rendczvous is building. Therefore,
the testing is complete when we exceute all entry calls (i.c.
all EC nodes) al least once. We define a criterion, A/H-/<C°

criterion, (o represent the requirement for the rendezvous
lesting,.

Criterion 1. A/l-EC criterion:

Al-I2C criterion is satisficd iff when ail entry calls in an
Ada program arc tested at least once, i.e. cach EC node of
wodified space-time graph must be traced at least once.]

Onc of the important characteristics of concurrent
programs is nondeterminacy, Nondeterminacy happens
when a concurrent/paraliel program with the same input
data yiclds different results on different runs. Any
nondelerminacy in a concurrent/paraliel program makes it
diflicult to detect the cause of prograiu errors,

Ada programs allow a called task with multiple same
entry accepting. For example reduced from {8} is the
following:

Example I:

~ The tasks bodics arc :

task bodv A is ...
u, v ineger;
hegin
<Ll aceept E(x :inoul integer) do
XX o
end acceplt;
L2 accept le(x in oul integer) do
XoEx b
end accepl;
end /;
task body B is
b :integer;
L3),
PUTM);
end 3;

The modificd space-time diagram is shown in figure
3-2. 1u this case, the A/-EC criterion will be satisfied when
entry call A.E() in task B is exccuted once, e.g., (L3 vs.
L1). However, it is not cnough for covering all possible .
synclironizations among tasks, likewise (L3 vs. L2) is lost.
Thus. wt propose the second crilerion, All-Possible-EA
criterion.

Criteriun 2. All-Possible-EA criterion:

All-Possible-laA criterion is satisfied iff each entry call
must call all same entry accepts at-lcast once, i.e. each.cdge
froni a EC node to different EA nodes of modified space-
time graph must be traced at least once.] ‘

Another testing problent of concurrent programs is race. A
race occurs at an entry accepting that may contain at least
two calis in-its received queue. For Example 2, and their

— 1858 —

modificed space-time diagram is shown in ligure 3-3.

Task B Task A Task B Task A
3 L3 LI
E 1 E EA
EA E
2 L2
EA - EA

Note: L1 and L2 are different entry accepting, but-they
accept the same entry

Fig. 3-2. Two possible modificd space-time diagrams for
Example 1 '

The tasks can be abstractly described in Exampic 2.

below:

Example 2:
The tasks bodies are :
task body T is '
i INTEGER;
begin v
accept Display(m : in LINE) do
i:=1
loop
display character m(i);
exit when'm(i) = LF;
ir=i+l;
“end loop
end accept;
end T;
task body B is
L : LINE(]..254);
T.Display(L);
end B,
task body C is
X LINIE(]..254);
T Display(X);
end C; B
If we need to consider the ordering rclationship, the race of
messages displaying from Task B and Task C will happen.
For testing races, we propose the third criterion, AN-LC-
Permute critcrion.

Criterion 3. All-EC-Permutation criterion:
AN-EC-Permutation criterion is satisfied il all possible
permutation in received queuc of cach cntry accept are
tested at least once, i.c. the permutation of all cdges lrom
different EC nodes to a EA node of modificd spacc-time
graph must be traced at least once. [}

Thus the testing cases include not only {(ECI1. EA)
and (EC2, EA)} but also {(EC2, EA) and (ECI, EA)}. i.c.,
the number test cases of an entry accepting is the

permutation of all possible entry calls.

Task B Task TTusk C Task B Task T Task C

2isplay .
ispla Disp . Display

Fig. 3-3. Two possible modified space-time diagram for
Example 2

Many tasks may have sent the same entry calls to a
received task that has multiple entry accepting for the same
citry name. I{ the exccuted ordering among the entry calls
and the happenced accepling statcimcnt are dependent, then
the All-EC-Permute criterion is not cnough because it just
tests the permutation of individual cntry accepting. It
cannol test the permuted relationship between different
cnlry accepting. Thus, we proposc the fourth criterion to
test the potential ordering-dependent permutation of all
cntry calls in all cotry accepting with the same entry name,

In Examplc 3. extended from Example 1. Figure 3-4
depicts their possible modified space-time diagrams.

Example 3:
The tasks bodics are :
task bodv A is
u, v.inleger,
begin
~ L1 accept E(x : in out integer) do
X=Xy
end accepl;
L2 - aceept x :in out integer) do
X Im X)
end aceept;
end A;
task body B3 is
b integer;
L3 Albh);
PUTh);
end I3;
task body Cis
¢ inleger;
s LA A)
Putic),
end (5

The fourth criterion is described as the following :

Criterion 4. All-EC-Dependency-Permutation criterion:

AN-EC-Dependency-Permutation criterion is salisfied iff
all possible permutations in reccived queue of all entry
accepling with the samc entry name are tested at least once,
i.e.. the permutation of all edges from different EC nodes to
cach EA node with the samie entry name of modified

— 1859 —

space-time graph must be traced at least once. 171

The test cases arc {(L3. L1), (L4, L1) and (L4, L1).
(.3, LD and (L3, L2), (L4, L2) and (L4, L2), (L3, L2) and
(L3, L1), (L4, L2) and (L4, L1), (L3, L2)}, i.c.. the number
of test cases is the summary of the permutations of all
possible entry call of individual entry accepting plus the
permutations of all possible entry calls in different cntry
accepting. The coverage criteria hierarchy for proposcd
testing strategies is shown in figure 3-5.

Task B Task A Task C Task B Task A Task C

4

4

4

Fig. 3-4. Possible space-time diagrams tor Example 4

According to the coverage criteria hicrarchy and their
proof, we make two suggestions as the following:

(1) Don‘t centralize all entry accepting in few tasks: It
means the load of called tasks arc heavy. Many tasks
will send entry calls to the same cniry accepting of a
called task.

(2) Don‘t distribute accepting statements to accept the
same entry: It means (here arc many possibilitics
when a task sends an entry call.

When a concurrent program has the above two
properties, it means the difficulty of testing task will be
raised. It would be advised for redesign to decreasing the
complexity of testing .

Al-EC-Dependency-Permutation

Al-EC-Penmnutation
i
All-Possible-EA
{

Al-EC

Fig. 3-5. Rendezvous-based testing coverage criteria hicrarchy

4. Software Metrics for Concurrent Programs
through Task Decomposition

Finally. a new view (o measure the complexity of a
concurrent program is proposcd. As mentioned above,
synchronization and communication arec the major
differences between concurrent programs and. sequential
programs. The complexity measurcment of a concurrent
programm is also cmiphasized in the rendezvous. The
number of rendezvous is naturally an important factor for

the complexity of the concurrent program. Therefore, the

number of different entry, Af. where each entry has mpg
entry call stalcments and ny7 entry acceptance statements,

can be used to compare the complexity among concurrent
programs. The first cquation for measuring a concurrent

_program is the following:

Equation |

Cpx = =M g, where Cpx mcans the complexity of a
concurrcnt program. M and my; are defined in the previous
scction. and the index 1 (from 1 to M) represents cach
individual entry.

The cquation counts all entry calls instruction. This is
the most simplc case in which all entry call statements and
entry acceptance statcments are onc-to-one' mapping. If
different entry acceptance statements received the sane
entry. tike Example 27 we neced to consider the possible
rendezvous combination. Therefore. the second equation is
presented as follows:

Equation 2 .

RS , e .
Cpx=Z" . (m,, * n) . where Cpx means the complexity
of a concurrent program. and ng is defined in the above
section.

However, the major characteristic of a concurrent
program is racc. The races make nondeterminism: in
concurrent progranis and increasce the difficuly. in the
testing task. According to the proof of Theorem 1, we can
calculate the permutations of all rendezvous in an Ada
program and the permutations of all rendezvous include all
race cases. Thus. we proposc the third equation to measure
the complexity of an Ada program.

Lquation 3)) .

M . . P
Cpx =2 (N ¥ my, Do where i means each individual
entry, from | to M.

When we consider the ordering dependericy- among
entry calls. the third equation must be extended to the

— 1860 —

fourth equation as the following:

Equation 4
M
Cpx=2"_ ((n, * my 1)+ Clng, mg) * mg!).
where i means each individual entry, from I to M, and C(x,
y) means combination, from x choosing y.

According to these metrics equations, we make two
suggestions as the following:

(1) Deon't centralize all entry acceptance stalements in
few tasks: It means the load of called tasks are heavy.
Many tasks will send entry calls to the same cntry
acceptance of a called task. When we incrcasc an
entry call, the rendezvous complexity will increase
tremendously.

(2) Don't distribute acceptance statciments 1o accept the
same entry: It means there are many possibilitics when a
task sends an entry call. When we increase an cniry
acceptance statement to receive the samc cntry, the
rendezvous will also increase tremendously.

When a concurrent program has thc above two
properties, it would be advised for redesign to decrease
complexity.

5. Conclusion and Future work

In our research, a rendezvous point of view for
concurrent program testing is proposed. Four testing
criteria based on the rendezvous for concurrent/parallel
programs are presented. A coverage criteria hicrarchy for
the four criteria is also provided. Furtherinore, we make
two suggestions for concurrent programming based on
rendezvous complexity.

In future related work. we will consider the
conjunction of rendezvous with other Ada instructions,
such as select, delay, selective-wait, etc., and proposc more
testing criteria to help software engineers for testing tasks.
We will also extend the investigation to gencral paralicl
programming language with explicit lexically-specificd
parallel constructs. Moreover, we will then apply the
methodology to other similar programming environments,
e.g., event-driven programming, nctwork programming
and object-oriented programming.

Reference :
[1] M. E. Conway, "Design of a Separable Transition Diagram
Compiler,” CACM, pp. 396408

[2] Suresh K. Damodaran-Kamal and Joan M. Francioni,
"Nondeterminacy: Testing and Debugging in Message Passing
Parallel Programs,” ACM SIGPLAN Notices, pp. 118-128, Dec.,
1993

{3] Suresh K. Damodaran-Kamal and Joan M. Francioni, "Testing
Races in Parallel Programs with an OtOt Strategy,” Proceeding of
the 1994 International Symposium on Software Testing and
Analysis(ISSA), also ACM Software Engineering Notices, special
issue, pp. 216-227, Aug., 1994

4] Dob, "Preliminary Ada Reference Manual," SIGPLAN
Notices, Vol. 14, No. 6, Part A, Jun., 1980

[5] Narain Gehani, "Ada: Concurrent Programming,” 2nd Edition,
AT&T Bell Lab., Silicon Press, 1991

{6} C. A R. Toare, “Communicating Sequential Processing,”
Communication of ACM. Vol. 21, No. 8. pp. 666-677. Aug.
1978

171 1. 3. LeBlane and J. M. Mellor-Crummey, "Debugging
Parallel Programs with Instant Replav.” [EEE Trans. on
Computers, C-36. No. 4. pp. 471-482. Apr.. 1987

[8] Louise E. Moser, "Data Dependency . Graphs for Ada
Programs,” IELEL Trans. on Software Engineering, Vol. 16. No. 5.
pp. 498-509, May, 1990

9] Parallel Computing Forum., “PCF Parallel FORTRAN
extension,” FORTRAM Forum, vol. 10, No. 3, special issue, Sept.
1991

[10} K. C. Tai. R Carver, and E. E. Obaid, "Debugging
Concurrent Ada Programs by Deterministic Execution," 1IEEE
Trans. on Software ling.. Vol 17, No. 1, pp. 45-63, Jan. 1991

[11] R. N Taylor, "A General Purpose Algorithm for Analyzing
Concurrent Programs,” CACM, pp. 362-376, May, 1983

[12] RN Tavlor, . L. Levine and C. 1. Kelly. "Structural
testing of Concurrent Programs.” IELE Trans. on Software Eng.,
Vol. 8, No. 3. pp. 206-215. March, 1992

[13] J 0 Tsai, K Y. Fang . Y. Chen and Y. D. Bi, "A
Noninterterence Monitoring and Replay Mechanism for Real-

Eng., Vol. 16. No. 8, pp. 897-915. Aug.. 1990

[14] 8. Weiss “A Formal Framework for The Study of Concurrent
Program Testing,” In Proceedings of the 2nd Workshop on
Software Testing, Analysis, and Verfication, pp. 106-113, July,
1988

115] S. Morasca and M. Peeze, “Using High Level Petri Nets for
Testing Concurrent and Real Time Systems, ” In Real-Time
Systems: Theory and Application. pp. 119-131, 1990

— 1861 —

