Object-Oriented Software Quality Through Data Scope Complexity
Measurement

Ying-Hong Wang, Chi-Ming Chung, Timothy K. Shih,
Huan-Chao Keh and Wei-Chuan Lin
Graduate Institute of Information Engineering

TamKang University, Tamsui, Taiwan, 25137, R.0.C.
E-Mail: inhon@cs.tku.edu.tw

Abstract
Software metrics is a necessary step for software
reliability and quality and software metrics
technique of traditional procedure-oriented
programming is fairly maturity and has various
methodologies and tools available for use. Recently.
object-oriented programming became popular.
However, traditional procedure-oriented software
metrics are not appropriate for the development of

an object-oriented software. Some researches of

object-oriented software metrics have been
proposed. But, these articles focus on only one
metric that measures a specific characteristic of the
object-oriented software. In this paper. we propose
a new metric methodology, the data scepe
complexity. for object-oriented software based on
data scope of a program. The data scope
complexity can show complexities of multiple
Sfeatures of object-oriented programming at the
same time. Also, we quantify and compare object-
oriented programming with procedure-oriented
programming.

Index items: Object-oriented programming (OOP),
Software metrics, Data scope, C++ programming
language. Friend function, Public variable, Protected
variable, Private variable

1. Introduction

Software metrics is a necessary step for
software reliability and quality. The general
definition of software metrics is to measure the
complexity of software. Complexity measurement of
program provides a proper norm to evaluate
reliability and quality of software.

Since object-oriented programming was widely

0-7803-4053-1/97/$10.00 © 1997 IEEE

3849

advocated for the past decade. it has been the major
tendency of software development. including object-
oriented analvsis (OOA) [6]. object-oriented design
(OOD) [1: 7], and object-oriented programming
(00P) (3. 8], in the 1990°s. It contributes to
software reusability, software flexibility and
software extensibility [9-10: 12-14]. It also increases
software reusability, software flexibility and
software extensibility.

Although software metrics technique of
traditional procedure-oriented programming is fairly
maturitv and has various methodologies and tools
available for wuse. However, the traditional
procedure-oriented software metrics is not
appropriate for object-oriented software, due to the
different program features of object-oriented
programming. Therefore, developing a software
metrics for OOP is desirable.

Data scope in a programming language is used
to define the visibility of variables in a code segment.
Due to the feature of encapsulation, the data scope
concept of OOP is very different comparing with
traditional procedure-oriented programming
language. In our paper. we focus the data scope of
object-oriented programming language and propose
a methodology based on data scope to measure the
complexity of a object-oriented program. At the
same time. we present the advantage of object-
oriented programming to contrast with procedure-
oriented fanguage through data scope complexity.

The rest of the paper consists of the following.
The related investigations are presented in Section 2.
Section 3 describes the data scope mechanism of the
C++ programming language. The data scope
complexity i1s proposed in Section 4. Comparing and
proof the advantage of object-oriented programming
with procedure-oriented programming are given in

Section 5. Section 6 addresses our conclusions and
future works.

2. Survey of Related works

For object-oriented software production to
fulfill its promise in moving software development
and maintenance from the current “craft”
environment into something more closely resembling
conventional engineering, it requires measures or
metrics of the process. Chidamber [4] presents a suit
of metrics for object-oriented software. These
metrics are based on measurement theory and
informed by the insights of experienced object-
oriented software developers. Chung [5] also
presents a suit of object-oriented metrics based on
property of inheritance.

2.1 Chidamber‘s
Theory

Measurement

Chidamber proposed five metrics from different
views 1o the charactenstics of object-oriented
software. Thev are describes as follows :

Metric 1: Weighted Methods per Class (WMC)
Definition 2-]: Consider a class C, with methods M|,
M ... M,, and let ¢, ¢ ..., ¢, be the static
complexity of the methods. Then WMC of C is

WMC=3C
i=]
if all static complexities are considered to be unity,
WMC = n, which is the number of methods.

Metric 2: Number Of Children (NOC)

Definition 2-2: NOC is the number of immediate
sub-classes subordinated to class in a class
hierarchy.

Metric 3: Coupling Between Objects (CBO)
Definition 2-3: CBO for a class is a count of the
number of non-inheritance related couples with other
classes.

Metric 4: Response For a Class (RFC)
Definition 2-4: RFC = | RS | . where RS is the
response set for a class.

Metric 5: Lack of Cohesion in Method
(LCOM)

Definition 2-5: Consider a class C with methods M.,

M, ... M,. Let {J,} be a set of instance vanables
used by method M, There are n such sets {/,},
{53, ... {I,}. LCOM is the number of disjoint sets

formed by the intersection of n sets.

2.2 Chung'‘s Inheritance-Based Metrics

Chung et al. [5] present a family of inheritance-
based metrics to measure class hierarchy complexity.
They are shown below.

Metric A: Depth of Inheritance Level (DIL)
Definition 2-6: Consider a class hierarchy G = (V.
E). where | E | =k and | V| = n DIL is the
longest inheritance path in G [11].

Metric B: Number of Inheritance Edge
(NIE)

Definition 2-7: NIE for a class hierarchy is a count
of the number of inheritance edges. It is easy to
verify that G,, with more edges, 1s more complex
than G., with less edges, even if G, and G; have the
same DIL value.

Metric C: Combination of NIE-and DIL
(CND)

These two metrics, DIL and NIE, could be used as
the basic measurement unit. Given a class hierarchy
G, it can be defined that a metric CND(G) as a linear
combination of NIE(G) and DIL(G).

CNIXG) = & x DIL(G) + 8 x NIE(G)
where a and P are two coefficients. The value of &
and B could vary according to different object-
oriented systems. If an object-oriented svstem with a
high depth tendency, a could be chosen as a bigger
value to emphasize the property. On the contrary, B
could be treated in the same manner. Interestingly,
given a class hierarchy, G = (V, E), the complexity
of G will be located in a closed region formed by
DIL(G) and NIE(G). The complexity of class
hierarchy could be characterized in this area.

3. The Principles of Data Scope
Mechanism in C++

Object-oriented programming essentially means
programming using objects and other concepts. The
object concept is the most important concept that an
object-oriented language must support. The language
must support the definition of a set of operations for

3850

the object. namely the object’s interface. as an
implementation part for the object. which a user of
the object should not know about. The object
implementation is thus encapsulated and hidden from
the user.

There exists many object-oriented programming
languages. such as Smalltalk. C++. Eiffel. Object-C.
Simula. etc. To simplifv our description. we use
C++ in our examples. In the C++ programming
language. an object properties are implemented
internally as a number of variables. called attributes.
which store information and a number of functions.
called methods. which access or update the contents
of these variables. The variables are divided into
three tvpes: private, protected and public. The
private variables can be accessed only by member of
the object. The public variables are accessed by all
objects. The inheriting objects can access the public
and prorected variables and functions. The functions
of the object itself can access vanables of all tvpes.
In the following example. class basescore is a
superclass that includes three types of variables and
a public function. The class dbase is a subclass that
nherits from basescore and overrides the public
function. The main function defines an object pub is
a dbase class and calls the public function of pub.

Example .

#include <iostream.h> //for cout, cin

class basescore //base class for score
{
private :
int math;
protected :
int eng;
public :
int chem;
void input()
{
cout << * Input Mathematic score : ; cin >>
math;
cout << *“ Input English score : ”; cin >> eng;
cout << “ Input Chemical score : ”; cin >> chem;
} /* End of method definition, all three data type
can be accessed */
} [/End of basescore class definition

class dbase : public basescore /* class dbase

inherited from basescore */

[4
v

public :

void input() // Overloading input function
{
!l cout << “ Input Mathematics score : V; cin >>
math;
/* It is error becausc of inherited class just can
access protected and public data */
cout << “ Input English score : ”; cin >> eng;
cout << * Input Chemical score : ”; ¢in >>
chem;
} /* End of method definition, it can access
protected and public data */
} //End of dbase class definition

main()
{
dbase pub;
ints;
pub.input();
/' s=pub.math;
/* 1t is error because of it just can access public data,
math is a private data */
/I s=pub.eng;
/* It is error because of it just can access public data,

. eng is a protected data */

= pub.chem;
/* It is correct because of it can access public data,
chem is a public data */
} // End of main function

. When the program is executed, only input
function declared in dbase class is active. Thus the
user only input the score of English and Chemical.
The reason is that pub is an object of dbase class
and the dbase class is inherited from the basescore
class. Therefore. dbase class can only access
protected and public vanables, namely eng and chem.
The variable. math, is basescore ‘s private variable.
The input function of dbase class overrides from the
basescore class and redeclares to access eng and
chem vanables only. The main function is a
independent function. Therefore, it only call public
function and public variable.

4. Object-Oriented Software Quality
based on Data Scope

In this section. a perspective of software quality
from data scope will be presented. Then, the data
scope complexity of object-onented programs and
procedure-~oriented programs are also compared. To
simplified our descriptions. we use C++ and C as the
instances of object-oriented programming language
and procedure-oriented programming language.

3851

In the C++ programming language. each object
consists of vanables (i.e. attributes) and functions
(i.e. methods). Each object has three types of
variables: private. protected and public. And each
object can have some friend functions. The friend
functions are not member functions of the object but
able to access anv types of variables. Let each object
consists of the following elements:

Vb : the number of public variables in the object.
Ve © the number of protected variables in the object.
Vi : the number of private variables in the object.

F : the number of functions in the object.

O, : the number of objects inherited from the object,
including direct and indirect inheritance.

Fyi © the number of fiiend functions in the object.

From the perspective of data scope. if an
object-oriented program contains N objects and in
the worst case that every object has relationship with
the other all objects. When the object-oriented
program 1s executed. the situation of variables
accessed in an object will be

Vpri *F+ (zom\m Fi+F)* Vo + zNj=le *
Vpub+ (Vpn' + Vprl + Vpuh) * Ffri-
We call the equation the data scope complexity of an
object, Dop;. The first term, Vo5 * F, presents the
data scope of private variables are only active in all
functions of self-object. The second term, (Z%*°,.; F,
+ F) * V. means the data scope of protected
variables are not only active in all functions of self-
object but also active in all functions of sub-object
inherited from this object. The third term, "F; *
V. means the data scope of public variables are
active in all functions of all objects, and the last term,
(Vori + Vo + Vi) * Fy, presents the data scope of
all type variables of an object are active in its friend
functions. Since the object-oriented program has N
objects, the data scope complexity, Dpgm, of the
program is the summation of Dgy,; of all objects,
shown as follows:

ngm = szﬂDobjk . that is

' szzl(Vpn'k*Fk + (zosnbialFi""Fk)*Vpﬁk +
z‘\jsl Fi* Vouwnk + (VorictVoruct Vpuoi) *Frra)
where k., from 1 to N, means the data scope
complexity of k-th object. simultaneously it means
all private, protected, and public variables. member
functions and friend functions of &-th object. The F;
of I% . Fi*V,, means that the number of
functions of the i-th object which inherits from the &-
th object.

The data scope complexity Dygm reacts to some

3852

facts that described below:

1. When an object adds a friend function. the Dyym
will be increased by a value which is the number of
variables declared in the object. It represents that the
friend functions will destrov the encapsulation
feature of object-oriented programming and increase
the complexity of a program. even if friend functions
provide programmer to flexible programming. The
part of data scope complexity, (VoritVontVouw)*Fri
presents the specially - feature of the C++
programming.

2. Public variables are another factor that affects the
Dyew. 1t represents an object shares its variables with
other objects. It 1s called the coupling between
objects. The part of data scope complexity.
T8 a1 Fj* Vpye. is similar to CBO and RFC metrics
proposed by Chidamber [4].

3. Inheritance is a major charactenstic of object-
oriented programming. Generallv it is better to have
the number of inherited objects than the number of
equalized objects, since it promotes - reusability,
flexibility and extensibility of - objects through
inheritance. However, the more depth or breadth
inherited objects mean the more testing effort will be
spent, since of the error in the super-object could be
propagated through inheritance. The part of data
scope complexity, %", F;*V ., is similar to NOC
metric proposed by Chidamber [4] and CND metric
proposed by Chung [5].

S. Comparing with Procedure-

Oriented Programming

In general, one program is implemented in the
C++ programming language. It can be also
implemented in the C programming language.
Hypothesis: there are existed a C++ program and a
C program implemented for same task. The C++
program is divided into N objects and the C program
is divided into N modules. Let C program has same
total number of variables and functions as the C++
program. However. the C programming language
has no concept of object. The data scope of C is
divided into local variables and global variables.
Therefore. the protected and public variables in the
C++ program will be accessed by different functions
in the C program. i.e.. the protected and public
variables will become to the global variables in the C
program. In the best case. each private variable may
be accessed by one function in a C++ program, they

can be distributed and become the local vaniables of
some individual functions in a C program. In the
worst case. each private variable is accessed by two
or more functions in the C program. then the private
variables are still became global variables. Another
speaking, in the best case, the private variables of
C++ program will become local variables in the C
program. But in the worst case, thev are became
global variables. Supposing there is no friend
functions in the C++ program. Because if there
exists any friend function, it means that the private
variables would be shared by two or more functions
and the private vanables would become global
variables in the C program. When the procedure
program coded by C is executed. the situation of
vanables accessed among functions will be
In the best case:

ngm = 2:'Nk=l(\7prik *
Voubi))s
In the worst case:

ngm = ENFI(Zva’-IFj * (Vprik +Vprtk + Vpubk))s
where k, from | to N, means k-th module of the C
program. The V. * 1 means the number of private
variables V. can only be accessed by one function
in the C program.

Comparing the data scope complexity Dygm of
C++ programs with the one of C programs, we
present a theorem according to the quantitative data
scope equation and prove the advantage of object-
oriented programming over procedure-oriented
programming.

1+ ZNaF * (Vo +

Theorem :

The data scope complexity of object-oriented
programming is less then procedure-oriented
programming.
proof :

The data scope complexity of C++ program
is shown as Equation (1).
(1)'~ Dpem = szzl(Vprik*Fk + (ZO FAF)* Vprk +
Zz\jﬂle*Vpubk)

The data scope complexity of C program is

shown as Equations (2) and (3):

In the best case:

(2). Dpgm = ZNkax(Vpn'k 1+ 2Nj=|Fj * (Vo +
Vpund)

In the worst case:

(3). Dpgm = et (ENiei Fj * (Vprik +Viprac + Vipurid)
Note: The data scope complexity of C++ program
has no (VputVout+V,.)*Fr; because that we

3853

suppose there does not exist friend functions in the
C++ program.

Comparing the data scope complexities of C++
program(Object-oriented programming) with C
program (Procedure-oriented programming). we can
use Dpgm of C++ program to subtract Dy of C
program.

In the best case, (1) - (2) :

4. TVt (Vprix * (F - 1) + (% Fi + Fy -
e F) Vord = 2t (Vpri * (Fic - 1) + (2%
Fi ‘ENj=l,j*ij)* Vor)

In the worst case. (1) - (3) :

(5). ZFmt((Fy. - zstij)* Vorik + (Z%*o Fi + F, -
Zstle)*Voi) = Z et ((Fi - ZNj=le)* Vo +
(Ot Fi -2t ok Fi)* Vi)

Recall the svmbols F, represents the number of
functions in k-th object, O, is the number of
objects inherited from k-th object, N means the
number of objects. Due to the O,y only is the
number of inherited objects that belongs to a specific
object. the N is the number of all objects in a
program. In normal situation of programming, the
O.us should less than N. Same situation, the F, onlv
1s the number of functions of a specific object and
the =", ;= F; is the number of total functions of all
objects, so the F) should much less than =¥y j» F;.
Therefore,

Osub < N, Zosubigl Fi << ZN,-gl,jq Fj, and Fk << ZNjnl,
j*ijr-

= > In Equation (4),

EOsubi=l Fi 'ZNjgl,j#k Fj << 0, and Vpﬁk * (Fk - 1) +
(E%r Fi -2 et j2x Fj)* Vo< 0.

= > In Equation (3),

Fy - zstle <<, zOsubigl F; -ZNjgl'jtk Fj << (), and
(F. - 2Nj=le)* Vo + (zos“biﬂ F; 'zNj-l. itk
Fi)*Vym << 0.

So the theorem “the data scope complexity of
object-oriented programming is less then procedure-
oriented programming”’ is proved.

One thing needs to mention, the data scope
complexity of object-oriented programming is in the
worst hypothesis: every object has relationship with
the other all objects. It means the data scope
complexity. Dpgn. 1s the maximum value of an
object-oriented program.

6. Conclusions and Future Work

Recently. object-oriented programming
gradually became popular. However, traditional
procedure-onented software metrics are not
appropriate for the development of an object-
oriented software. In this paper. we present a metric
methodology for object-oriented programs through
data scope viewpoint. Also, the data scope
complexity responses simultaneously some of
Chidamber's measurement theory and Chung’s
inheritance-based metrics. On the other hand, we use
the data scope complexity to quantify the advantage
of object-oriented programming comparing to
procedure-ornented programming.

There are two directions in our future works.
One is extending the metrics research to testing
methodologies for object-oriented software. The
other is to discuss how to integrate these object-
oriented software metrics and testing methodologies
to be a software development tools.

Reference

1. [Booch 86] Grady Booch, “Object-Oriented
Development,” IEEE Trans. Software Eng., Vol. 2. No.
2, Feb. 1986

2. [Booch 94] Grady Booch‘ “Object-Oriented Analysis
and Design with Applications,” 2nd Edition,
Benjamin/Cummings Publishing CO., INC,

3. [Budd 91} Timothy Budd, “Object-oriented
Programming.” Addison-Wesley, 1991

4. [Chidamber 91} Shyam R. Chidamber and Chris F.
Kemerer. “Toward Metrics Suit for Object Oriented
Design,” OOPLSA'91. pp.197-211}

5. [Chung 94] Chi-Ming Chung and Ming-Chi Lee.
“Object-Oriented Design Complexity Metrics,”
International Journal of Mini and Microcomputer, Vol.
16. No. 1. pp. 7-15. Jan.. 1994

6. [Coad 90] Peter Coad and Edward Yorudon. *Object-
Oriented Analysis,” Prentice Hall, 1990

7. {Coad 91] Peter Coad and Edward Yorudon, “Object-
Oriented Design,” Prentice Hall. 1991

8 [Cox 87] Brad J. Cox, “Object-Oriented
Programming,” Addison-Wesley. 1987

9. {Jacobson 92] Ivar Jacobson. Magnus Christerson,
Patrik Jonsson, Gunnar Overgaard, “Object-Oriented
Software Engineering,” Addison-Wesley, 1992

10. [Laranjeira 90] L. A. Laranjeira, “Software Size
Estimation of Object-Oriented Systems.” IEEE Trans.
on Software Eng.. Vol. 16 No."S. pp. 510-522. May.
1990

11. [Moreau 89} D. R. Moreau. and W. D. Dominick.
“Object-Oriented Graphical Information System:
Research Plan and Evaluation Metrics.” Journal System
and Software. Oct. 1989, pp.23-28

12. [Rumbaugh 91} James Rumbaugh. Michael Blaha,
William Premerlani. Frederick Eddy and William
Lorensen. “Object-Oriented Modeling and Design.”
Prentice Hall. 1991

13. [Seidewitz 89] E. Seidewitz. “General object-
oriented software development: background and
expenience.” Journal System and Software, No. 19, pp.
95-118. 1989

14. [Ward 89] P. T. Ward. “How to Integrate Object-
Orientation with Structured Analysis and Design.” [EEE
Software, No. 6. pp. 74-82, March 1989

15. [Wilkie 93] George Wilkie, “Object-Oriented
Software Engineering - The Professional Developer's
Guide.” Addison-Wesley, 1993. ’

3854

