
Object-Oriented Software Quality Through Data Scope Complexity
Measurement

Ying-Hong Wang, Chi-Ming Chung, Timothy K. Shih,
Huan-Chao Keh and Wei-Chum Lin

Graduate Institute of Lnformation Engmeering
TamKang University, Tamsui, Taiwan, 25137, R.O.C.

E-Mail: d o n @ cs . tku. edu. tw

Abstract
software metrics is a necessaly step for sofhvare
reliability and quality and so f ia re metrics
technique of trtrditional procedure-oriented
programming is fairly maturity and has various
methodologies and tools available for use. Recently.
object-oriented programming became popular.
However, traditional procedure-oriented software
metrics are not appropriate for the development of
an object-oriented sofware. Some researches of
object-oriented software metrics have been
proposed. But. these articles focus on only one
metric that measures a spec@ characteristic of the
object-oriented sofnare. In this paper, we propose
a new metric methodology. the data scepe
complexity. for object-oriented software based on
data scope of a program. The data scope
complexity can show complexities of multiple
features of object-oriented programming at the
same time. Also. we quanhh and compare object-
oriented programming with procedure-oriented
programming.

Index items: Object-oriented programming (OOP),
Software metncs, Data scope, C++ programming
language. Friend hnction, Public variable, Protected
variable. Private variable

1. Introduction

Software metrics is a necessary step for
s o h a r e reliability and quality. The general
definition of software metrics is to measure the
complexity of software. Complexity measurement of
program provides a proper norm to evaluate
reliability and qualih. of software.

Since object-oriented programming was widely

advocated for the past decade. it has been the major
tendency of software development. includmg object-
oriented analysis (OOA) [6] , object-oriented design
(OOD) [I ; 71, and object-oriented ProgTamrmng
(OOP) [3: SI, in the 1990’s. It contributes to
software reusability, software flexibility and
software extensibility [9-10: 12-14]. It also increases
sofhvare reusability, sobvare flexibility and
sofhvare extensibility .

Although software metncs technique of
traditional procedure-oriented programming is fairly
maturity and has various methodologies and tools
available for use. However, the traditional
procedure-oriented software metrics is not
appropriate for object-oriented software, due to the
different program features of object-oriented
programming. Therefore, developing a software
metrics for OOP is desirable.

Data scope in a programming language is used
to define the visibility of variables in a code segment.
Due -to the feature of encapsulation, the data scope
concept of OOP is very different comparing with
traditional procedure-oriented programming
language. In our paper. we focus the data scope of
object-oriented programming language and propose
a methodology based on data scope to measure the
complexity of a object-oriented program. At the
same time. we present the advantage of object-
oriented programming to contrast with procedure-
oriented language through data scope complexity.

The rest of the paper consists of the following.
Tne related investigations are presented in Section 2.
Section 3 describes the data scope mechasm of the
C++ programming language. The data scope
complexity is proposed in Section 4. Comparing and
proof the advantage of object-oriented programming
with procedure-oriented programming are given in

0-78034053-1/97/$10.00 @ 1997 IEEE
3849

Section 5 . Section 6 addresses our conclusions and
hture works.

2. Survey of ReIated works

For object-onented software production to
fulfill its promse m momg software development
and mamtenance fiom the current "craft"
environment mto somethmg more closely resemblmg
conventional engmeenng, it requires measures or
metncs of the process. Chdamber [4] presents a suit
of metncs for object-onented software These
metncs are based on measurement theon, and
unformed b) the msights of expenenced objzct-
onented software developers Chung [j] also
presents a suit of object-onented metncs based on
propem of inhentance

2.1 Chidamber's Measurement
Theory

Chdamber proposed five metrics from different
views to the characteristics of object-oriented
software. They are describes as follows :
Metric 1: Weighted Methods per Class (WMC)
Defininon 2-1. Consider a class C, with methods Mi,
M?. M,, and let cI , c2, ..., c, be the static
complesity of the methods. Then WMC of C is

r = l

if ail static complexities are considered to be unity,
WMC = n. which is the number of methods.

Metric 2: Number Of Children (NOC)
Definihon 2-2: NOC is the number of immediate
sub-classes subordinated to class in a class
herarchy.

Metric 3: Coupling Between Objects (CBO)
Definlbon 2-3: CBO for a class is a count of the
number of non-mheritance related couples with other
classes.

Metric 4: Response For a Class (RFC)
Defininon 2-4: RFC = j RS 1 . where RS is the
response set for a class.

Metric 5: Lack of Cohesion in Method
(LCOM)
Definirion 2-5. Consider a class C with methods M I .

hi2, . . . I M,. Let {Z,} be a set of instance vanables
used by method M,. There are n such sets { I ,) ,
{12). ..._ {Z,,). LCOM is the number of disjoint sets
formed by the intersection of n sets.

2.2 Chung's Inheritance-Based Metrics

Chung et al. [j] present a family of inheritance-
based metrics to measure class hierarchy complexity.
They are shown below.

Metric A: Depth of Inheritance Level (DIL)
Definition 2-6. Consider a class hierarchy G = P.
E). where j E ' = k. and 1 V I = n DIL is the
longest inheritance path in G [1 I].

Metric B: Number of Inheritance Edge

Definihon 2-7: NIE for a class hierarchy is a count
of the number of inheritance edges It is easy to
verify that GI, with more edges, is more complex
than G4, with less edges. even if GI and G? have the
same DIL value.

("1

Metric C: Combination of NIE'and DIL

These two metncs. DIL and NIE, could be used as
the basic measurement urut Given a class herarchy
G, it can be defined that a metnc CND(G) as a lmear
combmation of NZE(G) and DZL(G)
CND(G) = cx x DIL(G) +Px NIE(G)
where a and p are two coefficients The value of a
and p could van, according to lfferent ObJect-
oriented systems If an object-onented system wth a
high depth tendency. a could be chosen as a bigger
value to emphasize the property On the contrary, p
could be treated in the same manner Interestmgly,
given a class hierarch!, G = (V. E), the complexity
of G will be located UI a closed region formed by
DZL(G) and NZE(G) The compleMty of class
hierarchy could be charactenzed in t h ~ s area

(CNW

3. The Principles of Data Scope
Mechanism in C++

Object-oriented programmng essentially means
programming usmg objects and other concepts. The
object concept is the most Important concept that an
object-oriented language must support The language
must support the definition of a set of operations for

3850

the object. namely the object-s interface. as an
implementation pan for the object. which 3 user of
the Object should not know about. The object
implementation is thus encapsulated and hidden from
the user.

There exists many objectsnented programming
languages. such as Smalltalk. C++. Eiffel. Object-C.
Simula. etc. To simplifi; our description. we use
C++ in our esamples. In the Ctt- programming
language. an object properties are implemented
internally as a number of variables. called attributes.
which store information and a number of functions.
called methods. which access or update the contents
of these variables. The variables are divided into
three types: private, protected and public. The
private variables can be accessed only by member of
the object. The public variables are accessed by all
objects. The dent ing objects can access the public
and protected variables and functions. The bct ions
of the object itself can access variables of all types.
In the following esample. class, basescore is a
superclass that includes three types of variables and
a public function. The class dbase is a subclass that
mherits from basescore and ovemdes the public
function. The main function defines an object pztb is
a dbase class and calls the public function of pub.

Exnmple ;

#include <iostream.h> //for cout, cin

class basescore
{

private :
int math;

protected :
int eng;

public :
int chem;

void input()

//base class for score

cout << " Input Mathematic score : "; cin >>

cout << " Input English score : "; cin >> eng;
cout <<

math;

Input Chemical score : "; cin >> chem;
} I* End of method definition, all three data type

can be accessed *I
1 IIEnd of basescore class definition

class dbase : public basescore I* class dbase
inherited from basescore *I
r

pu hlic :

void input() I/ Overloading input function
{

/I cout '' Input Mathematics score : "; cin >>
math:
I* It is e r ror because of inherited class just can
access protected and public data *I

cout <c " Input English score : "; cin >> eng;
cout << .' Input Chemical score : "; cin >>

} I* End of method definition, it can access
chem:

protected and public data *I
} //End of dbitse class definition

main()
{

dbase pub;
int s;
pub.input():

/I s = pub.math;
I* It is e r ror because of it just can access public data,
math is a privite data *I
I1 s = pub.eng;
I* It is e r ror because of it just can access public data,
eng is a protected data *I

s = pub.chem;
I* It is correct because of it can access public data,
chem is a public data *I
} I1 End of main function

When the program is executed, only input
function declared in dbase class is active. Thus the
user only input the score of English and Chemical.
The reason is that pub is an object of dbase class
and the dbnse class is mherited from the basescore
class. Therefore. dbase class can only access
protected and public variables, namely eng and chem.
The variable. math, is basescore 's private variable.
The input function of dbase class ovemdes from the
basescore class and redeclares to access eng and
chem variables only. The main function is a
independent function. Therefore, it only call public
function and public variable.

4. Object-Oriented Software Quality
based on Data Scope

In this section. a perspective of software quality
from data scope will be presented. Then. the data
scope complexity of object-oriented programs and
procedure-oriented programs are also compared. To
simplified our descriptions. we use Ct+ and C as the
instances of object-oriented programming language
and procedure-oriented programming language,

3851

In the C++ programming language. each object
consists of vanables (i.e. attributes) and functions
(i.e. methods). Each object has three types of
variables: private. proiecred and public. And each
object can have some friend functions. The fnend
functions are not meinber hc t ions of the object but
able to access any Qpes of variables. Let each object
consists of the following elements:
V p u b : the number of public variables in the object.
Vp, : the number of protected variables in the object.
Vpn : the number of private variables in the object.
F : the number of functions in the object.
Osub : the number of objects inherited from the object,
including direct and indirect mheritance.
F, : the number offi.iend functions in the object.

From the perspective of data scope. if an
object-oriented program contains N objects and in
the worst case that eveI?; object has relationship with
the other all objects. When the object-oriented
program is executed. the situation of variables
accessed in an object will be

Vpn * F + (Cosubipl Fi + F) * V,, + CNj,IFj *
Vpub + (vpn i- Vpe + Vpub) * Frn.
We call the equation the data scope complexity of an
object. Dobj. The first term, Vpn * F, presents the
data scope of private variables are only active in all
fimctions of self-object. The second term, (Xosubi_l Fi
+ F) * V,. means the data scope of protected
variables are not only active in all functions of self-
object but also active in all functions of sub-object
inherited from t h ~ s object. The third term, CNj,lFj *
Vpub. means the dam scope of public variables are
active in all functions of all objects, and the last term,
(Vpn + V,, + Vpub) * F%, presents the data scope of
all type variables of an object are active in its friend
functions. Since the object-oriented program has N
objects, the data scope complexity, Dpgm, of the
program is the summation of Dobj of all objects,
shown as follows:

DpBm = x'k-.-lDobjk. that is
C" I p , (~ p r i t * ~ k + (c ~ ~ ~ ~ ~ , F ~ + F ~) * v ~ , ~ +

~ ' j = I F j * Vpubt+ (vpn,+vp,,+vpubk)*Ffrit)
where k, from 1 to N. means the data scope
complexi? of k-th object. simultaneously it means
all private, protected, and public variables. member
functions and friend functions of k-th object. The Fi

i-lFi*Vprt)i means that the number of
functions of the I-th object which inherits from the k-
th object.

The data scope complexity Dpgm reacts to some

of ~ O r u b

facts that described below:
1. When object adds a friend function. the D,,
will be increased by a value which is the number of
variables declared in the object. It represents that the
fnend functions will destroy the encapsulation
feature of object-oriented programming and increase
the complexity of a program. even if fnend functions
provide programmer to flexible programming. The
pan of data scope complexity. (V,n+Vp,+V,,b)*Ffn.
presents the specially feature of the C++
programming.
2. Public variables are another factor that affects the
Dplm. It represents an object shares its variables with
other objects. It is called the coupling between
objects. The part of data scope complexit?.
Csj=lFj*Vpuh. is similar to CBO and RFC metrics
proposed by Chidamber [J].
3. Inheritance is a major characteristic of object-
oriented programming. Generally it is better to have
the number of inherited objects than the number of
equalized objects, since it promotes reusabilih.
flesibilih and extensibility of objects through
inheritance. However, the more depth or breadth
inherited objects mean the more testing effort will be
spent. since of the error in the super-object could be
propagated through mherimce. The part of data
scope complexin., Xosubi_lFi*Vpn, is similar to NOC
metric proposed by Chidamber [4] and CND metric
proposed by Chung [j].

5. Comparing with Procedure-
Oriented Programming

In general. one program IS implemented in the
C++ programmmg language It can be also
implemented m the C programming language
Hypothesis: there are existed a C++ program and a
C prosram implemented for same task The C++
program is divlded into IV ohjecfs and the C program
is divided into N moduies Let C program has same
total number of vanables and functions as the C++
program However. the C programming language
has no concept of object The data scope of C is
divided into local variables and global vanables
Therefore. the protected and public vanables in the
C++ program will be accessed by different functions
m the C program. I e . the protected and public
vanables will become to the global variables in the C
program In the best case. each private vanable may
be accessed by one function in a C+-t proyam. they

3852

can be distributed and become the local variables of
some individual functions in a C program. In the
worst case. each private variable is accessed by two
or more functions in the C program. then the private
variables are still became global variables. Another
spealung, in the best case. the private variables of
C++ program will become local variables in the C
program. But in the worst case. they are became
global variables. Supposing there is no friend
functions in the Ci-t program. Because if there
exists any mend function. it means that the private
variables would be shared by two or more functions
and the private variables would become global
variables in the C program. When the procedure
program coded by C is executed. the situation of
variables accessed among functions will be
In the best case:

Dpgm = CNb1(Vpdk * 1 + CNj=lFj * (Vprtk +
Vpubk))?

In the worst case:

where k, from 1 to N, means k-th module of the C
program. The Vpdk * 1 means the number of private
variables Vp"k can only be accessed by one function
in the C program.

Comparing the data scope complexiv D,, of
C++ programs with the one of C programs, we
present a theorem according to the quantitative data
scope equation and prove the advantage of object-
oriented p r o g r k i n g over procedure-oriented
programming.

Dpgm = ZNh1(ENj=1Fj * (Vprik +Vpnk + Vpubk)),

Theorem :
The data scope complexity of object-oriented

programming is less then procedure-oriented
programming.
proof:

is shown as Equation (1).
The data scope Complexity of Ci-t program

(1). D p g m = CNbl(Vp"k*Fk + (Corubi- tFi+Fk)*Vp~k+

C'j-1 Fj * v p u b k)

The data scope complexity of C program is
s!iown as Equations (2) and (3):
In the best case:
(2). Dpg, = ZNb1(\'prik * 1 + CNj-lFj * (Vprtk +
vpubk))
In the worst case:

Note: The data scope complexity of C+-t program
has no (vpri+Vp~+Vpub)*Ff~ because that we

(3). Dpgm = C"k-l(xN.i-lFj * (vprik +Vprtk -t Vpubk))

suppose there does not exist mend functions in the
C++ program.
Comparing the data scope complcxities of C++
program(0bjectsriented programming) with C
program (Procedure-oriented programming). we can
use DPgm of C++ program to subtract Dpgm of C
program.
In the best case. (1) - (2) :
(4). Cxbl(V,,"k * (Fk - 1) + (CoSub+l Fi + F k -
CNj,lFj)* Vpnk) = ZN&i(Vprik * (F k - 1) + (Cosubi_i
Fi -CNj=l,j*kFj)* v p f i k)

In the worst case. (I) - (3) :

Cxj,lFj)*Vpnk) = Zsbl((Fk - ZNj-lFj)* Vp"k +

Recall the symbols Fk represents the number of
functions in k-th object. Orub is the number of
objects inherited from k-th object. N means the
number of objects. Due to the Osub only is the
number of mherited objects that belongs to a specific
object. the N is the number of all objects in a
program. In normal situation of programming, the
Osub should less than N. Same situation, the Fk only
is the number of functions of a specific object and
the ZNjm1, j # k Fj is the number of total functions of all
objects, so the Fk should much less than Cxj=l, j+k Fj.
Therefore.

(5) . C"b,((Fk - CNj=lFj)* VPek + (Cosub+l Fi + F k -

(Corubi=1 Fi -xxj=l , j*k Fj)*Vp~k)

Osub < N, ~ o s u b ~ l Fi << ZNj=l,j+kFj, and FI, << C"j-1,

= > In Equation (4),
Cosubiq Fi -C'jPl,jtkFj << 0, and Vp,jk * (F k - 1)
(Cosubjll Fi -Z'jp1,j#kFj)* vpdk< o.

j#kFj,.

= > In Equation (j),
Fk - CNjXlFj << 0, Cosubi=l Fi -CNj=l, j+k Fj << 0, and

N (F k - CNj=lFj)* Vprik -k (Cosubpl Fi -x j-1, j + k

Fj)*Vpnk << 0.
So the theorem "the data scope complexity of
object-oriented programming is less then procedure-
oriented programming" is proved.
w

One thing needs to mention, the data scope
cornplcxitv of object-oriented programming is in the
worst hypothesis: everq. object has relationshp with
the other all objects. It means the data scope
complexity. DPBm. is the maximum value of an
object-oriented program.

6. Conclusions and Future Work

3853

Recently. object-onented programming
gradually became popular However. tra&tional
procedure-onented software metrics are not
appropnate for the development of an object-
onented software. In t h ~ s paper. we present a metnc
methodology for object-oriented programs through
data scope viewpoint. Also. the data scope
compleMty responses sunultaneously some of
Chdamber’s measurement theory and Chung‘s
mhentance-based metrics. On the other hand. we use
the data scope complexity to quantify the advantage
of object-onented programming companng to
p rocedu re-onented programming.

There are two directions m our hture works.
One IS e,xtending the metrics research to testmg
methodologies for object-oriented software. The
other is to d~scuss how to mtegrate these object-
oriented software metrics and testing methodolopes
to be a software development tools.

Reference
1. [Booch 861 Grady Booch. “Object-Oriented
Development.” IEEE Trans. Software Eng.. Vol. 2. No.
2.Feb. 1986

2. mooch 941 Grady Booch‘ “Object-Oriented Analysis
and Design with Applications,” 2nd Edition
BenjamidCumrmngs Publishmg CO., INC.

3. [Budd 911 Timothy Bud& “Objeet-oriented
Programming” Adhson-Wesley. 1991

1. [Chidamber 911 Shyam R. Chidamber and Chris F.
Kemerer. “Toward Meuics Suit for Object Oriented
Design.” OOPLSA.91. pp. 197-21 1

5 . [Cllung 941 Chi-Ming Chung and Ming-Chi Lee,
“Object-Oriented Design Complexity Meuics,”

Journal of Mni and Mmocomputer, Vol.
16. NO. 1, pp. 7-15. Jan.. 1994

6. [Coad 901 Peter COitd and Edward Yorudon. “Object-
Oriented Analysis,” Prentice Hall, 1990

7. f Coad 9 11 Peter Coad and Edward Yontdon, “Object-
Oriented Design.” Prentice Hall. 199 1

8. [Cos 871 Brad J. Cos, “Object-Oriented
Programming.” Addison-Wesley. 1987

10. Franjeira 901 L. A. Laranjeira, “Software Size
Estimation of Object-Onented Systems.” IEEE Trans.
on Software Eng.. Vol 16. No 5. pp 510-522. May.
1990

11. [Moreau 891 D. R. Moreau. and W. D. Dominick.
“Object-Onented Graphical Informauon System:
Research Plan and Evaluation Meuics.” Journal System
and Software. Oct. 1989. pp.23-28

12. puinbaugh 911 James Rumbaugh. Michael Blaha,
William Premerlani. Frederick Eddy and William
Lorensen. ”Object-Oriented Modeling and Design,”
Prentice Hall. 199 1

13. [Seidewitz 891 E. Seidewitz. “General object-
onented software development: background and
expenence.‘’ Journal System and Software, No. 19. pp.
95-118. 1989

14. [Ward 89) P. T. Ward. ”How to Integrate Object-
Orientation with Structured Analysis and Design.” IEEE
Software. No. 6 . pp. 74-82. March 1989

15. [Wilkie 931 George Wilkie. ”Object-Onented
Software Engineering -- The Professional Developer’s
Guide.” Addison-Wesley. 1993.

9. [Jacobson 921 Ivar Jacobson. Magnus Christerson.
Pauik Jonsson. Guniiar Overgaard, “Object-Oriented
Sofhvare Engineering,” Addison-Wesley, 1992

3854

