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Abstract

Spherulitic morphology and crystallization kinetics of poly(ethylene oxide)/poly(3-

hydroxybutyrate) blends, PEO/P(3HB), were investigated using differential scanning calorimeter

(DSC), polarized optical microscope (POM) and scanning electronic microscope (SEM). A single glass

transition temperature was observed for all the blends and the Gordon-Taylor equation follows the

Tg-composition dependence very well. Furthermore, the melting point of P(3HB) was depressed by the

addition of PEO component and from which the interaction parameter �12 was calculated to be -0.059

using the Nishi-Wang equation. Thus, it can be concluded that P(3HB) and PEO are miscible in the level

of molecular mixing. From POM and SEM observations, P(3HB) spherulites exhibit a banded texture

due to the twisting of lamellar crystals. The band spacing is almost a constant, ca. 20 �m, when the

crystallization temperature is below 90 �C, at which the maximum growth rate of P(3HB) spherulites

occurs. When P(3HB) is blended with PEO, the growth rate of P(3HB) spherulites decreases because of

the dilution effect and a decrease in the degree of undercooling. According to the polymer-diluent theory,

the nucleation factor Kg and the folded surface free energy �e of P(3HB) crystals are calculated to be

5.648 � 105 K2 and 47.2 erg/cm2, respectively. Both values decrease when PEO is added.
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1. Introduction

Microbial polyesters, poly(hydroxyalkanoates) (PHAs),

have received considerable attention, especially for po-

tential application as biodegradable polymers. Bacteria

usually accumulate PHAs in response to nutritional limi-

tations and in the presence of an excess of carbon [1�3].

A variety of Gram-positive and Gram-negative bacteria

can produce PHAs as an intracellular storage material of

carbon source and energy. They are deposited in the cell

cytoplasm as water-insoluble granules that are typically

0.2-0.8 �m in diameter [2�5]. At present, at least 100 dif-

ferent monomeric units as constituents of PHAs have

been identified where the composition of PHA depends

on the bacterial strain, carbon source and fermentation

conditions. Among them, poly(3-hydroxybutyrate) ho-

mopolymer, P(3HB), is the most common microbial po-

lyester produced by various microorganisms in nature.

The microbial P(3HB) has a completely isotactic struc-

ture with only the R-configuration. This means that solu-

tions or films of P(3HB) will rotate the plane of polarized

light passing through them. P(3HB) typically forms sph-

erulites when crystallized from the melt in bulk and it

generally has a crystallinity ranging from 50 to 80%. The
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tensile strength and Young’s modulus of P(3HB) are 43

MPa and 3.5 GPa, respectively, which are close to the

mechanical properties of isotactic poly(propylene). How-

ever, the elongation at break for P(3HB) is only about

5%, appreciably lower than that of poly(propylene)

(~400%). Therefore, PHB is regarded as a plastic with brit-

tleness. Another shortcoming of P(3HB) as regards plastics

and fiber applications is its thermally unstable at tempera-

tures immediately above its melting point (Tm) due to the

�-elimination reaction. Thus blending of P(3HB) with suit-

able polymers may offer the opportunity to obtain cheaper

products along with improved mechanical properties.

Polymer blends are physical mixtures of different po-

lymers, which they can form either a homogeneous or het-

erogeneous phase in the amorphous region on a micro-

scopic scale at equilibrium. The former is considered to be

miscible, and the latter immiscible. According to the ther-

modynamic and kinetic behavior of mixing and crystalli-

zation process, blends can be arranged to a variety of mor-

phologies, which in turn is a very important factor that af-

fects the mechanical behavior of blends. In the crystal-

line/amorphous blends, the morphology is resulted by li-

quid-solid phase separation. The morphological patterns

can be characterized by the distance of the segregation of

the amorphous diluent. Three basic types are defined: (1)

interlamellar segregation, where segregation of the amor-

phous diluent occurs at the lamellar level; (2) inter-fibril-

lar segregation, where the amorphous diluent is segrega-

ted by a larger distance to the regions between the lamellar

bundles in spherulites; (3) interspherulitic segregation,

where the amorphous diluent is segregated by the largest

distance to the regions between spherulites [6�8]. Thus

the amorphous diluent may be trapped in interfibrillar or

interlamellar regions within the spherulites or rejected du-

ring the crystallization in interspherulitic domains. The

position and the extent of dispersion of the amorphous

component can be predicted qualitatively through the Kei-

th and Padden parameter � = D/G, where � is the segrega-

tion parameter, D and G are the diffusion coefficient of the

amorphous component and the linear growth rate of sph-

erulites, respectively [9]. Depending on the relative values

of D and G, the amorphous diluent may reside between

lamellae, fibrils or within the spherulites.

Crystallization kinetics in melt-miscible blends of

crystalline/amorphous polymers with P(3HB), such as

P(3HB)/poly(epichlorohydrin) [10,11], P(3HB)/poly(vi-

nyl acetate) [12�14], and P(3HB)/atactic-P(3HB) [15,

16], P(3HB)/poly(vinyl phenol) [17,18], has been exten-

sively studied. The thermal and microscopic analysis of

these systems has shown a depression of crystallization

kinetics of P(3HB) with the addition of amorphous dilu-

ent. Though the melt-miscible crystalline/crystalline

blends with P(3HB), such as P(3HB)/poly(ethylene ox-

ide) (PEO) [19�22], have also been studied, many exper-

imental and theoretical questions are still needed to be re-

solved. The morphology of crystalline/crystalline blends

is expected to be more complex than that of crystalline/

amorphous systems due to the interplay between two

crystallization processes. In the previous paper, we have

studied the spherulitic morphology and crystallization ki-

netics of the blends of P(3HB) with a low-molecular-

weight PEO (Mw = 5,000) by differential scanning calo-

rimeter and polarized optical microscopy [22]. The iso-

thermal crystallization temperatures studied were in the

range between 40 �C and 85 �C. When the blends under-

went crystallization at Tc = 70 �C, above the melting po-

int of PEO, banded spherulitic texture of P(3HB) was ob-

served, which could be perturbed by the subsequent PEO

crystallization in the blends with PEO-rich compositions

upon further cooling to room temperature. When the blends

were allowed to be crystallized at temperatures below the

melting point of PEO, fairly competitive crystallization was

observed where crystallization and segregation of PHB and

PEO may simultaneously occur, leading to complicated

spherulitic morphology. As for the results of crystallization

kinetics, the P(3HB) crystallization kinetics exhibited max-

ima in their dependences of PEO composition. This was at-

tributed to the coupling between enhanced chain mobility

and depression in equilibrium melting point. In this article,

the spherulitic morphology and crystallization kinetics of

P(3HB) with a medium-molecular-weight PEO (Mv =

100,000) were studied in a broader range of temperature,

from 40 to 110 �C, since our results show that the ma-

ximum growth rate of P(3HB) was near 90 �C.

2. Experimental

2.1 Materials and Sample Preparation

P(3HB) and PEO were supplied by Aldrich Chemi-

cal Co. The molecular weight of P(3HB) was measured

by gel permeation chromatography, where P(3HB) was

first dissolved in chloroform at 80 �C for 40 min and then
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it was injected to the GPC column. The measured Mn and

Mw of P(3HB) based on polystyrene standard were

250,100 and 369,400, respectively. The viscosity aver-

age molecular weight (Mv) of PEO was 100,000. P(3HB)

was blended with PEO by a solution casting method. The

blending components were dissolved in chloroform (0.2

g/15mL) at 80 �C for 40 min in a rotary oven. The solu-

tion was subsequently poured onto a Petri dish and the

blend film was obtained after evaporating most of the

solvent on a hot plate at ca. 90 �C. The blend film was

further dried in a vacuum oven at 40 �C for at least 24 h

until a constant sample weight.

2.2 Polarized Optical Microscopy

The morphology of spherulites and their growth rate

were monitored with an Olympus CX41 polarized opti-

cal microscope. The sample film (ca. 109 	 12 �m thick)

was first melt on a Linkam THMS 600 hot stage at 200

�C for 2 min, then quickly quenched to the desired crys-

tallization temperature (Tc) by the purging of liquid ni-

trogen, where spherulitic growth was monitored. Micro-

graphs were taken at various time periods for measuring

the radius of spherulites (R). The growth rate was calcu-

lated from the change of radius with time (dR/dt).

2.3 Scanning Electron Microscopy

Low voltage (3-5 kV) scanning electron microscope

(FESEM, Leo 1530, Germany) was used to observe the

surface morphology of the blends. The sample film was

first melt on a Linkam THMS 600 hot stage at 200 �C for

2 min, and then quickly removed to a precision oven set

at the desired crystallization temperature. After 3 days

for a complete crystallization, the sample film was taken

out for SEM observation. Some samples were etched

with cold water at 5 �C for 2 days to remove PEO com-

ponent as much as possible. All specimens were coated

with a conductive layer of sputtered gold.

2.4 Differential Scanning Calorimetry (DSC)

To determine the thermal transition temperatures, DSC

2920 from TA Instrument was employed. For measuring

transition temperatures, sample was first melted on a hot

stage (Linkam THMS 600) at 200 �C for 2 min, and then

rapidly quenched with liquid N2 to avoid the crystalliza-

tion in the sample as much as possible. Subsequently, the

sample was rapidly transferred into DSC cell and heated

to 200 �C at a heating rate of 10 �C/min under a nitrogen

atmosphere with a flow rate of 50 mL/min. A mid-point

method was employed to determine the glass transition

temperature (Tg). To determine the equilibrium melting

point (Tm�), each sample was first melted on a hot stage

at 200 �C for 2 min, and then rapidly transferred into

DSC cell equilibrated at the desired crystallization tem-

perature (Tc). After a sufficient time for complete crys-

tallization, the sample was then heated to 200 �C at a

heating rate of 10 �C/min. Melting point (Tm) was taken

as the endothermic peak value in the thermogram.

3. Results and Discussion

3.1 Miscibility of PEO and P(3HB)

The glass transition temperatures of PEO and P(3HB)

are -54.4 �C and -2.5 �C, respectively, as measured by

differential scanning calorimeter. Blends of PEO and

P(3HB) were obtained by solution casting from chloro-

form. The blends exhibit a single glass transition temper-

ature in the whole composition range as shown in Figure

1, indicating a complete miscibility of the two compo-

nents in the amorphous phase. The dependence of Tg on

the compositions is well described by the Fox equation

(Eq. 1) or Gordon-Taylor equation (Eq. 2):

(1)

(2)

where Tg,blend, Tg,1 and Tg,2 are Tgs of the blend, PEO,

and P(3HB), respectively, while w1 and w2 are the we-

ight fractions of PEO and P(3HB). Considering the dif-

ference between P(3HB) and PEO in heat-capacity chan-

ge at Tg (k = 
Cp,PHB/
Cp,PEO), Gordon-Taylor equation

fits exactly along the experimental data, and is better

than Fox equation. This Tg-composition dependence was

consistent with the results reported in a previous paper

[22]. Furthermore, since Fox equation or Gordon-Taylor

equation can well describe the Tg-composition depend-

ence, it is suggested that there is no or only weak inter-

action between PEO and P(3HB).

The miscibility of these two components is also con-

firmed by the observation of the depression of the equi-
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librium melting point of P(3HB) component. To deter-

mine the equilibrium melting temperature of each blend,

Hoffmann-Weeks equation was used:

(3)

where  is a constant, Tm is the apparent melting temper-

ature after crystallization at a certain temperature (Tc)

and Tm� is the equilibrium melting temperature of a per-

fect crystal having infinite thickness. By plotting the ex-

perimental melting point Tm against the isothermal cry-

stallization temperature Tc at which crystallization took

place, Tm� can be obtained as the intersection point of

the experimental line with the line Tm = Tc. The plot of

pure P(3HB) is shown in Figure 2. The equilibrium mel-

ting temperature of neat PHB is 187 �C. Though this va-

lue is slightly lower than the literature value, it is still in

a reasonable range [10]. In the presence of PEO, the

equilibrium melting temperature of P(3HB) was strong-

ly depressed, as listed in Table 1. The depression of melt-

ing point allows processing the blends at lower temper-

atures with respect to the neat P(3HB), avoiding the de-

gradation of PHB. The relationship describing the de-

pression of melting point and the interaction parameter

�12 between the two polymer components has been es-

tablished as the Nishi-Wang equation [23]:

(4)

where Tm,b� and Tm,PHB� are the equilibrium melting po-

ints of the P(3HB) component in the blend and in the

pure state, respectively, 
Hf� is the theoretical heat of

fusion of P(3HB) with 100% crystallinity, V1, n1, �1 and

V2, n2, �2 are the molar volume of the repeating unit, the

degree of polymerization and the volume fraction of the

PEO and P(3HB), respectively. This equation can be ap-

plied to PEO/P(3HB) blends as long as the Tc investi-

gated here is above the Tm of PEO (65.7 �C), at which

PEO is present as an amorphous component under such

conditions. To obtain �12, the equation was rewritten as

follows:

(5)

From the plot of left-hand side of the above Equation
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Figure 1. Tg-composition dependence of PEO/P(3HB) blends.
�2 is weight fraction of P(3HB) component.
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Figure 2. Plot of apparent melting point (Tm) with crystalliza-
tion temperature (Tc) to determine the equilibrium
melting point (Tm�) of P(3HB).

Table 1. Volume fraction of PEO component (�1),
equilibrium melting temperature of P(3HB)
component (Tm°) and interaction parameter
value (�12) of PEO/P(3HB) blends

w1 �1 Tm° (�C) �12

0 0.000 187 ----
0.2 0.213 174 -1.258
0.5 0.520 169 -0.295
0.8 0.813 167 -0.134

Densities of amorphous PEO and P(3HB) are 1.08 and
1.17 g/cm3, respectively.
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versus �1
2, a straight line is obtained with a positive slope

as shown in Figure 3, using the values of Tm,b� and Tm,PHB�
derived from the Hoffmann-Weeks method (Table 1),

and n1 = 2273, n2 = 4295, and the literatures values of


Hf� = 1.25 � 104 J/mol, V1 = 40.7 cm3/mol, V2 = 73.4

cm3/mol [19]. The interaction parameter �12 is the oppo-

site of the slope, equal to -0.059, in agreement with the

literature values [19]. The negative value of the interac-

tion parameter suggests the miscibility of PEO and P(3HB)

components, though the value is so close to zero. How-

ever, the intercept is not equal to zero, suggesting that �12

is dependent on the composition. The �12 values at differ-

ent compositions are also calculated separately and listed

in Table 1. They are all negative and slightly increased

with increasing concentration of PEO component. From

the studies of Tg-composition dependence and the melt-

ing point depression, it can be concluded that P(3HB)

and PEO are miscible in the level of molecular mixing,

though the enthalpic interaction between these two com-

ponents is weak.

3.2 Spherulitic Morphology

The morphology and growth rate of spherulites were

evaluated with a polarized optical microscope (POM).

Clearly observed were different behaviors for PEO and

P(3HB) undergoing crystallization. For PEO, all the sph-

erulites were nucleated at the same time and the bound-

aries between them were straight, indicating a heteroge-

neous nucleation mechanism. However, P(3HB) spheru-

lites were nucleated at different times so that they were

different in size when impinging on one another and their

boundaries were hyperbolas. In addition, compared to

other thermoplastics, the nucleation density is relatively

low mostly because of its natural origin. This leads to

greater diameter of the spherulites which intends to brit-

tle the material. A Maltese-cross pattern is clearly ob-

served for all PEO and P(3HB) samples, where the arms

of cross parallel to the directions of polarizer and ana-

lyzer. Figure 4 shows the observed spherulites of neat

P(3HB) at several crystallization temperatures. Under the

same field, the number of spherulites increases with de-

creasing the crystallization temperature, due to the in-

crease in the nucleation density. Consequently, smaller

spherulites are observed at lower crystallization temper-

atures. For example, the diameter of P(3HB) spherulites

decreases from 1.2 mm at 90 �C to 50 �m at 40 �C. Due

to the twisting of lamellar crystals, where the crystallo-

graphic a axis is radial, while b and c axes rotating about

it [24], P(3HB) spherulites exhibit a banded texture, whi-

ch shows alternative bright and dark rings under POM.

For the present system, the band spacing is almost a con-

stant, ca. 20 �m, when the crystallization temperature is

below 90 �C. At temperatures higher than 90 �C, the

band spacing of lamellar twisting increases with increas-

ing temperature; eventually, the ring pattern seems to dif-

fuse. For example, the band spacing is ca. 30 �m at 95 �C

and 49 �m at 100 �C. Schultz and Kinloch proposed that

lamellar twisting may be caused by queues of giant screw

dislocation of the same band [25]. However, a recent

study by Xu et al. on poly(3-hydroxybutyrate-co-3-hy-

droxyhexanoate) copolymer [26] shows that the lamellae

twist before screw dislocation appear, demonstrating that

screw dislocation are not causal of twisting. The ultimate

driving force for lamellae twisting is still an open question.

Another significant feature in P(3HB) spherulites is

the appearance of apparent cracks in some samples when

crystallized at high temperatures. Especially, circumfer-

entially cracks are clearly observed at samples during sph-

erulitic growth at temperatures above 90 �C. These ap-

parent cracks appeared as black lines in the optical mi-

croscope. It was suggested by Hobbes et al. [27] that the

apparent cracks formed in spherulites are due to differences
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in thermal expansion between the P(3HB) film and the con-

straining glass slides. In addition to the circumferentially

cracks, a crack at the center of spherulites is also observed.

P(3HB) and PEO are both crystalline polymers with

melting points of 175.6 and 65.7 �C, respectively, mea-

sured by DSC at a heating rate of 10 �C/min. At tempera-

tures between 65.7 and 175.6 �C, the blend is a crystal-

line/amorphous system but it becomes as a crystalline/

crystalline system below 65.7 �C. Figure 5 shows the

banded P(3HB) spherulites of neat P(3HB) and PEO/

284 Trong-Ming Don et al.

Figure 4. Optical micrographs of banded spherulitic structures of P(3HB) crystallized at (a) 65 �C, (b) 85 �C (c) 95 �C (d) 100 �C.

Figure 5. Optical micrographs of banded spherulitic structures of P(3HB) in PEO/P(3HB) blends crystallized at 70 �C,
PEO/P(3HB) = (a) 0/100 (b) 20/80 (c) 50/50 (d) 80/20.



P(3HB) blends crystallized at 70 �C. For all the composi-

tions studied, volume-filling spherulites are observed when

the samples were allowed to crystallize for a sufficient

period of time. Furthermore, the spherulite radius of P(3HB)

increased linearly with time and no apparent evidence of

liquid-liquid phase separation was found up to the point

of spherulite impingement. This implies that PEO was

contained within the P(3HB) spherulites during P(3HB)

crystallization at 70 �C. Figure 5 also shows that the band

spacing in P(3HB) spherulites increased with PEO con-

tent and became diffuse. This has the same trend as in-

creasing the crystallization temperature above 90 �C. When

the blends were allowed to crystallize at temperatures be-

low the melting point of PEO component, both PEO and

P(3HB) crystallized at the same time. Figure 6 shows the

spherulitic morphology of PEO/P(3HB) blends crystal-

lized at 50 �C. In contrast to that in the crystalline/amor-

phous blends, a course spherulitic texture with a disrup-

tion of Maltese-cross pattern for all the blends studied

was observed. The disruption of Maltese-cross pattern

indicates an intra-spherulitic segregation may occur dur-

ing the crystallization of PEO and P(3HB). Further crys-

tallization of PEO thus could occur in the P(3HB) inter-

fibrillar regions, as well as P(3HB) in the PEO inter-

fibrillar regions.

SEM pictures were taken to facilitate the observation

of spherulitic structures. Figure 7 shows the SEM pic-

tures of the PEO/P(3HB) blend (5/5) crystallized at 40

�C for 3 days and etched with cold water for 2 days. A

ring structure, characterization of banded texture of P(3HB)

spherulites, with a spacing of 10-20 �m was observed.

This is in the same magnitude order with that in POM

pictures. After etching with cold water that would only

remove PEO component, radial cracks were observed in

P(3HB) crystallites. This again suggests that PEO com-

ponent resides in the interfibrillar regions. Chiu and You

[28] studied the lamellar morphology of PEO/P(3HB)

blends via small angle X-ray scattering (SAXS) and found

that amorphous PEO was located in the interfibrillar re-

gions of P(3HB) and the extent of interfibrillar segrega-

tion increased with increasing PEO composition.

3.3 Growth Rate of Spherulites

The development of spherulites was monitored, in

which radius of spherulites was measured at various

times. Figure 8 shows the relationship of spherulitic grow-

th rate (G) with crystallization temperature (Tc) for neat

P(3HB) and PEO/P(3HB) blends. The maximum growth

rate was found at 90 �C (Tc,max) for neat P(3HB), which

agrees to the previous reports [15,16,29]. It is known that
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Figure 6. Optical micrographs of banded spherulitic structures of P(3HB) in PEO/P(3HB) blends crystallized at 50 �C, PEO/
P(3HB) = (a) 0/100 (b) 20/80 (c) 50/50 (d) 80/20.



the crystallization window of a crystalline polymer lies

between Tg and Tm�. When the crystallization temperature

is located toward Tg, the crystallization kinetics is gov-

erned by the chain mobility, such that the rate increases

with increasing crystallization temperature in this region.

In contrast, when the crystallization temperature is located

toward Tm�, the crystallization rate would be controlled by

the thermodynamic driving force for crystallization. Be-

cause of interplay of these two factors, a maximum in

crystallization rate at Tc,max between Tg and Tm� would be

found. Compared to neat P(3HB), a gradual shift of this

Tc,max toward lower temperatures occurs in the blends with

an increasing addition of PEO component. The shift in

Tc,max can be explained by the changes in Tg and Tm� of the

blends [30]. Furthermore, Figure 8 also shows the growth

rate of P(3HB) crystallites decreases with increasing

PEO content in the blends at all investigated crystalliza-

tion temperatures above 50 �C (below 50 �C, it is very

difficult to calculate the growth rate of P(3HB) crystal-

lites because of the dense nucleation and competitive

crystallization from PEO component). A dilution effect

which diminishes the formation of a critical nucleus on

the growth front of spherulites, and a decrease in the de-

gree of undercooling due to the melting point depression

can be applied to explain the decrease of growth rate in

the miscible PEO/ P(3HB) blend. The enhanced chain

mobility by the addition of PEO seems not to contribute

large enough to change the decreasing trend of crystalli-

zation rate with PEO content. This result is not in agree-

ment with the previous report [22], in which a maximum

in growth rate is observed for the blend with a composi-

tion of PEO/P(3HB) = 50/50. This is probably a PEO

oligomer having a molecular weight of 5,000 was used in

that study, which the enhanced chain mobility has to be

taken into account.

The experimental data of spherulitic growth rate were

further analyzed according to the polymer-diluent theory

[31,32]. The equation describes the growth rate of sph-

erulites of a crystallizable polymer containing a second
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Figure 7. SEM micrographs of a PEO/P(3HB) blend (50/50) crystallized at 40 �C for three days. (a) � 500 (b) � 2000; the sample
was then etched to remove PEO component by immersing in cold water at 5 �C for two days (c) � 500, (d) � 3000.

Figure 8. Spherulitic growth rate of P(3HB) with temperature
for PEO/P(3HB) blends.



polymer acting as a diluent. The equation is shown be-

low:

(6)

where Go is a pre-exponential factor that is independent

of temperature. The volume fraction of P(3HB), �2, is

obtained using the densities of amorphous PEO and

P(3HB) whose values are 1.08 g/cm3 [33] and 1.17 g/

cm3, respectively [24]. The degree of undecooling, 
T,

is equal to (Tm�-Tc). The U*/2.3R(Tc-T�) term contains

the contribution arising from the diffusion of the cry-

stallizable P(3HB) and diluent PEO involved in the cry-

stallization. The quantity U* is the sum of activation en-

ergies of chain motion of P(3HB) and PEO in the melt

and T� is the temperature below which such motions

cease (T� = Tg � C, where C is a constant). The term f is

a correction factor that accounts for the dependence of

the heat of fusion on temperature and is written as f =

2Tc/(Tm� + Tc). The parameter Kg is the nucleation fac-

tor expressed as:

(7)

where bo is the thickness of a monomolecular layer, �
and �e are the lateral and folding surface energies, re-

spectively, 
Hf is the heat of fusion per unit volume, and

k is the Boltzmann constant. According to the Hoffman

theory [31], the value of n depends on the regime of cry-

stallization. At high crystallization temperatures, each

surface nucleation is followed by rapid completion of

the growth strip prior to the next nucleation event. This

is referred to regime I and n = 4. At lower crystallization

temperatures, multiple surface nuclei occur and spread

across the growth front together. The separation between

nuclei decreases as the crystallization temperature de-

creases. This is regime II and n = 2. When crystalliza-

tion occurs at still lower temperatures, the niche separa-

tion of multiple nuclei is of the order of the molecular

width, when no more spreading takes place. This is re-

gime III and n = 4.

The left-hand side of Equation (6) was plotted aga-

inst 1/2.3Tc
Tf, with Tm� values obtained from Table 1.

Williams-Landel-Ferry values U* = 17.24 kJ/mol and T�

= Tg � 51.6 K were adopted for P(3HB) system. A good

linear fit was obtained with the correlation coefficient

value above 0.99. However, for the blends, U* was var-

ied to maximize the correlation coefficient of the linear

fit. The results are shown in Figure 9 and the values of Kg

calculated from the slope are listed in Table 2. Barham et

al. [24] found that P(3HB) crystallizes according to re-

gime III at the crystallization temperatures used in this

study (65~110 �C). Therefore, n = 4 according to Hoff-

man theory. However, the value of Kg decreases with in-

creasing PEO content in the blends. To calculate the fold-

ed surface free energy �e, n = 4 was used for the pure
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, versus 1/2.3

Tc
Tf to determine the nucleation factor Kg.

Table 2. Nucleation factor Kg and folded surface energy �e of P(3HB) crystals in PEO/P(3HB) blends

PEO/P(3HB) U* (kJ/mole) Log Go (�m/s) Kg (� 105 K2) �e (erg/cm2)

0/100 17.24 14.81 5.648 47.2
20/80 16.11 11.47 3.504 30.2
50/50 15.06 8.756 2.001 17.4
80/20 12.34 7.518 1.427 12.5
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P(3HB) and the blends, together with the values of bo =

5.76 Å, � = 29 erg/cm2, 
Hf = 1.85 � 108 J/m3 [15]. The

results are also listed in Table 2. The �e value for pure

P(3HB) is fairly agreed to the value reported by Pearce et

al. [15]. Yet, the value decreases with increasing PEO

content. This behavior was also observed by Martuscelli

et al. for the P(3HB)/poly(epichlorohydrin) blends [10].

4. Conclusions

Neat P(3HB) exhibits banded spherulitic texture as
crystallized from the bulk, where a maximum growth
rate of spherulites was found at 90 �C. At temperatures
greater than 90 �C, band spacing increases and growth
rate decreases with increasing crystallization temperature.
When blended with a PEO having a molecular weight of
100,000, a single glass transition and a depression of melt-
ing point were observed for all the composition studied,
proving that P(3HB) and PEO were miscible in the amor-
phous state. The interaction parameter �12 calculated via
the Nishi-Wang equation for this PEO/P(3HB) blend was
-0.059. The results clearly show that though they were
miscible, the interaction between P(3HB) and PEO was
weak. In addition, as the same as increasing crystalliza-
tion temperature over 90 �C, the addition of PEO decreases
the spherulitic growth rate and increases the band spac-
ing. This is attributed to the dilution effect that greatly di-
minishes the formation of a critical nucleus, and a de-
crease in the degree of undercooling due to the melting
point depression. The experimental data of spherulitic
growth rate were further analyzed according to the poly-
mer-diluent theory. The nucleation factor Kg and the fo-
lded surface free energy �e of P(3HB) crystals are 5.648
� 105 K2 and 47.2 erg/cm2, respectively. Both values de-
crease with increasing PEO content in the blends.
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