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Abstract

A methodology for formulating an elasto-plastic finite-element model, based on an updated Lagrangian formulation and the
Prandtl–Reuss flow rule, was developed to simulate the redrawing process of axisymmetric sheet metal. An extended rmin

algorithm is proposed to formulate the boundary conditions, such as nodal penetration and separation, alteration of the sliding
direction of friction, linearization of strains increments and rotational increments and altered elasto-plastic state of the material.
A modified Coulomb’s friction law is introduced to describe the alternation between the sliding state and sticking state of faction
at the contact interface. The corresponding stiffness equations and solution algorithms are introduced. According to the developed
finite-element model, the redrawing process of sheet metal is simulated. Simulation results, such as: (i) the whole deformation
history; (ii) the entire loading process history; and (iii) thickness of the workpieces, etc. can be obtained. The simulation clearly
demonstrates the efficiency of the model to simulate the redrawing process of sheet metal. This paper has provided a greater
understanding of the redrawing process which can lead to improvements in the manufacturing process and in the design of tools.
© 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

The redrawing process has been used for the produc-
tion of deeper and narrower cups. If the first drawing
operation cannot produce a cup that is deep or tapered
enough, because of encountering a limiting drawing
ratio, redrawing has to be employed. If the first redraw
still can not produce the deeper cup, a second redraw is
employed, and so on.

Early in the 1940s, Swift dedicated his research to
redrawing; afterwards, Swift and Chung [1] investigated
experiments on cylindrical cups redrawing. Nakamura
and Nakagawa [2] proposed the application of hy-
draulic counter pressure and its radial pushing to re-
verse the redrawing process to improve the limiting
drawing ratio. Parsa et al. [3] used the results of the
rigid–plastic finite-element simulation to show that the

success or failure of the redrawing process depends not
only on the redrawing ratio but also on the work-hard-
ening characteristics of the blank material, the first
stage drawing ratio, the tool shape and the interstage
annealing on the limiting redrawing ratio. Yang et al.
[4] proposed a separated radial pressure assisted by a
hydromechanical deep drawing process to increase the
formability and productivity, which was confirmed
through an experiment and a finite-element analysis. Lu
and Huang [5] proposed the most adequate scheme of
the stiffness matrix to solve the elasto-plastic finite-ele-
ment analysis of the axisymmetric cylindrical cup draw-
ing and redrawing process.

The constant strain triangular (CST) element and the
quadrilateral element are often used in sheet metal
forming problems. The full integration (FI) scheme is
normally used to construct the stiffness matrix on the
finite element. However, the Fl scheme of the quadrilat-
eral element is known to form an elastic incompressible
state [6,7], hence the reduced integration (RI) scheme is
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proposed to deal with the plate bending problem. The
use of the RI scheme removes the over-constraint prob-
lem, but introduces spurious zero-energy modes, which
can result in the ‘hourglass’ phenomenon in the defor-
mation of a thin plate [8]. A compromise known as
selective reduced integration (SRI) can be used, in
which RI is used to calculate the transverse shear
stiffness, whereas FI is used to treat the remaining
stiffness. In order to prevent the ‘hourglass’ phe-
nomenon and eliminate the rank deficiency of the one-
point integration scheme, Belytschko et al. [9] suggested
a stabilization matrix (SM) in the four-node Mindlin
plate element; and Liu et al. [10] proposed incorporat-
ing the stabilization matrix into the usual one-point
integration stiffness matrix.

In this paper, the elasto-plastic finite-element based
on the updated Lagrangian formulation theory and the
Prandtl–Reuss flow rule has been used to simulate the
process of cylindrical cup drawing and redrawing. An
extended rmin algorithm [11] is incorporated into the
computer code to determine the increment of the punch
displacement. According to the results of experiment
and numerical simulation, the stabilization matrix
scheme presented in this paper shows good agreement
with experiment in the relationship of punch load ver-
sus punch travel, and thickness variation of the
workpiece.

2. Basic theory

2.1. Equilibrium equation

In applying incremental deformation toward the
metal-forming process, the updated Lagrangian formu-
lation (ULF) can be adopted flexibly to describe the
incremental characteristics of the plastic law. In the
ULF, the current configuration at each deformation
stage is used as the reference state to evaluate the
deformation in a very small time interval Dt so that the
first-order theory is consistent with the accuracy
requirement.

The virtual work-rate equation of the updated La-
grangian equation is written as [11]&
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where is the Jaumann rate of Kirchhoff stress; s is the
true stress; e; and L: are the strain rate and velocity
gradient, respectively; V and Sf are the material volume
and the surface on which the traction is prescribed,
respectively; 7 is the velocity; and t(: denotes the rate of
nominal traction. Assuming that the distribution of the
velocity 7 in an element is:

7=Nd: (2)

where N is the shape function and d: indicates the nodal
velocity. The strain rate and velocity gradient are writ-
ten as:

e; =B d: (3)

L: =E d: (4)

where B and E indicate the strain rate–velocity matrix
and the velocity gradient–velocity matrix, respectively.
By substituting (Eqs. (3) and (4) into Eq. (1)), the
elemental stiffness matrix equation is:

Kd: = F: (5)

in which:
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In these equations, K is the tangential stiffness matrix,
Dep is the elemental elasto-plastic constitutive matrix, F:
is the nominal force rate, Q and G are defined as stress
correction matrices due to the current stress states at
each deformation stage, and V and S are the domains
of volume and surface of the element, respectively.

2.2. Full integration (FI)

Full integration is always to be used for a displace-
ment-based or mixed finite-element formulation. For
the 4-node quadrilateral element, Eq. (5) can be inte-
grated by evaluating the elemental stiffness matrix at all
four Gauss points.

2.3. Reduced integration (RI)

Using this integration scheme, the stiffness matrix is
evaluated at the central point of the element. In most
cases the reduced integration scheme gives a zero en-
ergy mode and this is the reason why it should be
avoided in ordinary simulation.

2.4. Selecti6e reduced integration (SRI)

In the selective reduced integration scheme, the bend-
ing term is integrated with the full integration rule,
whereas the shear term is integrated by the one-point
Gaussian quadrature that is the reduced integration for
the 4-node quadrilateral element.

2.5. Stabilization matrix (SM)

As the reduced one-point integration scheme for the
4-node quadrilateral element often causes a serious
distortion of elements known as the hourglass effect,
Liu et al [10] proposed adding an element stabilized



Y.-M. Huang, C.-L. Li / Journal of Materials Processing Technology 89–90 (1999) 331–338 333

matrix Ks to the one-point integration element stiffness
matrix K1 to form the element stiffness matrix K in Eq.
(5). Hence, the resulting elemental stiffness matrix
becomes:

K=K1+Ks (6)

Superscript 1 denotes one-point integration in the ele-
ment. Evaluation of the matrices K1 and Ks is provided
in this section. Initially, the strain rate and velocity
gradient are approximated by Taylor’s equation at the
origin of natural coordinates j and h as follows:

o; (j, h)=Bi(0)d: i+Bi, j(0)d: i j+Bi, h(0)d: i h (7)

L: (j, h)=Ei(0)d: i+Ei, j(0)d: i j+Ei, h(0)d: i h (8)

where i is summed from 1 to the number of nodes per
element, for a quadrilateral element this number being
4. The comma indicates partial differentiation. (0) de-
notes the evaluation calculated at (j, h)= (0, 0). By
substituting strain rate and velocity gradient Eqs. (7)
and (8) into Eq. (1), the submatrices K1

ab and Ks
ab for

nodes a and b in the element are obtained by calculat-
ing the integral of Eq. (5) at the origin of the natural
coordinates:

Kab
1 =V Ba

T(0)(Dep−Q)Bb(0)+V Ea
T(0)G Eb(0) (9)

and:
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In a nearly incompressible medium, the plastic defor-
mation is due primarily to the deviatoric part of Bi and
Ei, hence, the stabilized matrix Ks

ab can be redefined as
follows:

Kab
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In axisymmetric problems, the computations of K1
ab

require the evaluations of Bi(0) and Ei(0). The explicit
form of Bi(0) for the 4-node quadrilateral element can
be written as:

Bi(0)=Ã
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where:

b1={b1i}=
1
24

[z24, z31, z42, z13]T (13)

b2={b2i}=
1
24

[r42, r13, r24, r31]T (14)

rIJ=rI−rj ; zIJ=zI−zJ (15)

and

A=
1
2

(r31z42+r24z31) (16)

where A is the area of the quadrilateral element. A
similar procedure must be performed to obtain the
explicit form of Ei(0).

The Ks
ab computations have to determine Bi, j, Bi, h,

Ei, j, Ei, h at the origin, namely (j, h)= (0, 0). Five
vectors r, z, j, h and h are denoted as:

r= [r1, r2, r3, r4]T (17)

z= [z1, z2, z3, z4]T (18)

j= [−1, 1, 1, −1]T (19)

h= [−1, −1, 1, 1]T (20)

and:

h= [1, −1, 1, −1]T (21)

where ji and hi are the components of the natural
coordinates for the ith node of the quadrilateral ele-
ment, ri and zi are the components for the ith node in
the global coordinate, and h is the hourglass vector [10].
After some computations and arrangements, the ex-
plicit forms of Bi, j(0) and Bi,h(0) are found to be:
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and:
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where:

b1, j={b1i, j}= −
(jTz)

4A
[g1, g2, g3, g4]T (24)

b2, j={b2i, j}=
(jTr)

4A
[g1, g2, g3, g4]T (25)

b1, h={b1i, h}=
(hTz)

4A
[g1, g2, g3, g4]T (26)

and:

b2, h={b2i, h}= −
(hTr)

4A
[g1, g2, g3, g4]T (27)

In these equations, g vector is related to b1 and b2

byg=h− (hTr)b1− (hTz)b2

Similarly, the explicit forms of Edev
i, j (0), Edev

i, h (0) can be
computed in the same procedure. By using the explicit
forms of Bi(0), Ei(0), Bdev

i, j (0), Bdev
i, h (0), Edev

i, j (0) and Edev
i,

h(0), the explicit K1
ab and Ks

ab can be evaluated.

3. Experiment and FEM analysis

3.1. Experimental work

To verify the development of the computer code,
experiments were conducted to examine the process of
cylindrical cup drawing and redrawing. The experimen-
tal equipment involved a 500 kN hydraulic press with
two cylinders. The press was PLC-controlled and
mounted with transducers for measuring the position
and force on each cylinder. The PLC-controller was
linked to data acquisition equipment enabling the press
to be computer controlled.

Lubrication of the workpieces plays an important
role in the drawing and redrawing process. The usage
of lubricant is not only to diminish the friction between
the sheet and die, but also to increase the life of the die.
In the present experiment, the lubricant adopted was
zinc stearate. The experimental procedure was per-
formed as follows:

(1) Use a pressing mold to cut the blanks, the diame-
ters of which were equal to 140.0 mm; (2) assemble the
die sets on the hydraulic press; (3) spray a thin film of

zinc stearate onto both sides of the blank; (4) use a
three-point adjustment to center the blank on the die;
(5) put the spacer ring around the blank. Next, set the
blankholder force to 50 kN and press on the spacer
ring; (6) select a reasonable velocity (1.4 mm s−1) for
the punch to draw the blank into the die; (7) record the
relationship of punch load and punch travel by the data
acquisition equipment; (8) repeat the steps 1–7 for the
various blanks; (9) cut the workpiece along the central
generatrix with a CNC wire-cutting machine; (10) stick
a paper-meter along the central generatrix on the work-
piece. Then, use a sharp-point micrometer to measure
thickness along the central generatrix.

3.2. FEM analysis

The elasto-plastic finite-element with the updated
Lagrangian formulation is used to simulate the cylindri-
cal cup drawing and redrawing processes in this study.
The analyses of cup drawing and redrawing processes
are based on axisymmetric considerations. Only the
right-half portion of the tools and workpiece are mod-
eled in simulations. An auto-mesh program is used to
generate the finite-element. Fig. 1 shows the tools’
dimensions and the initial dimension of the blank and
the finite-element mesh in the drawing process. Fig. 2
shows the tools’ dimensions in the redrawing process.
The sheet was meshed as one layer and 150 columns for
the constant strain triangular element, and three layers
and 150 columns for the quadrilateral element. The
element and node number used in simulations for dif-
ferent element types are shown in Table 1.

Fig. 1. Tools’ dimensions and finite-element mesh of the blank for the
cylindrical cup drawing process.
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Fig. 2. Tools’ dimensions for the cylindrical cup redrawing process.

Fig. 3. ‘Hourglass’ effect in the reduced integration scheme.

4. Results and discussion

Both drawing and redrawing processes were used to
compare with the experimental results to verify the
computation code.
4.1. ‘Hourglass’ mode in RI scheme

To demonstrate the occurrence of the ‘hourglass’
phenomenon, a simulation without the stabilization
matrices was executed by a one-point reduced integra-
tion scheme. Fig. 3 depicts the ‘hourglass’ mode when
the punch travel reaches 0.00217 mm. This figure
clearly indicates that the ‘hourglass’ mode occurred in
many elements. This is due to the elements being sub-
jected to the bending effect caused by the constraint of
the die and the punch head, in the initial deformation
stage.

Global coordinates (r, z) are used to describe factors
such as nodal force, nodal displacement, element stress,
and element strain. The generalized rmin strategy [12] is
used to determine the actual punch displacement in
each stage. This generalized rmin strategy is used to
determine the minimum increment of punch travel from
the following considerations: (1) a finite element cannot
change state from elastic to plastic and vice versa; (2)
the largest absolute value of the incremental principal
strains attains a limiting value of Domax=0.002; (3) the
largest absolute value of the incremental rotations at-
tains a limiting value of Dumax=0.5°; (4) a free node
will not come into contact; (5) a contacting node will
not get free; (6) a sticking node will not slide; (7) a
sliding node will not stick. The Coulomb friction law is
adopted to treat the frictional effect between the tools
and workpiece. All calculations were performed on a
DEC Alpha 2004/233 workstation. The material used in
the experiment was JIS G3141 SPCEN-SD (DDQ)
low-carbon steel. The material properties and the stress-
strain relationship were: blank thickness t=1.00 mm;
stress–strain relation s̄=516.54(0.00639+ ōp)0.232 MPa;
and yield stress sy=160.00 MPa. The values of Pois-
son’s ratio and Young’s modulus for the material were
6=0.3 and E=2.1×105 MPa, respectively.

Fig. 4. Comparison of punch load for different integration schemes
and experiment in the drawing process.

Table 1
Element and node number used in simulations

Element type Node number Element number

Constant strain triangular 600452
604 450Quadrilateral
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Fig. 5. Comparison of punch load for different schemes and experi-
ment in the redrawing process.

Fig. 6. Comparison of thickness for different integration schemes and
experiment in the drawing process.

illustrates the relation of CPU time versus venous in-
tegration schemes. The CPU times to simulate the
drawing and redrawing process were less for the SM
scheme and the CST scheme than for the FI scheme
and the SRI scheme.

4.4. Comparison of the sheet thickness

An NC wire-cutting machine was used to cut the
workpiece along the central generatrix. Then, a
micrometer with a sharp point attachment was used
to measure the thickness of the workpiece. Figs. 6
and 7 indicate the comparison of sheet thickness dis-
tribution for numerical simulation and experiment in
a developed length of the generatrix. A little devia-
tion is observed at the contact area of the punch
head and the workpiece.

4.5. Deformation history in simulation

Figs. 8 and 9 show the deformation history at dif-
ferent punch travel in the drawing and redrawing
process. It was found that the blank was drawn
smoothly into the die cavity by the cylindrical punch.
Which establishes that the technology of generalized
rmin can adequately trace the whole deformation his-
tory.

4.2. Comparison of the punch load in drawing and in
redrawing

Fig. 4 shows a comparison between experiment and
simulations for punch load versus punch travel in the
drawing process, using zinc stearate lubricant for the
blank diameter of 8=140.0 mm, to provide a fric-
tion coefficient of m=0.05. It is noted that the load
of the SRI scheme is obviously lower than the load
of the experiment and other schemes, and the load of
the FI scheme is obviously larger than the load of
other schemes and the experiment.

Fig. 5 shows a comparison between experiment and
simulations of the CST scheme and the SM scheme
for punch load versus punch travel in the redrawing
process. The load of the CST scheme is obviously
larger than that for the SM scheme and that for ex-
periment.

4.3. CPU time in simulation

For purposes of the FEM analysis, it was necessary
to use the ‘sufficiently accurate’ rule. Hence the deter-
mination that the FEM meshed-elements does not
only permit convergence but also saves CPU time
was of interest in the present investigation. Table 2

Table 2
The relation of CPU time versus venous integration schemes (unit: second)

Integration schemes Drawing CPU time Redrawing CPU time Total CPU time

CST 6253.61637.6 4616.0
2.385.8SM 3802.9 6187.7
4310.5FI 11366.97056.4
4763.5SRI 7147.2 11910.7
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Fig. 7. Comparison of thickness for different integration schemes and
experiment in the redrawing process.

Fig. 9. The deformation history at different punch travels in the
redrawing process.

5. Conclusion

Four different stiffness schemes, FI, SRI, RI and
SM, are connected to the usual CST finite element
program to investigate the computational efficiency of

Fig. 8. The deformation history at different punch travels in the
drawing process.

the sheet drawing and redrawing process. Comparison
of the experiment and theoretical simulation results
showed that the SM scheme and CST scheme had good
agreement with the experiment in terms of punch load,
thickness variation and deformation history. Moreover,
under the consideration of sufficient accuracy, the CPU
time for the SM scheme was less than that for the other
schemes.
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