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ABSTRACT 

In nonsymmetric graphs strong connectivity is an important concept. In this paper, 
extending the concept of strong connectivity of nonsymmetric graphs to the case of symmet- 
ric graphs, the idea of minimally strongly connected (MSC) and maximal minimally strongly 
connected (MMSC) subgraphs in a symmetric graph is introduced, and theoretical results are 
developed that pertain to certain useful properties of these subgraphs. A computer-oriented 
algorithm is also proposed for finding the MMSC subgraphs from a given symmetric graph, 
that seems efficient and simple, and tends to reduce computation in generating the subgraphs. 

I. INTRODUCTION 

Linear graph theory is finding increasing applications as a tool of analysis 
in widely differing areas of science and technology [l-lo]. Linear symmetric 
graphs in particular have special applications in sequential switching theory, 
map coloring problems, transportation research, systems programming, etc. 
and have also been widely studied. Consider a symmetric graph G with n 
nodes 4, i=1,2 , . . . , n. A s&graph G, of G is a symmetric graph that has a 
subset of the set of nodes of G as its nodes and a subset of the set of edges of G 
as its edges. A path from node ui to node vi in G is a concatenation of r 
nondirected edges leading from u, to vj, r being the length of the path. A circuit 
in G is a path that starts from and terminates on the same node. Two nodes vi 
and 4 in G are said to be connected if and only if there exists a path from u, to 
9. A graph G is connected if every pair of its nodes is connected. The existence 
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of a path between nodes in G is an equivalence relation, and as such it defines 
a partition of the nodes of G into disjoint subsets. 

Similar to the concept of connectivity for symmetric graphs, for nonsym- 
metric or oriented graphs there is the concept of strong connectivity [6]. In the 
present paper in direct extension of the aforesaid concepts, we introduce a 
related concept, the concept of minimal strong connectivity, and define minim- 
ally strongly connected (MSC) subgraphs and maximal minimally strongly 
connected (MMSC) subgraphs in symmetric graphs as follows. Two nodes oj 
and 4 in a symmetric graph G are said to be minimally strongly connected 
(MSC) if and only if ui and 9 are connected by a path of length one. 
Otherwise, the nodes, if connected; are said to be nonminimally strongly 
connected. A subgraph G, of G is said to be a minimally strongly connected 
(MSC) subgraph if and only if every possible pair of nodes in G, is minimally 
strongly connected, Thus in a minimally strongly connected subgraph with k 
nodes, the total number of edges is k(k - 1)/2. A minimally strongly con- 
nected subgraph G, of G is a maximal minimally strongly connected (MMSC) 
subgraph if and only if there does not exist any node in G outside of the 
subgraph G, which is minimally strongly connected with all the nodes of G,. 
The existence of a path of length one between nodes of G, unlike that of paths 
of any length, is not an equivalence relation (since transitivity does not hold in 
this case), and accordingly it partitions the set of nodes of G into overlapping 
subsets. The MMSC subgraphs are thus not mutually exclusive and can have 
nonvoid intersections. Note that an MSC subgraph corresponds to a complete 
subgraph or clique, and an MMSC subgraph corresponds to a maximal com- 
plete subgraph or maximal clique of symmetric graphs. As illustration, refer to 
Fig. l(a), which shows a symmetric graph G with six nodes (t),,u1,u3, u.,,u~,u~). 
In G, the node u, is minimally strongly connected with each of the nodes 
u2, u3, u4, 1)6, and the subgraph consisting of the nodes (ui, u2, u3,u4) is an MMSC 
subgraph. 

In this paper theoretical results are developed that pertain to certain useful 
properties of symmetric graphs in relation to their MMSC subgraphs. A 
well-defined algorithm is also developed for finding all the MMSC subgraphs 
from a given symmetric graph, that follows a process of successive decomposi- 
tion of the graph around some of the nonminimally strongly connected pairs of 
nodes of the graph, and tends to reduce computation in the generation of these 
subgraphs. The results established are significant, and the subgraph generation 
algorithm as given is explicitly simple and seems readily programmable. It is 
relevant to mention here that in the present discussion we consider symmetric 
graphs with no self-loops and multiple edges, that is, we do not consider 
pseudographs [lo], and assume the graph to be a connected graph unless 
otherwise stated. 
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II. SYMMETRIC GRAPHS, MMSC SUBGRAPHS AND A SUBGRAPH 
GENERATION ALGORITHM 

Consider a node u, in a symmetric graph G. The degree of v,, d(q) is the 
number of edges of G incident in v,. Two subgraphs G, and Gb are said to be 
complementary to each other if and only if both G, and G,, have the same set of 
nodes and one has edges connecting between those pairs of nodes that are not 
connected by edges in the other. Figure l(b) shows the complementary graph 
G of the symmetric graph G of Fig. l(a). 

The theorems below, which follow rather obviously, develop theoretical 
results that establish certain important properties of symmetric graphs in 
relation to their MMSC subgraphs. 

THEOREM 2. Let G be a symmetric graph with n nodes, v,, i= 1,2,. . .,n. 
Denote by G the complementary graph of G. Zf the degree of a node vj, d(v,), in G 
is zero, then v, must appear in all the MMSC subgraphs of G. 

COROLLARY 1.1. Zf the degree d(q) of every node Vi, i = 1,2, . . . , n, in G is 
n - 1, then G itself is an MMSC graph. 

THEOREM 2. Let G be a symmetric graph with n nodes, vi, i= 1,2,. ..,n. 
Denote by G the complementary graph of G. Zf the degree d(2) of a node v, in G 
is zero, then vt must appear in all the MMSC subgraphs of G. 

COROLLARY 2.1. Zf the degree d(v,) of every node ui, i = 1,2,. . . , n, in G is 
zero, then the complementary graph G of G is an MMSC graph. 

THEOREM 3. Consider a symmetric graph G with n nodes u,, i = 1,2,. . . , n. Let 
the nodes v, and v,+,, j= 1,2,. . .,n - 1, be minimally strongly connected, and so 
also be the nodes v, and v, in G; for aN other pairs of nodes (v~,v,,,), let vk and v,,, 
be nonminimally strongly connected, In G, the path r,2r23. * . r,,, is a circuit, rII 
being the edge connecting nodes v, and vj; the degree of every node vj, d(u,), is 
two; and there are n MMSC subgraphs. 

THEOREM 4. In a symmetric graph G, let the degree of a node vi, d(q), be k, 
and let v- u ,,, ,2,. . .,qk be the k other nodes of G minimally strongly connected with 
v,. Zf the degree of each of the nodes vi,,,, m = 1,2,. . . , k, is d (vim) > k, and 
each vim is minimally strongly connected with at least the nodes 
913 Q2, ’ . . 3 ui(m - I), l)i(rn +  I), . . . , f& in addition to v,, then the set of nodes vi, vi,, . , . , uik 
forms an MMSC subgraph of G. 

In the symmetric graph G in Fig. l(a), the nodes vi, v2,v3, u4 satisfy the 
requirements of Theorem 4, and thus the subgraph comprising the nodes 
(v,,vz,v3,vJ forms an MMSC subgraph of G. 

The degree complement of a node v,, d(vJ, in a symmetric graph G is the 
degree of v, in the complementary graph G. In an n-node graph G, if the 
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degree of a node u,, d(u,), is k, k < n - 1, then the degree complement of u,, 
d(u,), is n - k - 1. The degree complement of a nonminimally strongly con- 
nected pair of nodes (w,,q) is d(v,,v,)=(k,,k,), where d(u,)= k,, d(uJ= k,. 
Considering Fig. l(a), the degree complement of node us, d(q), in G is three, 
while that of (u2,u6), which represents a nonminimally strongly connected pair 
of nodes in G, is given as d(u2,u6) =(2,2). 

For two subgraphs G, and G, of a symmetric graph G, let the set of nodes in 
G, be a proper or an improper subset of the set of nodes in Gk, both Gi and Gk 
having all the existing edges of G connecting relevant pairs of nodes. Then 
G, c Gk. Consider now a nonminimally strongly connected pair of nodes (u,,U,) 
in G. Then decomposing G into two subgraphs G, and Gj around (u;,v,) means 
obtaining the subgraphs Gj and G, from G such that Gj contains all the nodes 
of G except 4 and Gj contains all the nodes of G except 4, both Gj and G, 
having all the existing edges of G connecting relevant pairs of nodes. Obvi- 
ously, G,, G, c G. Figure l(c) and (d) shows two subgraphs G, and G, obtained 
by decomposing the graph G of (a). Evidently, G,, C, c G. 

THEOREM 5. Let G be a symmetric graph, and let (viyvj) be a nonminimally 
strongly connected pair of nodes in G. Let G be decomposed around (ViTVj) into 
two subgraphs G, and G,, and let this process of decomposition around nonminim- 
a@ strongly connected pairs of nodes be iteratively applied to G, and Gj and to all 
their subgraphs until in the resulting subgraphs there exist no more nonminimally 
strongly connected pairs of nodes. The final set of these subgraphs then includes 
all the MMSC subgraphs of G. 

Proof. Since (vi,?) is a nonminimally strongly connected pair of nodes in 
G, in no MMSC subgraph of G, both of vi and 9 can occur. Thus decomposing 
G into two subgraphs G, and G. such that G, contains all the nodes of G except 
4 and Gj contains all the nodes of G except vi eliminates the possibility of joint 
occurrence of u, and 9 in any subgraph. By iterative application of this process 
to all the resulting subgraphs of G until in the subgraphs there does not exist 
any nonminimally strongly connected pair of nodes, we obtain a set of 
subgraphs that include all the MMSC subgraphs of G. 

For any two distinct nonminimally strongly connected pairs of nodes 
(vj,,vj,) and (~;~,1)1~) in a symmetric graph G, let d(v,,,v,,)=(k,,k,) and 
d(vjz,Q=(r,,r2). If k, > r,, k, > rz, or k, > r,, k, > rz, then an ordering of the 
degree complements of the pairs of nodes can be made as d(v,,,v,,) > d(viz,&. 
If both k, = r,, k,= r,, the ordering can be made either as d(q,,v,,) > d(Uiz,Uj& 
or as d(u,,,u,,) > d(ui,,v,,). However, when k, > r,, k, < rz, the ordering of the 
degree complements will depend on whether k, - r, is greater than, equal to, or 
less than r, - k, as follows: (1) when k, - r, > rz- k2, then d(v,,,v,,) > 
d(ui2, vjz); (2) when k, - r, = r2 - kz, then either d(v,,, uj,) > d(v,,, vj2) or 
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d(Uiz>Oiz) > d(q,,v,,); and (3) when k, - r, < r2- k,, then d(q,,+) > ~(uii,uj,). 
The. ordering of the degree complements can be similarly made when k, < r,, 
k, > r,. This kind of ordering ( > ) that can be established among degree 
complements of different nonminimally strongly connected pairs of nodes in a 
symmetric graph is called magnitude ordering of degree complements of the 
pairs of nodes. Referring to graph G in Fig. l(a), the magnitude ordering of the 
degree complements of its five nonminimally strongly connected pairs of nodes 
can be made as d(u2,q) > d(v,,u,) > d(u,,u,) 2 d(u2,u,) > d(u,,b,). 

THEOREM 6. Let G be a symmetric graph, and let (ui,uj) be a nonminimally 
strongly connected pair of nodes of G having the highest degree complement in the 
magnitude ordering. If now G is split around (ui,q) into two subgraphs Gi and Gj, 
then in the resulting subgraphs the number of nonminimally strongly connected 
pairs of nodes will always be less than that when G is split into subgraphs around 
any other nonminimally strongly connected pair having nonhighest degree comple- 
ment in the magnitude ordering. 

Proof. Let the degree complement of the nonminimally strongly connected 
pair of nodes (q,u,) be d(ui,uj)=(k,,k2). Let (u,,u,) be another nonminimally 
strongly connected pair of nodes of G for which the degree complement is 
d(u,,u,)=(r,,r,). Assume that k,> r,, kz>r2. In the subgraph Gi, there are 
m, + k, - 1 nonminimally strongly connected pairs of nodes, whereas in the 
subgraph Gj, there are m, + k2 - I nonminimally strongly connected pairs of 
nodes, m, being the number of nonminimally strongly connected pairs of 
nodes in G, excluding the pairs with u,,u,. Let now G be split around (u,,u,) 
into two subgraphs G, and G,. Then the numbers of nonminimally strongly 
connected pairs of nodes in G, and G, are, respectively, m,+ r, - 1 and 
m2 + r2 - 1, where m2 is the number of nonminimally strongly connected pairs 
of nodes in G, excluding the pairs with u,,u,. But m, = h -(k, + kl-- 1) and 
m2= h -(r, + r2- I), where h is the total number of nonminimally strongly 
connected pairs of nodes in G. Then the number of nonminimally strongly 
connected pairs of nodesin Gi and Gj is (m,+k,-l)+(m,+k*-1)=2m,+(k, 
+k,-2)=2h-2(k,+k,-l)+(k,+k,-2)=2h-k,-k,. Similarly, the num- 
ber of nonminimally strongly connected pairs of nodes in G, and G, is 
(m2+r,-l)+(mz+r2--1)=2h-r,-rz. Now (2h-r,-r2)-(2h-k,-kz)= 
(k, - rI)+(k2 - r2), and this is always positive if k, > rl, k2> rz. Thus the 
theorem holds in this case. The theorem similarly holds in other cases for 
which (ui,uj) may have the highest degree complement, viz. k, > rl, k2= r2, or 
k, = r,, k2 > r2, or k, > r,, k, < r2, but k, - r, > r2- k,; or k, < r,, k2> r2, but 
r, - k, < k, - r2. 

Theorem 6 develops results that tend to minimize computation in the 
generation of MMSC subgraphs. To avoid generating non-MMSC subgraphs, 
we use the following obvious theorem. 
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THEOREM 7. In the process of successively decomposing a symmetric graph G 
into subgraphs around nonminimally strongly connected pairs of nodes, let Gi and 
Gj be any two subgraphs obtained at different stages such that Gi c Gj, but Gi is 
not derived from Gj. Then in finding onb MMSC subgraphs, Gi may be 
discarded. 

A formal algorithm to find the MMSC subgraphs from a given symmetric 
graph is presented next. 

ALGORITHM. (1) Given a symmetric graph G, find the magnitude ordering of 
the degree complements of the nonminimally strongly connected pairs of nodes in 
G. (2) Select a nonminimally strongly connected pair of nodes (vi,vj) in G, having 
the highest degree complement in the magnitude ordering. If more than one pair 
has the highest degree complement, select any one of these pairs, (vi,q). Decom- 
pose G around (vi,vj) into two subgraphs G, and Gj such that Gi contains all the 
nodes of G except vt and Gj contains all the nodes of G except vi. Consider Gi(Gj). 
Check if there exists a subgraph G,(G,,,) f rom which Gj( Gj) is not derived, 
contains Gi(Gj). (a) Zf so, discard Gi(Gj); (b) ifnot, take G,(G,) andgo to (1). (3) 
Continue with (1) and (2) until in all the resulting subgraphs there is no 
nonminimally strongly connected pair of nodes. The final set of subgraphs include 
all the MMSC subgraphs of G. 

The application of the algorithm to graph G in Fig. l(a) results in the 
generation of three MMSC subgraphs, as shown in (e), (f), and (g). 
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